Circulating microparticles remain associated with complement activation despite intensive anti-inflammatory therapy in early rheumatoid arthritis

Published in:
Annals of the Rheumatic Diseases

DOI:
10.1136/ard.2009.118372

Citation for published version (APA):
Circulating microparticles remain associated with complement activation despite intensive anti-inflammatory therapy in early rheumatoid arthritis

I C van Eijk,1 M E Tushuizen,2 A Sturk,3 B A C Dijkmans,1,4 M Boers,1,4,5 A E Voskuyl,4 M Diamant,2 G J Wolbink,1 R Nieuwland,3 M T Nurmohamed1,4,6

ABSTRACT

Objectives Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterised by synovitis and joint destruction. The pathogenesis of RA is not clear, but is considered to be an immune-mediated inflammatory disorder, in which the complement system plays an important role. Although cell-derived microparticles (MPs) have been associated with inflammation and complement activation, it is unknown whether MPs are either cause or consequence. Therefore, we investigated whether circulating MPs differ between patients with very early as yet untreated arthritis and healthy controls, and whether intensive anti-inflammatory treatment of such patients affects circulating MPs.

Methods Patients with RA (n=24) and controls (n=15) were included. Nine patients with RA were re-evaluated after 8 weeks of intensive treatment with a combination of drugs (‘COmBination therapy in Rheumatoid Arthritis’ (COBRA) scheme). Disease activity was measured by erythrocyte sedimentation rate (ESR), C reactive protein (CRP) and Disease Activity Score for 28 joints (DAS28). Flow cytometry was used to study MPs and exposure of complement activator molecules and complement components.

Results At baseline, concentrations of MPs exposing C1q, CRP or serum amyloid-P (SAP) were all significantly elevated in patients with early RA compared to controls (p=0.003, p=0.002 and p=0.003, respectively). Upon treatment, DAS28 score, ESR and CRP levels significantly decreased (p=0.008, p=0.008 and p=0.012), but the concentrations of circulating MPs and MPs exposing complement components or activator molecules were unaffected.

Conclusion Circulating MPs exposing complement components or activator molecules are elevated in early RA. Since a strong anti-inflammatory therapy suppressed inflammation in patients with early RA but not levels of circulating MPs, it is unlikely that inflammation is the main underlying cause of MP release in these patients.

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease with a complex pathogenesis, characterised by synovitis leading to cartilage, tendon and joint destruction.1 2 Although the pathogenesis of RA is not clear, it is considered to be an immune-mediated inflammatory disorder, in which the complement system plays an important role.

Recently, cell-derived microparticles (MPs), which are small membrane vesicles released from blood cells or endothelial cells upon activation or during apoptosis, were shown to be associated with complement activation, inflammation and coagulation in various diseases, including inflammatory diseases.3–7 Although inflammation causes release of MPs and in turn MPs may induce or enhance inflammation, it remains unknown whether circulating MPs merely reflect ongoing inflammation or whether MPs actually contribute to the disease development.

In vitro studies and animal models indicate that inflammatory mediators such as tumour necrosis factor α (TNFs) and interleukin (IL)1 trigger MP release.8–10 Several other observations, however, suggest a more active role for MPs in development of rheumatoid inflammatory activity. Leucocyte-derived MPs, present in synovial fluid of patients with RA, expose tissue factor and trigger coagulation,11 and induce the production and release of chemokines and cytokines by fibroblast-like synoviocytes, which in turn may further contribute to synovial inflammation and angiogenesis.12 Circulating platelet-derived MPs (PMPs) were reported to be elevated in patients with RA, compared to controls, and these PMPs were associated with disease activity as measured by the Disease Activity Score in 28 joints (DAS28).3 Finally, synovial MPs may also be involved in complement activation in patients with RA, since we recently demonstrated the presence of bound complement components C1q, C3 and C4 as well as complement activator molecules on circulating MPs from patients with RA, further supporting their role in complement activation.4

To determine whether circulating MP numbers are associated with inflammatory activity in patients with RA, we compared MPs in patients with very early as yet untreated arthritis and healthy controls. Additionally, we determined the effects of changes in disease activity upon intense anti-inflammatory therapy with the ‘COmBination therapy in Rheumatoid Arthritis’ (COBRA) strategy13 on MP numbers and composition.

