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1 I N T R O D U C T I O N

This dissertation comprises a study of long-term risks which play a major
role in actuarial science. In Part I we analyse long-term mortality risk and its
impact on consumption and investment decisions of economic agents, while
Part II focuses on the mathematical modelling of long-term interest rates. In
this �rst chapter, an introduction is provided to the problems treated in the
thesis and their mathematical and economic context. Moreover, we describe
the motivation and the contribution to the literature of the subsequent chap-
ters.

1.1 on part i

In Part I we study long-term mortality risk and its effect on optimal consump-
tion and portfolio selection. We extend techniques from classical portfolio the-
ory to characterise the consumption and investment decisions of individual
investors whose lifetime is governed by stochastically evolving survival prob-
abilities.

Portfolio theory is a branch of (mathematical) economics that seeks to describe
the optimal behaviour of economic agents who wish to maximise the bene�ts
from their portfolio of investments in the face of uncertainty. This uncertainty
may stem from �nancial risks, such as changes in the price of a stock or a
bond, but it may also originate from other causes, such as the variability in
the mortality rate of the investor. Typically, the agent also tries to maximise
consumption, which is �nanced by his accumulated wealth. To compare the
uncertain outcomes of different investment and consumption strategies, pref-
erences are de�ned which, under suitable assumptions, can be represented by
means of a utility function.

Historically, portfolio theory was pioneered by Markowitz ( 1959). He formu-
lated a one-period portfolio selection problem in which the investor chooses
an asset allocation that is optimal (or, ef�cient) in the sense that a higher ex-
pected return cannot be attained, unless one is willing to accept more risk. In
the setup of Markowitz, risk is measured by the variance of the returns. Tobin
(1965) extended Markowitz' results to a multi-period setting. Samuelson ( 1969)
subsequently derived the optimal consumption and asset allocation strategy

1



2 introduction

for a certain class of utility functions describing preferences with Constant Rel-
ative Risk Aversion (CRRA) in discrete time. Hakansson ( 1969, 1970) studied a
related problem for an immortal investor and for an investor whose lifetime is
uncertain. In an in�uential paper, Merton ( 1969), working in continuous time,
solved a problem similar to that of Samuelson. For a single economic agent
and a given amount of initial wealth, Merton's portfolio problem consists of
�nding an investment and consumption strategy that maximises expected util-
ity from consumption and, in case of a �nite horizon, terminal wealth. Merton
proved that this problem has an explicit solution: it is optimal for the CRRA
investor to consume a constant fraction of his wealth.

One of the reasons why portfolio theory has been, and still is, a very ac-
tive research area is its connection with contemporary macroeconomics. In
response to the critique in Lucas (1976, 1978), general dynamic equilibrium
models were developed in which agents act rationally. The modelling of ex-
pectations changed from `adaptive', meaning that the future is modelled using
econometric forecasts based on historical data, to `rational' which means that
all available (market) information is taken into account. This led to the adop-
tion of techniques from portfolio theory that had been developed around 1959
by Markowitz and later, for continuous time and Von Neumann-Morgenstern
preferences, by Merton. It is argued in Merton ( 1992) that portfolio theory in
its early stages was not adopted by mainstream economics due to its reliance
on the mean-variance criterion, which is not compatible with Von Neumann-
Morgenstern preferences.

In this thesis we will exclusively discuss the case of a single investor, and we
focus in particular on the effects of mortality changes. The inclusion of an
uncertain lifetime for the investor in portfolio selection problems apparently
originates with Yaari ( 1965). Since then, several authors studied consumption
and asset allocation problems on an uncertain time horizon. In Pliska and Ye
(2007), the evolution of the investor's wealth process depends on a determin-
istic income and consumption, an investment in the money-market account
and insurance payments. The expected utility from consumption, from a be-
quest and from terminal wealth, is controlled by the consumed amount and
the amount of insurance bought, and optimal strategies are derived for both.
In Pliska and Ye (2007), investment opportunities are limited to the money-
market account, but Blanchet-Scalliet et al. (2008) and Jeanblanc and Yu (2010)
consider a problem in which the agent maximizes the expected utility from be-
quest upon death and from terminal utility, in a market that contains a set of
tradeable assets with prices that follow diffusion processes. Menoncin ( 2008)
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and Shen and Wei further develop these results to more complex dynamics
for the mortality rate.

There are two approaches to solve optimal consumption and investment prob-
lems. The �rst method, which is commonly referred to as the primal approach,
exploits a Markovian assumption on the state price process to derive a nec-
essary condition for the optimal strategy in the form of a Hamilton-Jacobi-
Bellman (HJB) equation. If explicit solutions to this equation can be obtained,
and if such solutions are suf�ciently smooth, then a veri�cation theorem, i.e.
a suf�cient condition for optimality, can usually be proven. If no explicit solu-
tions are available, existence can in particular cases be established by analysing
viscosity solutions of the HJB equation. The second approach to optimal port-
folio selection was initiated in a series of papers by Harrison and Pliska ( 1981),
Harrison and Pliska ( 1983), and Pliska (1986). This dual or `martingale' ap-
proach splits the optimisation problem in two stages, where in the �rst step an
optimal terminal distribution of wealth is constructed and in the second step
a hedging strategy is derived which replicates this optimal terminal wealth
distribution. Later, Cox and Huang ( 1989) and Karatzas et al. (1987) extended
this approach to include consumption.

