Herschel/HIFI deepens the circumstellar NH3 enigma

Published in:
Astronomy & Astrophysics

DOI:
10.1051/0004-6361/201015108

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The NH$_3$ abundances relative to H$_2$ are very high and range from 2 simultaneously with the ortho-H$_2$O ways to tackle this mystery will include further satisfactory fits to the observed line profiles, it does lead to abundance estimates that confirm the very high values found in earlier studies. New NH$_3$ radio-wavelength inversion lines were used to provide further constraints, particularly on the spatial extent of the NH$_3$-emitting regions. Important participation from NASA. Radiative transfer modeling with the goal to derive the NH$_3$ abundance in these objects rich stars using the NH$_3$ ortho one of the most frequently observed interstellar molecules an astronomical object (Cheung et al. 1968). It is ubiquitous in dark, dense interstellar cloud cores and an eminently useful ther-
meter of these regions (Walmsley & Ungerechts 1983; Danby 1. Introduction Key words. stars: AGB and post-AGB – supergiants – circumstellar matter

1. Introduction Ammonia (NH$_3$) was the first polyatomic molecule detected in an astronomical object (Cheung et al. 1968). It is ubiquitous in dark, dense interstellar cloud cores and an eminently useful thermometer of these regions (Walmsley & Ungerechts 1983; Danby et al. 1988). This, aided by the easy observability of its inversion lines – many of the astronomically most important ones crowd around 1.3 cm wavelength (24 GHz frequency) – make NH$_3$ one of the most frequently observed interstellar molecules (Ho & Townes 1983).

NH$_3$ has also been detected toward a still limited, but diverse number of CSEs around evolved stars, first using infrared (IR) heterodyne absorption spectroscopy toward the high mass-loss asymptotic giant branch (AGB), extreme carbon star CW Leo (= IRC$+10216$; Betz et al. 1979). In addition, absorption was found toward a number of oxygen-rich objects that included the long-period variable (LPV) o Ceti (Betz & Goldhaber 1985) and the super- or even hyper-luminous objects YY CMa and IRC$+10420$ (McLaren & Betz 1980, Monnier et al. 2000). The last study finds that around YY CMa the NH$_3$ is forming at \geq40 stellar radii away from the star, where dust formation has well started.

Contemporaneously, several radio inversion lines were detected also toward IRC$+10216$ (KWok et al. 1981; Bell et al. 1982; Nguyen-Q-Rieu et al. 1984). Later on, high-velocity cm-wavelength NH$_3$ emission plus absorption was found toward the bipolar protoplanetary nebulae (PPNe) CRL 2688 and CRL 618 (Truong-Bach et al. 1988; Martin-Pintado & Bachiller 1992; Truong-Bach et al. 1996). Toward CRL 618, P Cygni profiles are observed with a full width at zero power (FWZP) of \approx100 km s$^{-1}$. Menten & Alcolea (1995) detected high-velocity NH$_3$ radio emission toward IRC$+10420$, the high mass-loss rate LPV IK Tau, and the PPN OH 231.8+4.2. In the last case, they find high-velocity emission over \approx70 km s$^{-1}$ FWZP. Recently, Hasegawa et al. (2006) report and discuss observations of the NH$_3$ line central to the present study, the ortho-NH$_3$ $^{1}J_{0}^{0}$$-^{1}J_{0}^{0}$ transition, toward IRC$+10216$ made with the Odin satellite.

One common, surprising result of all the above studies is the exceedingly high NH$_3$ abundances they report. Most of them cite values of several times 10^{-7} or even 10^{-6} relative to molecular hydrogen. These numbers are in stark contrast to the results of thermodynamical equilibrium calculations for the atmospheres of cool stars, which predict the production of only negligible amounts of NH$_3$, of order 10^{-12} (Tsuiji 1964). The pioneering study of Tsuji has been confirmed by more recent work (see, e.g., Lafont et al. 1982; Cherchneff & Barker 1992, both for C-rich CSEs). Somewhat ad hoc approaches to bringing observations and theory closer together involved injecting a significant amount of NH$_3$ in the inner envelope (Nejad & Miller 1988; Nercessian et al. 1989). Willacy & Cherchneff (1998) include shock chemistry in their model of IRC$+10216$, but still only produce an abundance of 4×10^{-11}, at least three orders of

** Herschel** is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

** Appendix A (page 5) is only available in electronic form at http://www.aanda.org
magnitude below the value implied by observations. As to bona fide shocked regions like PPN outflows, Morris et al. (1987) suggested that, for OH 231.8+4.2, N_2, which binds most of the nitrogen, might be dissociated in the high-velocity gas and that the high NH3 abundance might be the result of a series of hydrocarbon reactions. Whether this can be confirmed by detailed chemical models remains to be explored.