METHODS

Patients Consecutive untreated patients with RA (n=24) were included and venous blood was collected at baseline in the fasting state. Of these patients, nine were enrolled in a trial addressing the effects of tight control and intensified COBRA combination treatment in early RA and were treated with COBRA treatment comprising sulfasalazine, methotrexate and high-dose step-down prednisolone at 60 mg/day (week 1), 40 mg/day (week 2),...
30 mg/day (week 3), 20 mg/day (week 4), 15 mg/day (week 5), 10 mg/day (week 6) and 7.5 mg/day thereafter. Criteria for inclusion in that study were active disease defined by a DAS28 score >3.2. Of these nine patients, an additional fasting blood sample was collected after 8 weeks of treatment. Furthermore, fasting blood was collected from healthy age-matched controls (n=15). All patients fulfilled the criteria of the American College of Rheumatology (ACR) for RA. All participants gave written informed consent and the study protocol was approved by the Institutional Ethics Committee of the Slotervaart Hospital, Jan van Breemen Institute and BovenIJ Hospital.

Collection of blood samples

Participants were asked to refrain from beverages other than water (particularly no caffeine-containing beverages or alcohol), smoking, medication and meals from midnight prior to the testing day. Blood was collected from the antecubital vein in tubes containing 0.5 ml of 3.2% sodium citrate (BD, San Jose, California, USA). Cells were removed by centrifugation (20 min at 1550 g and 20°C) within 10 min after collection. Aliquots of cell-free plasma (250 μl) were snap frozen in liquid nitrogen for at least 15 min and stored at −80°C.

Isolation of MPs

MPs were isolated from plasma aliquots (250 μl) after thawing on melting ice by centrifugation (30 min at 18 890 g and 20°C). After centrifugation, MP-free supernatant (225 μl) was removed. The remaining MP pellet was washed with 225 μl phosphate-buffered saline (PBS) containing (0.32% w/v) trisodium citrate (pH 7.4). After centrifugation, the supernatant was removed and the MP pellet was resuspended in PBS-citrate (75 μl).

Labelling of MPs

Aliquots of MPs (5 μl) were diluted in 35 μl of PBS containing 2.5 mmol/litre CaCl₂ (PBS/Ca, pH 7.4). Subsequently, 5 μl allophycocyanin (APC)-labelled annexin V (Caltag Laboratories, Carlsbad, California, USA) was added and combined with either fluorescein isothiocyanate (FITC)-labelled CD61 (DakoCytomation, Glostrup, Denmark) plus phycoerythrin (PE)-labelled CD62p (P-selectin) or CD63 (glycoprotein 55; both antibodies from Immunotech, Fullerton, California, USA), or FITC-labelled CD144 (Alexis, San Diego, California, USA) plus E-selectin (CD62e-PE; Ancell, Bayport, Minnesota, USA). For appropriate settings of fluorescence thresholds, MPs were incubated with isotype-matched control antibodies, that is, PE-labelled IgG₁ and/or FITC-labelled IgG₁ (BD), or FITC-labelled Ig (IQP, Groningen, The Netherlands). MPs were labelled for 15 min at room temperature, and labelling was stopped by addition of PBS/calcium (900 μl) to each tube. Samples were analysed for 1 min by fluorescence-activated cell sorting (FACS) on a FACS Calibur device (BD) and data were analysed using Cellquest Pro (V.4.0.2; BD). Alternatively, MPs (5 μl aliquots) were incubated for 30 min at room temperature with anti-C1q, anti-C3-15, anti-C reactive protein (CRP) 5G4, anti-serum amyloid-P (SAP)-14, anti-IgM, anti-IgG (gift from Sanquin, Amsterdam, The Netherlands) or isotype-matched control antibodies IgG₁ and IgG₂a (Pharmica, Montlingen, Switzerland) in a final volume of 50 μl of PBS containing 2.5 mmol/litre CaCl₂ (PBS/Ca, pH 7.4). After labelling, MPs were washed with PBS/calcium (200 μl). Subsequently, PE-labelled F(ab’)₂ and APC-labelled annexin V were added and the mixtures were incubated for 30 min at room temperature. For setting of fluorescence thresholds, MPs were incubated with isotype-matched control antibodies, that is, PE-labelled IgG₁ and/or FITC-labelled IgG₁ (BD), or FITC-labelled Ig (IQP). Finally, PBS/calcium (400 μl) was added to each tube and samples were analysed for 1 min on a FACS Calibur device. Data were analysed using Cellquest Pro. All antibodies and control antibodies used were tested and titrated using purified cells and MPs before use.

