A HI FI preview of warm molecular gas around χ Cygni: first detection of H2O emission toward an S-type AGB star

Published in:
Astronomy & Astrophysics

DOI:
10.1051/0004-6361/201015092

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
A HIFI preview of warm molecular gas around χ Cygni: first detection of H$_2$O emission toward an S-type AGB star

K. Justtanont1, L. Decin2,3, F. L. Schöier1, M. Maercker4,22, H. Olofsson1,5, V. Bujarrabal6, A. P. Marston7, D. Teyssier7, J. Alcolea8, J. Cernicharo9, C. Dominik3,10, A. de Koter3,11, G. Melnick12, K. Menten13, D. Neufeld14, F. Planesas6,15, M. Schmidt16, R. Szczerba16, R. Waters3,2, Th. de Graauw17, N. Whyborn17, T. Finn18, F. Helmich19, O. Siebertz20, F. Schmulling20, V. Ossenkopf20, and R. Lai21

Received 31 May 2010 / Accepted 9 June 2010

ABSTRACT

A new set of sensitive, spectrally resolved, sub-millimeter line observations are used to probe the warm circumstellar gas around the S-type AGB star χ Cyg. The observed lines involve high rotational quantum numbers, which, combined with previously obtained lower-frequency data, make it possible to study in detail the chemical and physical properties of, essentially, the entire circumstellar envelope of χ Cyg.

Methods. The data were obtained using the HIFI instrument aboard Herschel, whose high spectral resolution provides valuable information about the line profiles. Detailed, non-LTE, radiative transfer modelling, including dust radiative transfer coupled with a dynamical model, has been performed to derive the temperature, density, and velocity structure of the circumstellar envelope.

Results. We report the first detection of circumstellar H$_2$O rotational emission lines in an S-star. Using the high-J CO lines to derive the parameters for the circumstellar envelope, we modelled both the ortho- and para-H$_2$O lines. Our modelling results are consistent with the velocity structure expected for a dust-driven wind. The derived total H$_2$O abundance (relative to H$_2$) is $(1.1 \pm 0.2) \times 10^{-7}$, much lower than that in O-rich stars. The derived ortho-to-para ratio of 2.1 ± 0.6 is close to the high-temperature equilibrium limit, consistent with H$_2$O being formed in the photosphere.

Key words. stars: AGB and post-AGB – circumstellar matter – stars: kinematics and dynamics – stars: individual: χ Cyg – stars: late-type – stars: mass-loss

1. Introduction

Observations of the dust and gas components in the circumstellar envelopes (CSEs) around asymptotic giant branch (AGB) stars have been carried out at different wavelengths. Observations in the infrared trace the dust as well as the warm molecular layer close to the stellar photosphere (e.g., Justtanont et al. 1996; Aoki et al. 1999; Schöier et al. 2002). Submillimeter and radio observations of trace molecules have been used to study the cooler outer parts of the CSEs (e.g., Knapp & Morris 1985; Schöier & Olofsson 2000; Kemper et al. 2003). To bridge this gap, the ISO was used to observe a large number of AGB stars up to almost 200 μm, and in O-rich stars, a number of H$_2$O emission lines were detected (Barlow et al. 1996; Neufeld et al. 1996). However, the circumstellar far-infrared lines were unresolved. Hence, crucial information about the line profiles remained unknown.

Water is an important molecule in CSEs as it is thought to be one of the main cooling agents in the wind. It is also expected to be a good probe of the inner regions of the CSE where the gas is accelerated. However, to fully explore the potential of H$_2$O lines as a probe of the circumstellar gas, a full radiative transfer has to be performed. Owing to difficulties in calculating accurate collisional rates coupled with the very high optical depth of the H$_2$O lines in the inner region of the CSE, slow progress has been made. Nevertheless, calculations of the heating and cooling in the CSEs of O-rich stars suggest that H$_2$O dominates the cooling in most parts of the envelope until it is photodissociated by interstellar UV photons (Goldreich & Scoville 1976; Justtanont et al. 1994; Maercker et al. 2008, 2009; Decin et al. 2010a), and that some lines should come mainly from the acceleration zone. Eventually, spectrally resolved circumstellar H$_2$O lines were observed by two space missions dedicated to search for cosmic water line emission: SWAS and Odin. Both missions were able to detect the ground-state line of H$_2$O at 557 GHz in a number of AGB stars (Harwit & Bergin 2002; Melnick et al. 2001; Justtanont et al. 2005; Hasegawa et al. 2006; Maercker et al. 2009). It was shown that not only the line intensity, but also the line profile is crucial for interpreting the data correctly.