For the present study, as described in Sect. 2, we observed the NH3 J_K = 1_0−0_0 ortho ground-state transition in O-rich stars of widely different natures and mass loss rates; the high mass-loss LPV IK Tau, the peculiar red supergiant YV CMa, the archetypical OH/IR star OH 26.5+0.6, and the hypergiant IRC+10420. We chose a receiver setting that allowed simultaneous observations of the J_K,J = 1_0−1_0 transition of ortho-NH3O. All of these objects have dense CSEs, and NH3 has been previously detected toward all of them at OH 26.5+0.6. In particular, for IK Tau and IRC+10420, single-dish observations of the (J,K) = (1,1) and (2,2) inversion lines have been reported by Menten & Alcolea (1995). Moreover, the emission in these lines has subsequently been imaged with the NRAO Very Large Array (VLA) with a resolution of a few arcseconds (Menten et al., in prep.; see Sect. 2.3).

The critical density of the cm-wavelength inversion lines is on the order of 10^4 cm^-3, while that of the sub-mm 1_0−0_0 transition has a value ∼4 orders of magnitude higher. Thus, both types of lines should provide complementary information on different regions of the envelope. In Sect. 3.1, we give a general description of the sub-mm spectra we obtained with HIFI aboard Herschel (Pilbratt et al. 2010). Thereafter, in Sect. 3.2, we present radiative transfer calculations conducted to model the observed line profiles, taking advantage of the constraints from the VLA imaging. These lead to NH3 abundance determinations.

2. Observations

2.1. Herschel/HIFI submillimeter observations

The observations were made with the two orthogonal HIFI receivers available for each band, which in all cases work in double sideband (DSB) mode (see de Graauw et al. 2010). This effectively doubles the instantaneous intermediate frequency (IF) coverage. We observed the four stars described above with a tuning that, in the upper sideband, covers the frequency of the J_K = 1_0−0_0 ground state transition of ortho-NH3 at 572.4981 GHz. The tuning was chosen to also cover the frequency of the J_K,J = 1_0−1_0 ground state line of ortho-H2O at 556.9360 GHz in HIFI’s lower sideband. The observations were obtained using the dual-beam-switching (DBS) mode. In this mode, the HIFI internal steering mirror chops between the source position and a position believed to be free of emission, which was certainly the case for our observations. The telescope then alternately locates the source in either of the chopped beams, providing a double-difference calibration scheme, which allows a more efficient cancellation of the residual standing waves in the spectra. Additional details on this observing mode can be found in de Graauw et al. (2010). The double sideband system temperature was ≈100 K, and the calibration uncertainty is estimated to be 10%. Spectral baselines were excellent. Herschel’s beam had a size of 37″ FWHM at the observing frequency, which is much larger than the NH3-emitting regions of all our sources.

The HIFI data shown here were obtained using the wide band spectrometer (WBS), which is an acousto-optical spectrometer, providing a simultaneous coverage of the full instantaneous IF band in the two available orthogonal receivers, with a (oversampled) channel spacing of 0.5 MHz (0.27 km s^-1), about half the effective resolution. Spectra in the figures have been resampled and smoothed to a channel spacing of ≈1.1 km s^-1.

The data were processed with the standard HIFI pipeline using HIPE, and nonstitched Level-2 data were exported using the HiClass tool available in HIPE. Further processing, i.e. blanking spurious signals, first order polynomial baseline removal, stitching of the spectrometer subbands and averaging, was performed in CLASS. Since the quality of the spectra measured in both horizontal and vertical polarization was good, these were averaged to lower the final noise in the spectrum. This approach is justified since polarization is not a concern for the presented molecular-line analysis. All HIFI data were originally calibrated in units of antenna temperature T_A(∗) and were converted to the main-beam temperature T_{MB} scale according to T_{MB} = T_A/η_{MB}, with the main-beam efficiency η_{MB} = 0.68. In all cases we have assumed a side-band gain ratio of one.

2.2. Ammonia spectroscopy and astrophysics

The main focus of this letter is on the J_K = 1_0−0_0 line of ortho-NH3. Ammonia microwave spectroscopy has a long history (see, e.g., Townes & Schawlow 1955, Kukolich 1967). Very briefly, because of the possible orientations of the hydrogen spins, two different species of NH3 exist that do not interconvert, ortho-NH3 and para-NH3. Ortho-NH3 assumes states, J_K = 0 with K = n or 3n, where n is an integer (all H spins parallel), whereas K ≠ 3 for para-NH3 (not all H spins parallel). The principal quantum numbers J and K correspond to the total angular momentum and its projection on the symmetry axis of the pyramidal molecule.