Identification and characterisation of MPs

MPs were defined according to size (forward scatter), side scatter and binding of annexin V, a protein that binds with high affinity and specificity to phosphatidylserine, as described previously. It should be mentioned, that the percentage of MPs binding annexin V increases by centrifugation and freeze-thawing. Under these conditions binding of annexin should be considered as a marker to identify MPs rather than reflecting the exposure of negatively charged phospholipids such as phosphatidylserine. The within-run coefficient of variation (CV) is 8% and the day-to-day CV is 13%. The presence of bound complement components (C1q, C3 and C4) as well as bound adapter molecules (CRP, SAP, IgM and IgG) was studied using flow cytometry as described previously.

Statistical analysis

Data were analysed with SPSS for Windows V.16.0 (SPSS, Chicago, Illinois, USA). According to their distribution, the various parameters are expressed as mean (±SD) or median (interquartile range). Data with a non-Gaussian distribution was log transformed for analysis if possible. To compare the groups, Student t tests or Mann–Whitney U tests were used when appropriate. Furthermore, correlations between variables were analysed by using Pearson correlation or Spearman rho tests. Univariate linear regression analyses were performed on log-transformed data to investigate the influence of possible confounders (ie, sex, smoking status, systolic blood pressure and body mass index (BMI) on the results). The Wilcoxon signed-rank test was used to investigate the differences in baseline and at 8 weeks in the prospectively followed subgroup of patients (n=9). p Values less than 0.05 were considered statistically significant.

RESULTS

Characteristics and inflammatory measures

Baseline demographic and clinical characteristics of the patients with RA are summarised in table 1. The majority of patients with RA were IgM-rheumatoid factor and/or anti-citrullinated protein antibody (ACPA) positive. Their DAS28 scores (mean 5.2) reflect patients with a high disease activity. Erythrocyte sedimentation rate (ESR) and CRP levels were significantly elevated in patients compared to controls. The patient group comprised fewer women and had higher systolic blood pressure than the controls. The nine patients prospectively followed had similar ages, BMI levels, systolic blood pressure results and DAS28 scores, but higher CRP (p=0.04) and ESR (p=0.06) levels compared to the other patients with RA (n=15; see tables 1 and 3).

Elevated concentrations of MPs exposing complement components or activator molecules in early RA

The total number of MPs did not differ between patients and controls (table 2). In patients, the number of MPs exposing C1q, CRP and SAP were significantly elevated compared to controls (table 2 and figure 1). These results remained unchanged after adjusting for possible confounders (data not shown).
At baseline, ESR and CRP significantly correlated with MPs exposing C1q, CRP and SAP (for ESR: r=0.37, p=0.02; r=0.54, p<0.001 and r=0.46, p=0.003, respectively and for CRP: r=0.39, p=0.02; r=0.52, p=0.001 and r=0.36, p=0.02, respectively), confirming the association between ongoing inflammation and circulating MPs.

Intense inflammatory suppression does not alter MP composition

Upon treatment with intense anti-inflammatory therapy, DAS28, ESR and CRP values decreased significantly (table 3), but the concentrations of total circulating MPs and MPs exposing complement components or activator molecules were unaffected (table 3, figure 2). Numbers of MPs exposing C1q or CRP were still significantly elevated in the patients with RA after treatment compared to controls (data not shown). At 8 weeks we did not find correlations between DAS28 and CRP with total MP numbers or MPs exposing complement components or activator molecules.