In Chapter 2 we propose a tractable, yet realistic market model with a stochas-
tic mortality rate, for which the optimal consumption and investment strategy
can be derived in semi-closed form. From an economic perspective, the novelty
in our approach is twofold. First, the mortality rate, while stochastic, is guar-
anteed to be nonnegative. Second, the market price of mortality risk is allowed
to be stochastic as well. Proving optimality requires a rigorous mathematical
treatment of the problem. In the prevailing literature, existence of a solution
is either tacitly assumed, or the conditions imposed to guarantee existence
are too strong to allow for stochastic processes that do not possess moments
of all order. We adopt a dual approach to show that optimal strategies exist
when the investor's mortality rate follows a square root process, provided that
additional constraints are imposed on the market price of risk.

1.2 on part i i

In Part II we study long-term interest rate risk. The market for interest rate
derivatives such as bonds and swaps is very liquid, but this liquidity only per-
sists until maturities of twenty to thirty years. Longer-dated contracts are not
frequently traded, and hence no reliable market prices are available for such
contracts. Still, insurance �rms and pension funds must decide how to value
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liabilities with maturities stretching far beyond the liquid part of the yield
curve. This has led to the introduction of various extrapolation practices in
the �nancial industry, most notably the Smith-Wilson technique prescribed by
the European Insurance and Occupational Pensions Authority (EIOPA). The
limit of the forward rate when the maturity goes to in�nity in such proce-
dures is referred to as the ultimate forward rate (UFR) by the �nancial indus-
try, while in the academic literature this limit, or the limit of the continuously
compounded yield, is called the long rate. In its most general form the long
rate can be a stochastic process, but the UFR is usually assumed to be con-
stant. Since the seminal paper by Dybvig et al. (1996), there has been much
discussion on whether one could, and should, assume that the long rate may
vary stochastically over time, see also El Karoui et al. (1998) and Hubalek
et al. (2002). A consultation paper by EIOPA ( 2016) has sparked a new debate
amongst actuarial practitioners on the very same question.

Chapter 3 gives an overview of the literature on convergence of the long rate in
the Heath-Jarrow-Morton (HJM) framework for stochastic interest rate models.
In addition to uniform convergence on compacts and almost sure convergence
of interest rates, which have been studied in Deelstra and Delbaen (1995) and
Biagini et al. (2016) building on El Karoui et al. ( 1998) and Yao (1999a), we also
consider uniform convergence in mean. This allows us to derive both neces-
sary and suf�cient conditions on the volatility function to ensure convergence
of the long rate by using a result due to Barlow and Protter ( 1990). We thus
provide a novel characterisation of those volatility functions in HJM models
which admit a long rate.

In Chapter 4 the behaviour for the long-term interest rate in af�ne factor mod-
els of the term structure is studied. This class of models is important due to
its tractability and interpretability, but also because it essentially contains all
interest rate models that admit a �nite dimensional realisation, as was shown
in a series of publications by Björk and Christensen ( 1999), Björk and Svens-
son (2001) and Filipović and Teichmann ( 2003). We demonstrate that within
the class of af�ne factor models, stochastic behaviour of the long rate is possi-
ble. We thus answer a question which was �rst put forward in El Karoui et al.
(1998). This question has previously received attention in Yao ( 1999b), Deel-
stra (1996) and Deelstra et al. (2000). We extend these results by proving that
a model with two state variables is not suf�ciently �exible to accommodate a
factor model for the term structure that converges almost surely to a stochastic
long rate. We also show that constructing such a model is feasible using three
state variables by providing an explicit example.
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Chapter 5 introduces a new method to estimate the level of the long rate
based on current prices of market instruments. We show that the term struc-
ture extrapolation method proposed in Smith and Wilson ( 2000), which has
been adopted in the European insurance regulation EIOPA ( 2010), can be
interpreted as the solution to a variational optimization problem where the
smoothest continuation of the term structure is chosen after the last liquid
maturity, for an a priori given level of the ultimate forward rate. We extend
this approach by making the level of the ultimate forward rate part of the
optimization problem. Using historical market prices for bonds and swaps,
we determine how the level of the ultimate forward rate resulting from this
optimisation changes over time, and we show that after the �nancial crisis of
2008, estimated values have dropped substantially below the level imposed in
EIOPA (2010).





Part I

L O N G E V I T Y R I S K





2 O P T I M A L C O N S U M P T I O N S T R AT E G I E S I N M A R K E T S
W I T H L O N G E V I T Y R I S K

This chapter is based on J. de Kort and M.H. Vellekoop, Existence of optimal
consumption strategies in markets with longevity risk. Insurance: Mathematics and
Economics, 72 (2017): 107–121.

Survival bonds are �nancial instruments with a payoff that depends on human
mortality rates. In markets that contain such bonds, agents who optimize ex-
pected utility of consumption and terminal wealth can mitigate their longevity
risk. To examine how this in�uences optimal portfolio strategies and consump-
tion patterns, we de�ne a model in which the death of the agent is represented
by a single jump process with Cox-Ingersoll-Ross intensity. This implies that
our stochastic mortality rate is guaranteed to be nonnegative, in contrast to
other models in the literature, including Menoncin ( 2008) and Blanchet-Scalliet
et al. (2008). We derive explicit conditions for existence of an optimal con-
sumption and investment strategy in terms of model parameters by analysing
certain inhomogeneous Riccati equations. We �nd that constraints must be im-
posed on the market price of longevity risk to have a well-posed problem and
we derive the optimal strategies when such constraints are satis�ed.

2.1 introduction

This chapter investigates the optimal consumption and asset allocation of an
investor in a market which contains �nancial assets and contracts that are sen-
sitive to longevity risk. These contracts, with a payoff that depends on the
realised mortality rate in a large population, can be thought of as insurance
products that can help to mitigate the effects of changes in survival probabili-
ties during the lifetime of the agent. There is at the moment no liquid market
for such products, but by introducing them in an asset allocation optimization
problem we formulate a consistent and arbitrage-free way of analyzing the
in�uence of the market price of longevity risk on investment behavior. The
precise value of such a market price of risk may be dif�cult to estimate in
practice, but it is not realistic to put it at zero, especially for the analysis of
retirement provisions.