The temperature corresponding to the energy of the lowest para level (J_K = 1) is 22 K above that of the lowest ortho level (J_K = 0). Therefore, for formation in the interstellar gas phase, which involves reactions with high exothermicities, the ortho-para-NH3 ratio is expected to attain its equilibrium value of unity (Umimoto et al. 1999). This situation is also expected to hold for CSEs, given that the IR studies cited above place the NH3 they observe in the hot medium close to the star.

A high-resolution study of the NH3 1_0−0_0 transition has very recently been presented by Cazzoli et al. (2009). (Only) its upper state is split into several hyperfine structure (hfs) components with the ∼1–2 MHz splitting resulting from the coupling of the quadrupole moment of the N nucleus with the electric field of the electrons. Two of these components are further split by magnetic interactions. The mean frequency is 572498.1 MHz and the centroid frequencies of the three main hfs groups are all within 2 MHz, corresponding to ≈1 km s^-1, much less than the line widths observed for the targets of this study (see Fig. 1).

2.3. VLA observations of inversion lines

In Sect. 3.2 we use data of the (J,K) = (1,1) and (2,2) inversion lines to constrain our models for IK Tau and IRC+10420. For these stars, single-dish observations of those lines made with the Effelsberg 100 m telescope were reported by Menten & Alcolea (1995). In addition, to place constraints on the spatial distribution of the NH3 molecules, we have used data obtained with the VLA that will be published separately (Menten et al. in prep.). The hfs splitting in the inversion lines in velocity units is much wider than for the rotation line. However, because both the (1,1) and (2,2) lines are very optically thin, as indicated by the spectra and supported by our modeling (see Sect. 3.2), any contribution of the hfs components will be factors of several weaker than the main hfs component and neglected in the modeling. The intensities of the spectra produced from the VLA images, which were restored with a circular beam of 3′′ FWHM, used in that section, are consistent with the published 100 m telescope values.
to keep in mind that H2O is a major molecular constituent of our
VY CMa, OH 26.5
respectively. Except for IRC
brightness temperature scales for the NH 3 and the H 2O lines, respec-
IRC
ortho-NH3 for (3.1. NH3 versus H2O emission
spectra for the same stars in the same order. The dashed red lines repre-
JK
Fig. 1.
here to the radiative transfer model results: The thick black lines show spectra of the Jκ = 1_0−0_0 transition of ortho-NH3 for (top to bottom) IK Tau, VY CMa, OH 26.5+0.6, and IRC+10420. The blue lines represent the ortho-H2O Jκ,κ = 1_0−0_0,1_1 spectra for the same stars in the same order. The dashed red lines repre-
tent the predictions for the NH3 line resulting from our radiative trans-
fer modeling. The left- and right hand ordinates give the main-beam brightness temperature scales for the NH3 and the H2O lines, respec-
tively. Except for IRC+10420, they have different ranges.

3. Results and analysis
3.1. NH3 versus H2O emission
In Figs. 1, A.1 and Table 1 we present the results of our HIFI ob-
servations of both the NH3 and the H2O ortho ground state lines,
together with the results of our NH3 modeling. All our observed
positions agree to within 2″ with the stars’ 2MASS positions, which
themselves have an absolute accuracy of better than 0.1
(Cutri et al. 2003). The determination of the LSR ranges is some-
what subjective and the upper and lower velocities are uncertain by ~ a few km s^{-1} for weaker lines. For all entries, the formal
error in \int T_{MB}d\phi is smaller than 0.1 K km s^{-1}. For VY CMa we
used the higher of the literature mass-loss rate values scaled to
the recently measured trigonometric parallax distance, 1100 pc (Choi et al. 2008). For both IK Tau and IRC+10420 the lower
and the higher values of X_{NH3} are implied by the cm lines and
the submm line, respectively.

Inspecting Fig. 1 and the table, it is striking to see that the luminosity (integrated intensity) in the NH3 and H2O ground-
state lines is of comparable magnitude for all of our objects. The
NH3/H2O line ratios are ~0.50, 0.30, 0.28, and 0.42 for IK Tau,
VY CMa, OH 26.5+0.6, and IRC+10420, respectively. One has
to keep in mind that H2O is a major molecular constituent of our
CSEs, while even the presence of observable NH3 emission is
completely unexplained!