DISCUSSION

This study demonstrates that MPs exposing complement components (C1q) or activator molecules (CRP or SAP) are elevated in early active RA. Although a strong anti-inflammatory therapy using a combination of disease-modifying anti-rheumatic drugs (DMARDs) combined with high-dose prednisolone (under the COBRA scheme14) strongly suppressed inflammatory activity, circulating MPs were unaffected. Our present data may suggest that inflammation is not the underlying cause of MP generation in these patients. Imaging studies have shown that synovitis is still apparent in the majority of patients with RA that are clinically in remission, indicating subclinical ongoing inflammation.19 The present findings suggest that MPs may be one of the factors that are actively involved in this sustained inflammation in RA. We cannot exclude, however, that a delay exists between normalisation of systemic inflammation and circulating MPs or their

Table 1 Baseline characteristics of the patients with rheumatoid arthritis (RA) (n=24) and healthy controls (n=15)

<table>
<thead>
<tr>
<th></th>
<th>Controls (n=15)</th>
<th>Patients (n=24)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>49±11</td>
<td>51±11</td>
<td>0.91</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>13 (87)</td>
<td>14 (58)</td>
<td>0.02</td>
</tr>
<tr>
<td>RF positive, n (%)</td>
<td>NA</td>
<td>16 (67)</td>
<td>NA</td>
</tr>
<tr>
<td>Anti-CCP n (%)</td>
<td>NA</td>
<td>17 (71)</td>
<td>NA</td>
</tr>
<tr>
<td>DAS28</td>
<td>NA</td>
<td>5.2±1.3</td>
<td>NA</td>
</tr>
<tr>
<td>ESR</td>
<td>5 (3–8)</td>
<td>33 (15–48)</td>
<td><0.001</td>
</tr>
<tr>
<td>CRP</td>
<td>1 (1–2)</td>
<td>13 (3–37)</td>
<td><0.001</td>
</tr>
<tr>
<td>NSAID use, n (%)</td>
<td>NA</td>
<td>17 (77%)</td>
<td>NA</td>
</tr>
<tr>
<td>Smoking, %</td>
<td>7</td>
<td>30</td>
<td>0.13</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>119±7.8</td>
<td>131±22.8</td>
<td>0.03</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>79±5.9</td>
<td>79±10.8</td>
<td>0.93</td>
</tr>
<tr>
<td>BMI</td>
<td>23.4±2.0</td>
<td>25.1±4.3</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Values are presented as mean±SD or median (interquartile range), as applicable. Anti-CCP, anti-cyclic citrullinated peptide; BMI, body mass index (weight in kg/length in m²); CRP, C reactive protein; DAS28, Disease Activity Score in 28 joints; ESR, erythrocyte sedimentation rate; NA, not applicable; NSAID, non-steroidal anti-inflammatory drugs; RF, rheumatoid factor.

Table 2 Complement component and activator molecule exposing MPs in patients and controls

<table>
<thead>
<tr>
<th>MPs and complement components</th>
<th>Controls (n=15)</th>
<th>Patients (n=24)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total MPs</td>
<td>103.6 (64.5–129.9)</td>
<td>108.9 (70.4–185.0)</td>
<td>0.27</td>
</tr>
<tr>
<td>C1q</td>
<td>4.7 (1.7–8.8)</td>
<td>9.4 (5.5–14.2)</td>
<td>0.003</td>
</tr>
<tr>
<td>C4</td>
<td>11.6 (7.0–15.8)</td>
<td>17.8 (7.6–25.0)</td>
<td>0.35</td>
</tr>
<tr>
<td>C3</td>
<td>11.3 (7.7–15.0)</td>
<td>9.1 (2.5–19.5)</td>
<td>0.34</td>
</tr>
<tr>
<td>CRP</td>
<td>3.0 (1.3–4.6)</td>
<td>7.3 (2.5–19.5)</td>
<td>0.002</td>
</tr>
<tr>
<td>SAP</td>
<td>47.9 (22.9–59.5)</td>
<td>95.3 (62.0–155.6)</td>
<td>0.003</td>
</tr>
<tr>
<td>IgM</td>
<td>18.4 (11.5–34.2)</td>
<td>24.4 (14.4–42.3)</td>
<td>0.43</td>
</tr>
<tr>
<td>IgG</td>
<td>3.6 (1.0–6.6)</td>
<td>3.3 (2.0–6.5)</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Values are presented as median (IQR). p Values were calculated using the Mann–Whitney U test. CRP, C reactive protein; MPs, microparticles (numbers×10⁴/ml); SAP, serum amyloid-P.
Table 3 Inflammatory markers, complement component and activator molecule exposing MPs in a subgroup of patients treated with anti-inflammatory drugs at baseline and after 8 weeks