9



10 optimal consumption strategies in markets with longevity risk

The classical formulation of the optimal consumption and investment prob-
lems that we wish to consider here goes back to Merton ( 1969, 1971). In
that setup, markets are complete and mortality is not considered so there
is a �xed time period for investment and consumption. These results have
been extended in many directions, by changing preferences as in Musiela and
Zariphopoulou ( 2010) and Kraft et al. ( 2011), or by specifying different as-
sumptions on asset price dynamics. Some authors, including Kraft ( 2005) and
Chacko and Viceira (2005), have considered stochastic volatility processes for
equity prices and solved the optimization problem for that case. Others have
introduced more realistic �xed income markets by introducing stochastic in-
terest rates. Many papers use Gaussian models for the short rate but Deelstra
et al. (2000) and Kraft ( 2005, 2009) derive the optimal strategy for an agent
maximizing power utility from terminal wealth by investing in a market with
a short-rate following a Cox-Ingersoll-Ross (CIR) process, which will thus re-
main positive at all times.

If the investment horizon is uncertain, the optimal strategies need to be ad-
justed. We can distinguish between problems where the end of the investment
period is chosen by the agent himself, such as the optimal stopping problem
for �exible retirement in Dybvig and Liu ( 2010), and problems where the end
of the investment period cannot be chosen by the agent. Models in which
the death of the agent is included in the model form an obvious example of
the latter category. In that case agents face a trade-off between obtaining an
amount of utility now with certainty versus an amount of utility in the future
which is uncertain due to both �nancial risk and mortality risk. Yaari ( 1965)
seems to be the �rst to consider such consumption and investment problems
in which the lifetime of the agent is stochastic. Under the assumption that the
probability of death at a given age is known and constant in time, he solves the
optimal investment problem with uncertain lifetime in continuous time using
dynamic programming methods. The solution shows that one can interpret
the deterministic mortality rate in terms of adjusted discount rates. Hakans-
son (1969) obtained similar results in a discrete time. Pliska and Ye ( 2007),
building on previous work by Richard ( 1975), introduced life insurance as
an extra asset for investment. They derive closed form solutions for the in-
vestment in stocks, bonds and life insurance products under the assumption
that mortality rates are time-varying but deterministic. Huang and Milevsky
(2008) extended these results to hyperbolic absolute risk aversion (HARA) and
include a stochastic income process; see also Menoncin and Regis (2015). In
Charupat and Milevsky ( 2002) and Milevsky and Young ( 2007) annuities in-
stead of life insurance contracts are added to the asset mix.
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All these models use time-varying but deterministic mortality rates. One of the
�rst authors to study optimal consumption strategies when mortality rates are
stochastic is Menoncin (2008). He solves the Hamilton-Jacobi-Bellman equa-
tion associated with the optimization problem of an investor who is exposed
to a stochastic mortality rate while allowing for a general speci�cation of the
asset price dynamics. A longevity bond is available in the economy to mitigate
the effects of this risk. Blanchet-Scalliet et al. (2008) allow the conditional dis-
tribution function of an agent's remaining time-horizon to be stochastic and
correlated to asset returns. To get closed form expressions, the rate which de-
termines the random time at which the investor must liquidate the asset port-
folio is allowed to become negative with positive probability. See Maurer ( 2011)
for another example of markets where mortality rates are correlated with as-
set returns. Huang et al. (2012) compare the optimal consumption strategy for
an agent with a deterministic versus a stochastic mortality rate in a market
where only the money market account is available for investment. They show
that, compared to the deterministic case, agents should increase or decrease
their initial consumption in the stochastic case, depending on whether their
constant risk aversion coef�cient makes them more or less risk averse than an
investor with a logarithmic utility function. In more recent work Shen and Wei
solve an optimal consumption and asset allocation problem in a general diffu-
sion framework under the premise that an exponential integrability condition
is satis�ed. Guambe and Kufakunesu ( 2015) generalize these results to Lévy
processes.

As an extension of these results we provide conditions that guarantee exis-
tence of an optimal consumption strategy in a market where rates follow CIR
dynamics. We will thus model mortality by a stochastic process, which will al-
most surely stay positive at all times. Af�ne mortality rates lead to analytically
tractable survival probabilities which remain smaller than one, as was noted
earlier in work by Bif�s ( 2005) and Schrager (2006); see also Dahl (2004). We
include both �nancial assets and survival bonds in the asset mix and allow a
stochastic market price of mortality risk. The optimal consumption and invest-
ment strategies are derived in semi-closed form and we show that the hedging
demand in our model is bounded. The impact of stochastic mortality on initial
consumption is characterized in terms of the risk aversion coef�cient.

The existence of a solution to the problem studied in the present chapter de-
pends on the asymptotic behaviour of the utility function for large values of
wealth and the existence of moments of the state-price density. It was noted in
Korn and Kraft ( 2004) and Kraft ( 2009) that not all moments of the state-price
density in a model based on a CIR short rate may be well-de�ned. Therefore
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the present chapter takes a different approach than the one in Shen and Sherris
(2014) and Menoncin and Regis (2015), since we want to characterise explicitly
under which conditions optimal strategies exist. By assuming that the market
prices of risk are proportional to the square root of the short rate and the mor-
tality rate (with a time-varying proportionality coef�cient) we can derive such
conditions by analyzing the existence and uniqueness of bounded solutions
for certain inhomogeneous Riccati equations. Notice that our results are not
a special case of Shen and Sherris (2014) and Shen and Wei or the extension
of these results in Guambe and Kufakunesu (2015). The analysis in these pa-
pers relies on an exponential integrability condition which is not satis�ed in
general for our model.