In 2009, the ESA-Herschel Space Observatory (Pilbratt et al. 2010) was launched with the Heterodyne Instrument for the Far-Infrared (HIFI, de Graauw et al. 2010), which aims to study H$_2$O line emission in different environments in our Galaxy and beyond. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LEIRMA, IRAM; Germany: KOSMA, MPhR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri – INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronómico Nacional (IGN), Centro de Astrobiología (CSIC-INTA). Sweden: Chalmers University of Technology – MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University – Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC.
Table 1. HIFI observations of χ Cyg.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Transition</th>
<th>ν (GHz)</th>
<th>(E_u) (K)</th>
<th>(I^*) (K km s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>(J = 6-5)</td>
<td>691.473</td>
<td>116</td>
<td>15.3</td>
</tr>
<tr>
<td>CO</td>
<td>(J = 10-9)</td>
<td>1151.985</td>
<td>304</td>
<td>13.6</td>
</tr>
<tr>
<td>CO</td>
<td>(J = 16-15)</td>
<td>1841.346</td>
<td>752</td>
<td>13.5</td>
</tr>
<tr>
<td>(\text{o-H}_2\text{O})</td>
<td>(1_1^–1_0^\text{O})</td>
<td>556.936</td>
<td>61</td>
<td>3.0</td>
</tr>
<tr>
<td>(\text{o-H}_2\text{O})</td>
<td>(2_1^–2_0^\text{O})</td>
<td>752.033</td>
<td>137</td>
<td>4.2</td>
</tr>
<tr>
<td>(\text{o-H}_2\text{O})</td>
<td>(2_0^–1_1^\text{O})</td>
<td>987.927</td>
<td>101</td>
<td>7.3</td>
</tr>
<tr>
<td>(\text{o-H}_2\text{O})</td>
<td>(1_1^–0_0^\text{O})</td>
<td>1113.343</td>
<td>53</td>
<td>8.0</td>
</tr>
<tr>
<td>(\text{o-H}_2\text{O})</td>
<td>(3_1^–2_2^\text{O})</td>
<td>1153.127</td>
<td>249</td>
<td>7.5</td>
</tr>
<tr>
<td>(\text{o-H}_2\text{O})</td>
<td>(3_2^–3_1^\text{O})</td>
<td>1162.912</td>
<td>305</td>
<td>1.5</td>
</tr>
<tr>
<td>(\text{o-H}_2\text{O})</td>
<td>(3_0^–2_1^\text{O})</td>
<td>1716.770</td>
<td>197</td>
<td>18.1</td>
</tr>
</tbody>
</table>

Notes. (a) The absolute calibration accuracy is between 10% to 30% (see text).

2. Observations

The HIFI data were obtained using the dual-beam-switching mode (Roelfsema et al. 2010) with a throw of 3’ and slow (0.5–1 Hz) chopping in March–April 2010. A total of 8 frequency settings with a total of 10 lines detected are being reported in this paper. The targeted lines were selected to cover a wide range of excitation temperature, exploring different regions of the CSE. As backend, the wide band spectrometer (WBS) covering a region of 4 GHz with a resolution of 1.1 MHz was used. More details about these observations can be found in Bujarrabal et al. (2010). The data were calibrated using the standard pipeline for Herschel, HIPE version 2.8. Only the H-polarization data are presented here because the V-polarization data are noisier especially for the high frequency lines. We subtracted the baseline using a first or second order polynomial, except for the \(\text{H}_2\text{O} \) lines where the baseline was fitted using a high order polynomial (see Sect. 3.2).

We detected high rotational transitions of CO as well as the first detection of rotational \(\text{H}_2\text{O} \) in an S-star. All of the observed lines listed in Table 1 were detected. The frequency \(\nu \) in GHz and the energy of the upper level \(E_u \) in K are given along with the integrated line intensity, \(I = \int T_{mb} dv \) in K km s\(^{-1}\). The spectra were corrected for the main beam efficiency, i.e., \(T_{mb} = 0.72 \exp[-(\nu/6000)^2] \). The absolute calibration accuracy ranges from 10% for the lowest frequency line to 30% for the high frequency (>1 THz) lines.

Notes. (a) The absolute calibration accuracy is between 10% to 30% (see text).