<table>
<thead>
<tr>
<th>Disease scores and MPs</th>
<th>Baseline (n=9)</th>
<th>Week 8</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS28</td>
<td>5.2 ± 0.7</td>
<td>2.2 ± 1.2</td>
<td>0.008</td>
</tr>
<tr>
<td>ESR</td>
<td>45 (17–62)</td>
<td>12 (6–27)</td>
<td>0.008</td>
</tr>
<tr>
<td>CRP</td>
<td>19 (9–69)</td>
<td>4 (1–8)</td>
<td>0.008</td>
</tr>
<tr>
<td>Total MPs</td>
<td>167 (73–239)</td>
<td>106.7 (36.9–266)</td>
<td>0.401</td>
</tr>
<tr>
<td>MPs + C1q</td>
<td>14.4 (8.4–24.4)</td>
<td>13.4 (4.2–39.8)</td>
<td>0.889</td>
</tr>
<tr>
<td>MPs + C4</td>
<td>22.2 (5.9–27.9)</td>
<td>19.1 (7.8–58.3)</td>
<td>1.0</td>
</tr>
<tr>
<td>MPs + C3</td>
<td>10.3 (4.1–21.4)</td>
<td>12.3 (1.9–37.8)</td>
<td>1.0</td>
</tr>
<tr>
<td>MPs + CRP</td>
<td>7.9 (3.4–31.2)</td>
<td>7.1 (2.9–28.1)</td>
<td>0.575</td>
</tr>
<tr>
<td>MPs + SAP</td>
<td>108.2 (53.4–728.3)</td>
<td>109.3 (29.7–214)</td>
<td>0.779</td>
</tr>
<tr>
<td>MPs + IgM</td>
<td>31.6 (13.7–41.4)</td>
<td>34.1 (15.1–63.1)</td>
<td>0.401</td>
</tr>
<tr>
<td>MPs + IgG</td>
<td>2.3 (0.3–6.0)</td>
<td>1.2 (0.0–3.2)</td>
<td>0.674</td>
</tr>
</tbody>
</table>

Values are median (IQR). p Values were calculated using the Wilcoxon signed-rank test. After total MPs, the other categories refer to the number of MPs exposing a certain complement component or activator molecules.

Acknowledgements We would like to thank Ms A E Grootemaat for microparticle analysis.

Competing interests None.

ethics approval This study was conducted with the approval of the Institutional Ethics Committee of the Slotervaart Hospital, Jan van Breemen Institute and BovenIJ Hospital.

Provenance and peer review Not commissioned; externally peer reviewed.

Figure 2 Depicted are the values for serum C reactive protein (CRP) and concentrations of microparticles exposing (A) C1q, (B) CRP or (C) serum amyloid-P (SAP) in plasma of patients with rheumatoid arthritis (RA) (n=9) at baseline and after 8 weeks of ‘COmBination therapy in Rheumatoid Arthritis’ (COBRA) treatment. Lines connect individual values at both time points.

REFERENCES
Extended report

Circulating microparticles remain associated with complement activation despite intensive anti-inflammatory therapy in early rheumatoid arthritis

I C van Eijk, M E Tushuizen, A Sturk, et al.

Ann Rheum Dis 2010 69: 1378-1382 originally published online November 16, 2009
doi: 10.1136/ard.2009.118372

Updated information and services can be found at:
http://ard.bmj.com/content/69/7/1378.full.html

These include:

References
This article cites 25 articles, 7 of which can be accessed free at:
http://ard.bmj.com/content/69/7/1378.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Connective tissue disease (2207 articles)
Degenerative joint disease (2463 articles)
Immunology (including allergy) (2568 articles)
Musculoskeletal syndromes (2657 articles)
Rheumatoid arthritis (1670 articles)
Inflammation (476 articles)
Biological agents (269 articles)
Drugs: musculoskeletal and joint diseases (375 articles)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/