The remainder of this chapter is organized as follows. Section 2.2 introduces
the model for the economy. In Section 2.3 the investment problem is formu-
lated and the main result of the chapter is presented. Section 2.4 provides
a characterization of the Laplace transform of a Cox-Ingersoll-Ross process
which is needed to prove the main result. The proof of the main result is given
in Section 2.5. The economic implications of the model are discussed in Sec-
tion 2.6. Section2.7 concludes.

2.2 the model for the economy

In this section we will construct a complete �nancial market in which asset
returns, interest rates and mortality rates are uncertain. Let (W, G, P) be a
probability space on which a three-dimensional standard Brownian motion
W(t) = ( W1(t),W2(t),W3(t)) 0 and an exponentially distributed random vari-
able Q are de�ned. We study the optimal investment and consumption strat-
egy of an investor during the timespan [0,T], for some 0 < T < ¥ , and
we allow for the possibility that the investor does not survive until T. Let
fF (t), t 2 [0,T]g be the P-augmentation of the �ltration generated by the
process W. The exponential random variable Q is taken to be independent
of F (T).

To model the time of death of the investor we introduce the nonnegative, G-
measurable random time

t = inf
�

t � 0 :
Z t

0
l (u) du � Q

	
, (2.2.1)
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in which the so-called mortality rate l (t) follows a Cox-Ingersoll-Ross process,
that is,

l (t) = l 0 +
Z t

0
(m2(u) � k2 l (u)) du +

Z t

0
x2

q
l (u)dW2(u) . (2.2.2)

The constants l 0, k2, x2 and m2 are assumed to be bounded and strictly pos-
itive, and m2 is a deterministic, continuously differentiable function on [0,T].
The extended Feller condition 1

2m2(t) � x2
2 , for all t 2 [0,T] , (2.2.3)

ensures that the mortality rate is strictly positive almost surely.

Since
Rt

0 l (u) du is F (t)-measurable and Q is independent of F (T), the sur-
vival probability of the agent satis�es

F(t) := P [t > t j F (t)] = P
� Z t

0
l (u) du < Q

�
�
�
� F (t)

�

= exp
�

�
Z t

0
l (u) du

�
. (2.2.4)

To �nance his/her consumption and long-term wealth objectives, the agent
can invest in a number of assets: a stock, a zero-coupon bond, a longevity
bond and the money-market account.

The value b of the money market account, based on the continuously com-
pounded stochastic short rate r, satis�es

b(t) = 1 +
Z t

0
b(u)r(u)du .

The short rate is assumed to follow a Cox-Ingersoll-Ross process, i.e.

r(t) = r0 +
Z t

0
(m1(u) � k1 r(u)) du +

Z t

0
x1

q
r(u)dW1(u) , (2.2.5)

in which the constants r0, k1, x1 and m1 are bounded and strictly positive,
and m1 is a deterministic, continuously differentiable function on [0,T]. By
assuming that

2m1(t) � x2
1 , for t 2 [0,T] , (2.2.6)

we enforce that the short rate also almost surely remains strictly positive.

1 See Theorem4.2 in Maghsoodi ( 1996).
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Given S(0) > 0, the stock price S is assumed to follow the dynamics

S(t) = S(0) +
Z t

0
mS(u)S(u)du +

Z t

0
sS(u) S(u)dW(u) ,

in which

mS(t) = r(t) + sS(t)q(t)0 , sS(t) = ( � x3r
q

r(t), 0, � x3r ) ,

where x3 is a strictly positive constant, and

q(t) =
�
� y 1(t) x� 1

1

q
r(t), � y 2(t) x� 1

2

q
l (t), � y 3(t) x� 1

3

�
,

with r 2 ] � 1, 1[ and r 2 = 1 � r 2. The market price of interest rate risk q1(t)
is thus assumed to be proportional to the square root of the short rate (with
a time-varying proportionality coef�cient) and the market price of mortality
risk q2(t) is taken to be proportional to the square root of the mortality rate.
The deterministic scaling functions y i , with i = 1, 2, 3, are required to be con-
tinuous and bounded on [0,T].

A zero-coupon bond which pays one unit of currency at its expiration date T1
is available for trading in the economy. We assume 2 that the expiration date of
the bond lies beyond the investment horizon of the agent, i.e. T1 > T. The price
processP(t, T1) of the zero-coupon bond at an earlier time t � T1 satis�es, see
for example Filipović ( 2009, Prop. 5.1),

P(t, T1) = P(0,T1) +
Z t

0
P(u, T1)mP(u)du +

Z t

0
P(u, T1)sP(u, T1)dW(u) ,

in which

mP(t) = r(t) + sP(t)q(t)0 , sP(t) = ( � x1B1(t, T1)
q

r(t), 0, 0) ,

2 This assumption is required to prevent that the volatility of the bond tends to zero near T
which would lead to a singularity in the optimal asset allocation. For a discussion of the case
T = T1 the reader is referred to Bielecki et al. (2005). Instead of a long-term bond we could
alternatively introduce a `rolling bond' as a tradeable asset in the economy. This corresponds
to a self-�nancing strategy which continuously invests in a bond with �xed time to maturity
T2 > 0. Using results in Rutkowski ( 1999) it can be shown that the price process PR(�, T2) of a
rolling bond satis�es

PR(t, T2) = PR(0,T2) +
Z t

0
PR(u, T2) r(u) du �

Z t

0
x1 B1(u, u + T2) PR(u, T2)

q
r(u) dW1(u) ,

in which B1 is the solution to Eq. (2.2.7).
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and the bond duration B1 satis�es the differential equation

8
<

:
� ¶t B1(t, T1) + (k1 � y 1(t)) B1(t, T1) + 1

2x2
1 B1(t, T1)2 = 1 , 0 � t � T1 ,

B1(T1, T1) = 0 .