3. Modelling HIFI lines

We started the analysis by fitting the spectral energy distribution of the CSE (assumed to be spherically symmetric) using Dusty (Ivezic & Elitzur 1997) to derive the dust mass-loss rate. Based on this, we solved the gas-dust drag equation, assuming both linear and non-linear absorption, to derive the velocity structure using the observed terminal gas velocity as a constraint, as shown in Fig. 1. This also provides a so-called dynamical mass-loss rate estimate, \(4.9 \times 10^{-7} M_\odot \) yr\(^{-1}\) in the case of \(\chi \) Cyg (see e.g., Ramstedt et al. 2008). The gas velocity law is fed into the CO radiative transfer model, where the line fluxes and shapes are computed and compared to the observations. At the same time, the heating by dust grains and the cooling by CO lines are calculated and the resulting temperature structure obtained (e.g., Justtanont et al. 1994; Crosas & Menten 1997; Decin et al. 2006; van der Tak et al. 2007; Ramstedt et al. 2008). This provides a circumstellar model, including a mass-loss-rate estimate based on the CO line modelling, which is used to model the \(\text{H}_2\text{O} \) line emission and its contribution to the cooling. The \(\text{H}_2\text{O} \) cooling is then used to recalculate the gas kinetic temperature in the CO model, and the process is iterated until good fits to the observed CO and \(\text{H}_2\text{O} \) lines are obtained.

3.1. Modelling of the CO lines

The Monte Carlo code developed by Schöier & Olofsson (2001) was used to model the observed CO lines. The molecular data were taken from the Hitran database (Rothman et al. 2009) and the collisional rate coefficients from Yang et al. (2010) for the 41 lowest rotational levels in the \(\nu = 0 \) vibrational state. We fitted the line shapes and fluxes for the low-J lines obtained based on ground-based observations, as well as the interferometric data for the \(J = 1–0 \) and \(2–1 \) lines to more tightly constrain the size of the CO envelope (Schöier et al. in prep.).

The derived gas temperature structure (solid line) and the gas expansion velocity (dashed line) of the CSE of \(\chi \) Cyg.

\(T_{\text{gas}} \) [K] \(\nu_{\text{gas}} \) [cm s\(^{-1}\)]

<table>
<thead>
<tr>
<th>(r) [cm]</th>
<th>(T_{\text{gas}}) [K]</th>
<th>(\nu_{\text{gas}}) [cm s(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{15})</td>
<td>(10^4)</td>
<td>(10^5)</td>
</tr>
<tr>
<td>(10^{17})</td>
<td>(10^6)</td>
<td>(10^7)</td>
</tr>
</tbody>
</table>
Table 2. Parameters used in the modelling of the line emission.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>150 pc</td>
</tr>
<tr>
<td>Stellar effective temperature (T_{eff})</td>
<td>2600 K</td>
</tr>
<tr>
<td>Stellar luminosity (L_*)</td>
<td>$7.5 \times 10^3 L_\odot$</td>
</tr>
<tr>
<td>Gas terminal velocity (v_{gas})</td>
<td>8.5 km s$^{-1}$</td>
</tr>
<tr>
<td>Inner radius of the shell (R_*)</td>
<td>2×10^{14} cm</td>
</tr>
<tr>
<td>Gas mass-loss rate (M)</td>
<td>$7 \times 10^{-7} M_\odot$ yr$^{-1}$</td>
</tr>
<tr>
<td>CO abundance (CO/H$_2$)</td>
<td>6×10^{-4}</td>
</tr>
<tr>
<td>Ortho-H$_2$O abundance (o-H$_2$O/H$_2$)</td>
<td>7.5×10^{-6}</td>
</tr>
<tr>
<td>Para-H$_2$O abundance (p-H$_2$O/H$_2$)</td>
<td>3.6×10^{-6}</td>
</tr>
</tbody>
</table>

We used a higher order Chebyshev polynomial for the baseline subtraction (bottom right panel of Fig. 3).

Our results are consistent with the velocity structure of a dust-driven wind as can be seen in good fits to both the CO and H$_2$O line profiles (Figs. 2 and 3, respectively). Unlike the case for IK Tau (Decin et al. 2010a,b), no modification to the dynamical calculation is required.

4. Results and conclusions

The observed HIFI lines are reliable probes of the inner CSE as the high-energy lines probe the wind in the acceleration zone. Both the velocity and density structures are tightly constrained using the HIFI lines. The abundance of CO is 6×10^{-4}, intermediate to those usually adopted for O- and C-rich CSEs. The derived ortho- and para-H$_2$O abundances are significantly lower, $(7.5 \pm 1.4) \times 10^{-6}$ and $(3.6 \pm 0.5) \times 10^{-6}$, respectively (Table 2). These values are well below the limits for O-rich AGB stars of $>10^{-3}$ (Justtanont et al. 2005; Maercker et al. 2008, 2009) consistent with Cyg being an S-star of C/O very close to unity. From our modelling, assuming that all carbon is locked up in CO (i.e., C/H = 3 × 10$^{-4}$) and the oxygen is locked up in both CO and H$_2$O (i.e., O/H = 3 × 10$^{-4}$ + 5.5 × 10$^{-6}$), our derived C/O is ≤ 0.98, given that a small fractional abundance of the oxygen is in dust grains. This value is slightly higher than that of 0.95, assumed by Duari & Hatchell (2000). A non-thermal equilibrium chemistry model for S-stars (C/O = 0.98) predicts an H$_2$O abundance of 10^{-4} at the stellar photosphere, falling off to a few 10^{-6} at 5 R_* (Cherchneff 2006), an order of magnitude lower than our value.

