Matrix perturbations: bounding and computing eigenvalues
Reis da Silva, R.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

List of Figures xi
List of Tables xv

1 Introduction 1
 1.1 Perturbation theory .. 2
 1.2 Iterative methods for Eigenvalue Problems 13

I Perturbation theory 23

2 Hermitian matrices 25
 2.1 Introduction .. 26
 2.2 Hermitian rank-k perturbations 29
 2.3 Bordered diagonal matrices 39
 2.4 Singular Values .. 42
 2.5 Numerical illustrations 47
 2.6 Final notes ... 52

3 Normal matrices 59
 3.1 Introduction .. 60
 3.2 Normality preserving augmentation 66
 3.3 Normality preserving normal perturbations 70
II Iterative methods

4 The Subspace Projected Approximate Matrix method
 4.1 Introduction .. 96
 4.2 SPAM and other subspace methods 102
 4.3 Selecting the matrix A_0 in the SPAM method 109
 4.4 Numerical illustrations 119
 4.5 Conclusions .. 129
 4.6 Comments on a SPAM linear system solver 130

5 Summary ... 133
 5.1 The mathematical model 134
 5.2 From systems to matrices 136
 5.3 This thesis .. 138

Notation ... 139

Bibliography .. 141

Index ... 149

Samenvatting .. 151