Another remarkable result is that the velocity ranges covered
by the two lines are almost identical, which suggests that the
bulk of the material producing the emission for both is similar.
Moreover, for all our targets, both lines’ FWZP values are lower,
but comparable to twice the terminal velocity, implying that both
molecules are present in the outer layers of the envelope, where
the material has almost been fully accelerated. Furthermore, we
point out the clear self absorption in the blue wing of the H2O
lines toward IK Tau and VY CMa, which proves that the line
emitting region covers the whole envelope. Whether this is also
true for the NH3 line is a priori not clear.

3.2. Radiative transfer modeling and constraints
on abundances
The NH3 emission of the sources has been modeled with the
Monte Carlo radiative transfer code RATRAN developed and
described by Hogerheijde & van der Tak (2000). For NH3, RATRAN uses collision rates calculated by Danby et al. (1988).
Power laws for the density and temperature were used to de-
scribe the physical structure of the envelope, using as input
published values for the mass loss rate and expansion velocity
(see Table 1). For IRC+10420, envelope parameters from
Dinh-V-Trung et al. (2009) were used and for IK Tau, VY CMa,
and OH26.5+0.6 we refer to the modeling of Decin et al. (2010),
Decin et al. (2006), and Justtanont et al. (2006), respectively. The
VLA data yield an extent of ~4″ for the NH3 emitting region around IRC+10420 and ~2″:6 for that around IK Tau, numbers
we use for our modeling.

To fit the submm NH3 lines observed with HIFI, the NH3 abundance was varied in a first iteration. For the two sources with
additional data from the cm inversion lines, those (para) lines
were modeled as well, using an ortho-to-para ratio of 1,
appropriate for formation of NH3 under high temperatures (see
 Sect. 2.2). Interestingly, this does not lead to a satisfying fit for
both the cm NH3 inversion lines and the submm ground state
line. With a fit adjusted to reproduce the cm lines, the submm
line is underestimated by a factor of 10 for IK Tau.

Since high densities are needed to excite the submm line, its
emission must arise from the inner part of the envelope, further
inward than the cm-line emitting region. Our modeling suggests
densities above a few times \times 10^6 cm^{-3} and temperatures in
the 10–100 K range. This discrepancy between the physical condi-
tions required to produce the observed cm emission, on the one
hand, and the submm emission, on the other, is even greater for
the very extended but relatively low-density shell of IRC+10420.
To reach densities high enough to excite the NH3 sub-mm line, the
mass-loss rate had to be increased to \times 2 \times 10^{-3} M_⊙ yr^{-1}, i.e.,
a factor 3 higher than the value derived by Dinh-V-Trung et al.
(2009) and the inner radius reduced to 5 \times 10^{15} cm, which
is twice the value of the hot inner shell proposed by these au-
thors. Then agreement between the abundances obtained from
the cm and submm lines can be reached within a factor of 2.
Interestingly, De Beck et al. (2010, accepted for publication),
derive a value of 3.6 \times 10^{-3} M_⊙ yr^{-1} for IRC+10420’s mass loss
rate based on multi-transition modeling of CO.

To reproduce the strong submm NH3 line from VY CMa, the
highest mass-loss rate and largest radius from the various
shells discussed by Decin et al. (2006) had to be used, scaled to
D = 1100 pc (see Sect. 3.1). The outer radius that led to a best
fit for OH26.5+0.6 is 2.5 \times 10^{13} cm. For this source, the same
temperature profile as for IK Tau was used.

The line profiles produced by our NH3 model calculations are
shown in Figs. 1 and A.1 overlaid on the measured spectra.
et al. (2008); {4} Decin et al. (2006); {5} Justtanont et al. (2006); {6} Kemper et al. (2003); {7} Dinh-V-Trung et al. (2009).

Numbers in braces relate to the following references for distances and mass loss rates: {1} Hale et al. (1997); {2} Decin et al. (2010); {3} Choi

The Expanded Very Large Array (EVLA) will allow simultaneously diluted) PACS spectrum of VY CMa (Royer et al. 2010).

Given their intensities, such observations appear eminently feasible. Additionally, with its extremely wideband new generation digital correlator, the Expanded Very Large Array (EVLA) will allow simultaneously diluted) PACS spectrum of VY CMa (Royer et al. 2010).

Results of HIFI NH$_3$ and H$_2$O observations and NH$_3$ modeling.