In the thermal equilibrium (TE) limit at high temperature, the expected ortho-to-para ratio is 3. Our derived ortho-to-para ratio is 2.1 ± 0.6, close to the high-temperature TE value. The reported ortho-to-para ratio in CSEs of O-rich stars vary from 1 in W Hya with a large uncertainty (Barlow et al. 1996) to 3 in IK Tau (Decin et al. 2010b). Our result is consistent with H$_2$O molecules being formed under thermal equilibrium conditions in the warm and dense stellar photosphere.

Given the low total H$_2$O abundance of $(1.1 \pm 0.2) \times 10^{-5}$, it is clear from our analysis that the dominating cooling agent in the CSE of Cyg is CO (Fig. 4). Vibrationally excited H$_2$ and rotationally excited H$_2$O contribute only in the innermost ($r < 10^{15}$ cm) part of the CSE while CO line cooling extends further out until CO is photodissociated by the external UV field. Adiabatic cooling dominates only in the outermost part of the CSE. The derived H$_2$O abundance, although much lower than in O-rich stars, is higher than that observed in C-stars, IRC+10216 (Melnick et al. 2001) and V Cyg (Neufeld et al. 2010), consistent with AGB stars of S-type being chemically intermediate between O-rich and C-rich AGB stars.
Fig. 3. The model fits (smooth lines) to the HIFI ortho- and para-H$_2$O lines (histogram). The scaling factor (used to scale the model result to fit the observed integrated intensity) is given for each line, showing the goodness of the fit. The pipeline-reduced data of the 3$_{03}$−2$_{12}$ line are plotted along with the fitted baseline at the bottom right. This line is affected by standing waves within HIFI.

Fig. 4. The cooling rates due to different processes: rotational cooling by H$_2$O (solid), CO (dashed) lines, vibrational cooling by H$_2$ (dotted) line, and adiabatic cooling (dot-dash).

Acknowledgements. HCSS/HSpot/HIPE is a joint development (are joint developments) by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia. K.J., F.S., M.M., and H.O. acknowledge funding from the Swedish National Space Board. This work has been partially supported by the Spanish MICINN, within the program CONSOLIDER INGENIO 2010, under grant “Molecular Astrophysics: The Herschel and Alma Era – ASTROMOL” (Ref.: CSD2009-00038). R.Sz. and M.Sch. acknowledge support from grant N203393334 from Polish MNiSW. J.C. thanks funding from MICINN, grant AYA2009-07304. This research was performed, in part, through a JPL contract funded by the National Aeronautics and Space Administration.

References

Ivezic, Z., & Elitzur, M. 1997, MNRA, 287, 799
Page 4 of 5
K. Justtanont et al.: A HIFI preview of warm molecular gas around χ Cyg

1 Onsala Space Observatory, Chalmers University of Technology, Dept. Radio & Space Science, 439 92 Onsala, Sweden
e-mail: kay.justtanont@chalmers.se
2 Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
3 Sterrenkundig Instituut Anton Pannekoek, University of Amsterdam, Science Park 904, 1098 Amsterdam, The Netherlands
4 University of Bonn, Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany
5 Department of Astronomy, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
6 Observatorio Astronómico Nacional. Ap 112, 28803 Alcalá de Henares, Spain
7 European Space Astronomy Centre, ESA, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain
8 Observatorio Astronómico Nacional (IGN), Alfonso XII N°3, 28014 Madrid, Spain
9 CAB, INTA-CSIC, Ctra de Torrejón a Alcalá, km 4, 28850 Torrejón de Ardoz, Madrid, Spain
10 Department of Astrophysics/IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands
11 Astronomical Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
12 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
13 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
14 Johns Hopkins University, Baltimore, MD 21218, USA
15 Joint ALMA Observatory, El Golf 40, Las Condes, Santiago, Chile
16 N. Copernicus Astronomical Center, Rabiańska 8, 87-100 Toruń, Poland
17 Atacama Large Millimeter/Submillimeter Array, Joint ALMA Office, Santiago, Chile
18 Experimental Physics Dept., National University of Ireland Maynooth, Co. Kildare, Ireland
19 SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands
20 KOSMA, I. Physik. Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
21 Northrop Grumman Aerospace Systems, 1 Space Park, Redondo Beach, CA 90278, USA
22 European Southern Observatory, Karl Schwarzschild Str. 2, Garching bei München, Germany