Accretion/ejection coupling in X-ray binaries
Soleri, P.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction ... 1
 1.1 X-ray binaries 1
 1.2 X-ray observations of X-ray binaries 3
 1.2.1 Timing analysis 3
 1.2.2 Spectral analysis 6
 1.2.3 Imaging 7
 1.3 X-ray binaries: classification and X-ray states . 8
 1.3.1 Neutron star X-ray binaries 8
 1.3.2 Black hole X-ray binaries 10
 1.4 Relativistic ejections 12
 1.5 Outline of this thesis 14

2 A transient low-frequency QPO from the black hole binary GRS 1915+105 17
 2.1 Introduction 18
 2.2 Observations and data analysis 20
 2.3 Results ... 23
 2.3.1 Phase lags 28
 2.4 Discussion and conclusions 28
 2.4.1 QPOs identification 30
 2.4.2 Phase lags 31
 2.4.3 GRS 1915+105 as a “normal” source 32
 2.4.4 X-ray/radio association 33
 2.5 Appendix: fit results and phase lags 33

3 Linking jet emission and X-ray properties in the peculiar neutron star X-ray binary Circinus X-1 41
Contents

3.1 Introduction ... 42
 3.1.1 Cir X-1 ... 44
3.2 Observations and data analysis 45
 3.2.1 X-ray data ... 45
 3.2.2 Radio data .. 49
3.3 Results and interpretation 49
 3.3.1 Light curves and evolution in the hardness-intensity diagrams 49
 3.3.2 Identification of Z-source features 50
 3.3.3 Correlated X-ray/radio behaviour 57
3.4 Discussion ... 60
3.5 Conclusions .. 65

4 A parsec scale X-ray extended structure from the X-ray binary Circinus X-1 67
 4.1 Introduction ... 68
 4.2 Observation and data analysis 69
 4.2.1 X-ray jets .. 70
 4.2.2 Comparison with previously detected X-ray extended structure and the radio jet 72
 4.3 Discussion and conclusions 74

5 Discovery of a broad iron line in the black-hole candidate Swift J1753.5−0127, and the disk emission in the low/hard state revisited 77
 5.1 Introduction ... 78
 5.2 Data reduction .. 79
 5.2.1 XMM-Newton 79
 5.2.2 RXTE .. 82
 5.3 Data analysis and results 82
 5.3.1 General fit procedure 82
 5.3.2 A power-law model 83
 5.3.3 Cut-off power-law model 84
 5.3.4 Broken power-law model 84
 5.3.5 Comptonization model 86
 5.3.6 Reflection models: PEXRAV and PEXRIV 86
6 Investigating the disc-jet coupling in accreting compact objects using the black hole candidate Swift J1753.5-0127

6.1 Introduction
6.1.1 Swift J1753.5-0127
6.2 Observations and data analysis
6.2.1 X-ray data
6.2.2 Radio data
6.2.3 OIR/ultraviolet data
6.3 Results
6.3.1 Radio/X-ray correlation
6.3.2 OIR/X-ray correlation
6.3.3 Spectral energy distributions
6.4 Discussion
6.4.1 The scatter of the radio/X-ray correlation
6.4.2 Swift J1753.5-0127: a peculiar source
6.5 Conclusions
6.6 Appendix: radio and OIR observations

7 On the nature of the “radio quiet” black hole binaries

7.1 Introduction
7.2 The hard state jet power
7.3 BHC properties and jet power
7.3.1 Binary parameters
7.3.2 Properties of the outburst
7.4 The scatter of the radio/X-ray correlation: a jet-toy model
7.5 Discussion
7.6 Conclusions

Samenvatting in het Nederlands
Contents

Riassunto in Italiano 153

Bibliography 157

List of publications 171

Acknowledgments 175