<table>
<thead>
<tr>
<th>Object</th>
<th>α_{2000}</th>
<th>δ_{2000}</th>
<th>D (kpc)</th>
<th>$M_{\text{H}2}$ (M\odot)</th>
<th>M_{H_2} (cm^{-2})</th>
<th>$T_{\text{MB, dr}}$ (K)</th>
<th>M_{Mod} (M$_\odot$)</th>
<th>ρ_{\odot}</th>
<th>ρ_{\odot}</th>
<th>ρ_{\odot}</th>
<th>ρ_{\odot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>IK Tau</td>
<td>03h53m28.8s</td>
<td>+11°24′23′′</td>
<td>0.25 ±1</td>
<td>8 × 10$^{-6}$ (2)</td>
<td>18 (2)</td>
<td>[11.5, 57.2]</td>
<td>5.1</td>
<td>8 × 10$^{-6}$</td>
<td>5.0 × 10$^{-5}$</td>
<td>1.3 (1)–3 (1)</td>
<td></td>
</tr>
<tr>
<td>VY CMa</td>
<td>07h22m56.3s</td>
<td>−25°46′03′′</td>
<td>1.1 ±3</td>
<td>(0.8–3.4) × 10$^{-4}$ (4)</td>
<td>35 (4)</td>
<td>[23.7, 64.3]</td>
<td>15.5</td>
<td>1.8 × 10$^{-5}$</td>
<td>3.5 × 10$^{-5}$</td>
<td>2.1 × 3 (1)</td>
<td></td>
</tr>
<tr>
<td>OH26.5+0.6</td>
<td>18h37m32.5s</td>
<td>−05°23′59′′</td>
<td>1.37 ±5</td>
<td>2.4 × 10$^{-4}$ (5)</td>
<td>16 (6)</td>
<td>[14.6, 43.3]</td>
<td>0.96</td>
<td>2.4 × 10$^{-5}$</td>
<td>2.5 × 10$^{-5}$</td>
<td>1.2 × 3 (1)</td>
<td></td>
</tr>
<tr>
<td>IRC+10240</td>
<td>19h26m48.1s</td>
<td>+11°21′17′′</td>
<td>5 ±7</td>
<td>8 × 10$^{-4}$ (7)</td>
<td>38 (7)</td>
<td>[39.112]</td>
<td>3.1</td>
<td>2 × 10$^{-3}$</td>
<td>1.5 × 10$^{-2}$</td>
<td>2.0 (2–5) × 10$^{-7}$</td>
<td></td>
</tr>
</tbody>
</table>

Notes. Columns are (left to right) the object, J2000 right ascension and declination of observed position, distance, mass-loss rate from the literature, terminal expansion velocity (from CO data), FWZP LSR velocity range with observed emission, integrated main-beam brightness temperature, as well as mass-loss, outer radius of the NH$_3$ distribution (in cm and in arcsec), and [NH$_2$/H$_2$] abundance ratio derived from our modeling. For the LSR range and $T_{\text{MB, dr}}$ for each source, the first and second rows give the values for the NH$_3$ and the H$_2$O lines, respectively. Numbers in braces relate to the following references for distances and mass loss rates: {1} Hale et al. (1997); {2} Decin et al. (2010); {3} Choi et al. (2008); {4} Decin et al. (2006); {5} Justtanont et al. (2006); {6} Kemper et al. (2003); {7} Dinh-V-Trung et al. (2009).

References

Tsai, T. 1964, Annals of the Tokyo Astronomical Observatory, 9
Appendix A: NH₃ rotational and inversion line spectra and fits for IK Tau and IRC+10420

Figure A.1 shows, for IK Tau and IRC+10420, the HIFI spectra of the \(J_K = 10 - 00 \) ortho-NH₃ line and the spectra of the \((J, K) = (1, 1)\) and \((2, 2)\) para-NH₃ lines produced from our VLA data together with our best fit model predictions.

![Figure A.1. Spectra of NH₃ transitions for IK Tau (left column) and IRC+10420 (right column). Top row: HIFI spectra of the \(J_K = 10 - 00 \) ortho-NH₃ line. Middle row: VLA spectra of the \((J, K) = (1, 1)\) para-NH₃ line. Bottom row: VLA spectra of the \((J, K) = (2, 2)\) para-NH₃ line. The intensity scales apply for both sources. The lefthand ordinate gives main-beam brightness temperature in a 40′′ FWHM beam, while the righthand ordinate gives flux density in Jy units. In all panels the red dashed line represents our best-fit model prediction. The blue bars give the spacings and theoretical relative intensities of the main groups of hfs components determined by Cazzoli et al. (2009) for the \(10 - 00 \) transition and by Kukolich (1967) for the (1, 1) and (2, 2) inversion lines, respectively.](image-url)