(2.2.7)

The economy that we wish to study permits agents to mitigate longevity risk
via survival bonds 3. Survival bonds are �nancial securities paying, at their ex-
piration date T1, an amount proportional to F(T1) = exp(�

RT1
0 l (u)du), the

expected fraction of survivors at time T1 among individuals in a (large) pop-
ulation with a common mortality rate process l . Such bonds can be thought
of as insurance products; they can be used by investors to hedge uncertainty
about future survival probabilities. The price process F(�, T1) of the survival
bond satis�es

F(t, T1) = F(0,T1) +
Z t

0
F(u, T1)mF(u) du +

Z t

0
F(u, T1)sF(u)dW(u) , (2.2.8)

where

mF(t) = r(t) + sF(t)q(t)0 ,

and

sF(t) = ( � x1B1(t, T1)
q

r(t), � x2B2(t, T1)
q

l (t), 0) .

The function B1(�, T1) solves Eq. (2.2.7), and B2(�, T1) is the solution to

8
<

:
� ¶t B2(t, T1) + (k2 � y 2(t)) B2(t, T1) + 1

2x2
2 B2(t, T1)2 = 1 , 0 � t � T1 ,

B2(T1, T1) = 0 .

(2.2.9)

We will show later on in Remark 2.5.2 that this indeed implies that F(�, T1) is
an asset price process which replicates the survival fraction at time T1, i.e. that
F(T1, T1) = F(T1).

The investor continuously adjusts his/her portfolio of assets in order to achieve
a consumption and terminal wealth pro�le that is optimal in a sense that

3 For a discussion and overview of trading in longevity instruments the reader is reffered to
Blake et al. (2013).
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will be de�ned shortly. The vector p (t) = ( p 1(t), p 2(t), p 3(t)) denotes the
amount invested, at time t 2 [0,T ^ t ], in zero-coupon bonds with maturity
T1, survival bonds maturing at T1 and stocks, respectively. The remaining
wealth p 0(t) is invested in the money-market account. This portfolio repre-
sents the savings of an agent who starts with initial wealth x > 0 at time
t = 0. The nonnegative F (t)-progressively measurable process c, satisfying
RT

0 c(u)du < ¥ a.s., represents the instantaneous consumption of the agent.

The wealth process Xx,c,p , corresponding to an asset allocation p , a nonnega-
tive consumption process c and initial endowment x > 0, is given by

Xx,c,p (t) = x �
Z t

0
c(u)du +

Z t

0
p 0(u)

db(u)
b(u)

+
Z t

0
p 1(u)

dP(u, T1)
P(u, T1)

+
Z t

0
p 2(u)

dF(u, T1)
F(u, T1)

+
Z t

0
p 3(u)

dS(u)
S(u)

.

Expressed in terms of units of the money market account the wealth process
satis�es

Xx,c,p (t)
b(t)

= x �
Z t

0

c(u)
b(u)

du +
Z t

0

p (u)
b(u)

S (u, T1)
�

dW(u) + q(u)0du
�

,

(2.2.10)

where

S (t, T1) = ( sP(t), sF(t), sS(t)) 0 . (2.2.11)

Remark 2.2.1. Due to the extended Feller conditions (2.2.3) and (2.2.6) the volatility
matrix (2.2.11) is nonsingular almost surely for t� T.

In order to exclude asset allocations leading to in�nite wealth in �nite time
we restrict our attention to the subset of F (t)-progressively measurable asset
allocations p satisfying

Z T

0

�
�p 0(t) + p 1(t) + p 2(t) + p 3(t)

�
� r(t) dt < ¥ a.s. , (2.2.12)

Z T

0

�
�
�
�p (t)S (t, T1)

�
�
�
�2

dt < ¥ a.s. , (2.2.13)

and
Z T

0

�
�p (t)S (t, T1)q(t)0�� dt < ¥ a.s. , (2.2.14)
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An asset allocation for which conditions ( 2.2.12), (2.2.13) and (2.2.14) are met
will be called a portfolio process.

In the subsequent sections, we will formulate the investment and consumption
optimisation problem and characterise its solution.

2.3 the optimal investment and consumption problem

In Section 2.2 we introduced a �nancial market in which the short rate and the
mortality rate are both stochastic. In this section we will de�ne an optimal in-
vestment and consumption problem for an investor whose remaining lifetime
is uncertain.

De�nition 2.3.1 (Main problem) . Let x > 0 be an amount of initial capital and let
T 2 ]0,T1[. We de�ne the value function of the portfolio and consumption plan max-
imizing utility from consumption and terminal wealth on an uncertain time horizon
as

V (x) := sup
(c,p )2A

E
� Z T^ t

0
U1(c(t))dt + U2(Xx,c,p (T))1f t > Tg

�
, (2.3.1)

in which, for certain p2 (� ¥ , 1) n f 0g andU 2 [0,¥ ),

U1(x) =
xp

p
and U2(x) = U

xp

p
, (2.3.2)

or when p= 0,

U1(x) = log x and U2(x) = U log x , (2.3.3)

and where

A :=

(
(c, p ) is measurable w.r.t. the collection(F (t)) t2 [0,T],

satis�es Eqs. (2.2.12) – (2.2.14), c � 0, and Xx,c,p � 0

)

,

denotes the set of admissible strategies.

The above de�nition of admissible strategies ensures that
RT

0 c(u) du < ¥ . In-
deed, since wealth is required to be nonnegative on the one hand, and almost
surely �nite on the other hand, see the de�nition of a portfolio process in
Eqs. (2.2.12)-(2.2.14), it follows that the amount of wealth available for con-
sumption is almost surely �nite. Moreover, since for every admissible (c, p )
the discounted gains are bounded from below, i.e.

