Matrix perturbations: bounding and computing eigenvalues

Reis da Silva, R.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Perturbation theory 2
1.2 Iterative methods for Eigenvalue Problems 13

1 Perturbation theory 23

2 Hermitian matrices 25

2.1 Introduction 26
2.2 Hermitian rank-k perturbations 29
2.3 Bordered diagonal matrices 39
2.4 Singular Values 42
2.5 Numerical illustrations 47
2.6 Final notes 52

3 Normal matrices 59

3.1 Introduction 60
3.2 Normality preserving augmentation 66
3.3 Normality preserving normal perturbations 70
3.4 Further augmentations ... 78
3.5 Illustrations ... 84

II Iterative methods .. 93

4 The Subspace Projected Approximate Matrix method 95
 4.1 Introduction .. 96
 4.2 SPAM and other subspace methods 102
 4.3 Selecting the matrix A_0 in the SPAM method 109
 4.4 Numerical illustrations .. 119
 4.5 Conclusions .. 129
 4.6 Comments on a SPAM linear system solver 130

5 Summary .. 133
 5.1 The mathematical model 134
 5.2 From systems to matrices 136
 5.3 This thesis ... 138

Notation ... 139

Bibliography .. 141

Index ... 149

Samenvatting .. 151

About the Author ... 153