P
�

1
b(t)

�
Xx,c,p (t) +

Z t

0
c(u)du

�
� 0

�
= 1 ,
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the de�nition of admissibility excludes doubling strategies on a �nite time
interval, see Karatzas and Shreve (1998, Def. 1.2.4).

The setA of admissible strategies is not empty and contains a strategy which
yields more than a utility of � ¥ , so V (x) > � ¥ for all x > 0. Indeed,
consider the strategy which allocates all initial wealth x > 0 to the money-
market account, and continuously consumes wealth, at a rate of 1

2x/ T per
unit time. This strategy is admissible since U1( 1

2x/ T) > � ¥ for all t 2 [0,T]
and U2(Xx,c,p (T)) � U2( 1

2x) > � ¥ .

Using a dual approach, see for example Cox and Huang (1989) and Karatzas
and Shreve (1998), we will solve the problem from De�nition 2.3.1. The follow-
ing theorem is a direct implication of Propositions 2.5.8 and 2.5.9.

Theorem 2.3.2 (Main result) . Assume that the scaling functions for the market price
of risky i , i = 1, 2, are analytic on[0,T]. Then the problem from De�nition2.3.1 has
a solution which is unique up to almost-everywhere equivalence when p� 0. When
p 2 ]0, 1[ this is still the case if the parameters of the short rate and mortality rate
processes satisfy

min
s2 [0,T]

�
ki + p

1� py i (s)
�

> 0 (2.3.4)

for i = 1, 2and

p [ (k1 � y 1,min)2 + (y 2
1)max� (y 1,min)2

1� p ] < k2
1 � 2px2

1 , (2.3.5)

p [ (k2 � y 2,min)2 + (y 2
2)max� (y 2,min)2

1� p ] < k2
2 + 2x2

2 , (2.3.6)

where
y i ,min = min

s2 [0,T]
y i (s), (y 2

i )max = max
s2 [0,T]

y i (s)2.

The optimal wealth process X satis�es

d
�

X(t) +
Rt

0 c(u)du
�

X(t)
= h0(t)

db(t)
b(t)

+ h1(t)
dP(t, T1)
P(t, T1)

+ h2(t)
dF(t, T1)
F(t, T1)

+ h3(t)
dS(t)
S(t)

,

in which the observable4 quantitieshi , i = 0, . . . , 3, de�ned in Eq. (2.5.35), represent
the fraction of wealth invested in each of the asset classes. Moreover, the optimal
strategy comprises consumption at the rate c(t) = X(t)/ n(t) at each time t during
the life[0,t ) of the agent, where n, de�ned in Eq. (2.5.22), is an observable process.

4 A variable is said to be `observable' if its value at any time t in [0,T] is completely determined
by current and historical prices of tradeable assets at that time.
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The expression for the optimal asset allocation in Theorem 2.3.2 is explicit up
to the solution of a Riccati equation. In the special case where the parameters
of the short rate and the mortality rate process are (piecewise) constant, these
Riccati equations admit a closed-form solution, which is given in Lemma 2.4.4.

2.4 the laplace transform of a cir process

To prove our main theorem, we �rst derive properties of the Laplace transform
of an integrated Cox-Ingersoll-Ross process which is scaled by a bounded de-
terministic function h. These results will facilitate the computation of semi-
closed form expressions for the optimal consumption and investment strate-
gies and they enable us to obtain explicit conditions under which the invest-
ment problem from Section 2.3 has a unique solution.

We start by establishing in Lemma 2.4.1 that, under appropriate conditions, the
Laplace transform of an integrated Cox-Ingersoll-Ross process on a �nite time
interval has an af�ne representation. A well-known application of this result
is the pricing of bonds in a CIR short rate model, which corresponds to the
choice h � 1 in Lemma 2.4.1. We are however interested in the case where h is
not constant and possibly negative. Moreover, we will not constrain the mean-
reversion speed k to be nonnegative. We thus extend results in Pitman and Yor
(1982), Kraft ( 2003), Wong and Heyde (2006) and Gnoatto and Grasselli (2014)
to the case of time-varying parameters and bounded, but possibly negative,
mean-reversion speed.

Lemma 2.4.1. Let h, k, mand x be bounded and continuous functions[0,T] ! R
satisfying m(t) � 0 and x(t) > 0 for 0 � t � T. Suppose that r follows a Cox-
Ingersoll-Ross process

r(t) = r0 +
Z t

0
(m(s) � k(s)r(s)) ds +

Z t

0
x(s)

q
r(s) dW̄(s) , (2.4.1)

in which W̄ is standard Brownian motion and r0 is a strictly positive constant. For
a 2 R and0 � t � T, consider the Laplace transform

g(t, T, x) = E
�

exp
�

� ar(T) �
Z T

t
h(s)r(s) ds

� �
�
�
� r(t) = x

�
. (2.4.2)

If the Riccati equation
(

¶t B(t, T) = L (t, B(t, T)) , 0 � t � T ,

B(T, T) = a ,
(2.4.3)
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in which

L (t, x) = k(t)x +
1
2

x2(t)x2 � h(t) , (2.4.4)

as well as the differential equation
(

¶t A(t, T) = � m(t)B(t, T) , 0 � t � T ,

A(T, T) = 0 ,
(2.4.5)

have bounded solutions A(�, T) and B(�, T), then the Laplace transform g(t, T, r) has
an af�ne representation

g(t, T, r) = e� A(t,T)� B(t,T)r . (2.4.6)

The previous lemma provides suf�cient conditions for �niteness of the Laplace
transform, but it is shown in Korn and Kraft ( 2004, Prop. 3.2) that in the special
case where h(t) = h̄ for some h̄ < 0, there exist constants m and x, for any
given constant mean reversion speed k, such that the Laplace transform in
Lemma 2.4.1 is in�nite. Conversely, given a set of constant CIR parameters
there is a number h̄ < 0 such that the Laplace transform in Lemma 2.4.1 with
h(t) = h̄ is in�nite.

Before proving Lemma 2.4.1, we need the following result which, for the case
of nonnegative mean-reversion speed, is due to Shirakawa (2002). We present
a different proof, and we extend the result to a bounded, possibly negative,
mean-reversion speed.

Lemma 2.4.2. Let f : [0,T] ! R be a continuous and bounded function and let
the process r be de�ned as in Eq. (2.4.1). Assume thatm, k and x are continuous and
bounded functions and thatx(t) > 0 andm(t) � 0 for 0 � t � T. Then the stochastic
exponential

Z(t) = exp
� Z t

0
f (s)

q
r(s)dW̄(s) �

1
2

Z t

0
f 2(s)r(s) ds

�
, (2.4.7)

is a martingale for0 � t � T.

Proof.

First we show that, without loss of generality, we may assume k > 0. Sincek
is bounded we have that for all t 2 [0,T], k(t) > � m for some m > 0. De�ne
er(t) = e� mtr(t). It follows from Itô's lemma that

der(t) = � me� mtr(t)dt + e� mtdr(t)

=
�
em(t) � ek(t)r(t)

�
dt + ex(t)

q
r(t)dW̄(t) ,
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where em(t) = m(t) e� mt, ek(t) = ( k(t) + m) e� mt > 0 and ex(t) = x(t) e� mt are
all bounded and continuous on [0,T]. Henceer(t) is a CIR process with strictly
positive mean-reversion speed. Observe that

dZ(t)/ Z(t) = f (t)
q

r(t)dW̄(t) = ef (t)
q

er(t)dW̄(t) ,

in which ef (t) = f (t)e
1
2mt is a bounded function on [0,T]. It thus remains to

prove the result for k > 0.

Suppose that there exists aq < 0 such that, for every u 2 [0,T], the differential
equations

8
<

:

¶t B(t, u) = B(t, u)
�

k(t) + 1
2x2(t)B(t, u)

�
, 0 � t � u ,

B(u, u) = q,
(2.4.8)

and
8
<

:
¶t A(t, u) = � m(t)B(t, u) , 0 � t � u ,

A(u, u) = 0 ,
(2.4.9)

have continuously differentiable solutions that are bounded uniformly in u 2
[0,T]. We will prove later that there indeed exist solutions to Eqs. ( 2.4.8)
and (2.4.9) with the required properties. For �xed u 2 [0,T] de�ne ef (t, x) =
e� A(t,u)� B(t,u)x . Applying Itô's lemma to eft := ef (t, r(t)) yields

deft = [ � ¶t A(t, u) � ¶t B(t, u)r(t)] eft dt � B(t, u) eftdr(t) +
1
2

B(t, u)2 eftdhr, r i t .

Substituting the dynamics of r we obtain

deft
eft

=
h
� ¶t B(t, u) + k(t)B(t, u) +

1
2

x2(t)B(t, u)2
i

r(t) dt

�
h
¶t A(t, u) + m(t)B(t, u)

i
dt � B(t, u)x(t)

q
r(t) dW̄(t)

= � B(t, u)x(t)
q

r(t) dW̄(t) .

We thus �nd that the process eft = ef (t, r(t)) is a nonnegative local martingale,
hence a supermartingale. Consequently,

E
h
e� qr(u)

i
= E

h
efu

i
� ef0 = e� A(0,u)� B(0,u)r0 . (2.4.10)
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From the uniform boundedness of A(�, u) and B(�, u) in u 2 [0,T] we conclude

that there exists a �nite constant C such that E
h
e� qr(u)

i
� C for all u 2 [0,T].

Following Revuz and Yor ( 1999, p. 338), we will now use the bound Eq. ( 2.4.10)
to show that the process Z, de�ned by Eq. ( 2.4.7), has constant expectation.
Write Z(t) = E(z � W̄) t

5 in which z(t) = ef (t)
p

er(t). Since ef is bounded, there
exists a constant M < ¥ such that j ef (t)j � M for 0 � t � T. We have, when
0 < #< � q/ M 2, that

E
h
e# z2(v)

i
� C, for all v 2 [0,T] .

Fix any t 2 [0,T] and take 0 < r < s < t such that # < s � r < 2# if t � #
and s � r = t < # otherwise. Let ez(v) = z(v)1r< v< s be a truncation of z. By
Jensen's inequality we have

E
h
e

1
2

Rs
r

ez(v)2dv
i

� E
�

1
s � r

Z s

r
e

1
2 (s� r) ez2(v)dv

�

=
1

s � r

Z s

r
E

h
e

1
2 (s� r) ez2(v)

i
dv � C .

Since ez satis�es Novikov's condition it follows that

1 = E( ez � W̄)r = E
h
E( ez � W̄)sjF r

i
= E [E(z � W̄)s/ E(z � W̄)r jF r ] .

The tower rule for conditional expectation yields

E [E(z � W̄) t ] = E
h
E(z � W̄) t � (s� r)E

h
E(z � W̄) t / E(z � W̄) t � (s� r) jF t � (s� r)

ii

= E
h
E(z � W̄) t � (s� r)

i
.

By iteratively applying the above equation we obtain E [E(z � W̄) t ] = 1, that is,
the processZ has constant expectation. ButZ is a nonnegative local martingale,
hence a supermartingale. It follows that Z is a true martingale.

The �nal step is to establish that there exists some q < 0 such that Eqs. (2.4.8)
and (2.4.9) admit, for all u 2 [0,T], continuously differentiable solutions that
are bounded, uniformly in u 2 [0,T]. From Picard-Lindelöf, see Teschl (2012,
Thm. 2.2), and the local Lipschitz continuity of the righthand side of Eq. ( 2.4.8),

5 We use the following standard notation: Z = X � Y means dZ = XdY with initial value for Z
equal to zero unless speci�ed otherwise; and Z(t) = E(X) t solves Z(t) = 1 +

Rt
0 Z(s)dX(s)

with initial value one.
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we know that there exists, for every u 2 [0,T], a unique, continuously dif-
ferentiable solution B(�, u) to Eq. (2.4.8) on an open interval (u0, u]. Suppose
that (u0, u] is the largest interval on which a solution to Eq. ( 2.4.8) exists.

Since B(t, u) satis�es Eq. (2.4.8) it cannot change sign, hence

B(t, u) � 0 , t 2 (u0, u] ,

due to the boundary condition B(u, u) = q < 0. This establishes an upper
bound for B(�, u). De�ne

K0 := 2kmin/ (x2)max > 0 ,

in which kmin = inf 0� s� T k(s) > 0 and (x2)max = sup0� s� T x(s)2 < ¥ . For
B(t, u) 2 (� K0, 0] we have

k(t) +
1
2

x2(t)B(t, u) � kmin(t) +
1
2

(x2)maxB(t, u) � 0 ,

and consequently

¶t B(t, u) = B(t, u)
�

k(t) +
1
2

x2(t)B(t, u)
�

� 0 .

It follows that if B(t, u) starts in (� K0, 0] at time u, then its trajectory will stay
in (� K0, 0] for all t 2 (u0, u].

SinceB(�, u) is bounded on (u0, u] when q 2 (� K0, 0], both a = lim sup s#u0 B(s, u)
and b = lim inf s#u0 B(s, u) exist and are �nite. Suppose that a > b. There exist
sequencesan # u0 and bn # u0 with B(an, u) ! a and B(bn, u) ! b. There also
exists an L̄ � 0 such that jB(t, u)(k(t) + 1

2x(t)2B(t, u)) j � L̄ for all t 2 (u0, u]
because of the continuity of x and k. But then jB(bn, u) � B(an, u)j � L̄jbn � anj
which gives a contradiction for n ! ¥ . Hence a = b and

lim
s#u0

B(s, u) , (2.4.11)

exists. We can thus apply Picard-Lindelöf again and extend the interval of
existence beyond (u0, u]. This contradicts the assumption that (u0, u] is the
largest interval of existence. We conclude that if q 2 (� K0, 0] then B(�, u) is
continuously differentiable on [0,u] and

� K0 < B(t, u) � 0 , t 2 [0,u] . (2.4.12)

Moreover,

0 � � A(t, u) = �
Z u

t
m(s)B(s, u) ds � K0

Z T

0
m(s) ds , (2.4.13)
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so we also have that A(�, u) is continuously differentiable on [0,u] and bounded
by a constant which does not depend on u.

Choosing any q 2 (� K0, 0] thus ensures the existence of bounded and contin-
uously differentiable functions A(�, u) and B(�, u) satisfying Eqs. (2.4.8) and
(2.4.9) on [0,u], and the bounds (2.4.12) and (2.4.13) hold uniformly for all u 2
[0,T].

Using Lemma 2.4.2 we can now proceed to establish the af�ne representation
of the Laplace transform (2.4.2) and prove Lemma 2.4.1.

Proof of Lemma2.4.1.

By assumption of the lemma there exist bounded functions A(�, T) and B(�, T)
satisfying the Riccati equations (2.4.3) and (2.4.5) on the interval [0,T]. De�ne

f (t, x) = e�
Rt

0 h(s)r(s)ds� A(t,T)� B(t,T)x ,

and observe that

f (T, r(T)) = e� ar(T)�
RT

0 h(s)r(s)ds .

If the process f (t, r(t)) is a martingale, we have

E [ f (T, r(T)) j F t ] = f (t, r(t)) ,

so it follows that

E
h

e� ar(T)�
RT

0 h(s)r(s)ds
�
�
� F t

i
= e�

Rt
0 h(s)r(s)ds� A(t,T)� B(t,T)r(t) ,

or, equivalently,

g(t, T, r(t)) = e� A(t,T)� B(t,T)r(t) .

We conclude that, if f (t, r(t)) is a martingale, then the Laplace transform has
the af�ne representation as stated in the lemma.

Applying Itô's lemma to ft := f (t, r(t)) yields

d ft = [ � h(t)r(t) � ¶t A(t, T) � ¶t B(t, T)r(t)] ft dt

� B(t, T) ftdr(t) +
1
2

B(t, T)2 ftdhr, r i t .

Substituting the dynamics of r we �nd

d ft
ft

=
h
� h(t) � ¶t B(t, T) + k(t)B(t, T) +

1
2

x2(t)B(t, T)2
i

r(t) dt

�
h
¶t A(t, T) + m(t)B(t, T)

i
dt � B(t, T)x(t)

q
r(t) dW̄(t) .
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Hence, if B(�, T) solves the Riccati equation (2.4.3) and A(�, T) satis�es (2.4.5)
then ft = f (t, r(t)) is a martingale provided that the local martingale solving

d ft
ft

= � B(t, T)x(t)
q

r(t) dW̄(t) , (2.4.14)

is a true martingale. This follows from Lemma 2.4.2 and the assumption that
B(�, T) and x(t) are bounded.

In order to apply Lemma 2.4.1 we need conditions ensuring existence of
a bounded solution to the inhomogeneous Riccati equation ( 2.4.3). In Lem-
mata 2.4.5 and 2.4.6 we will provide such conditions for the case where x(t) =
x̄ for some x̄ 2 ]0,¥ [. First we need the following comparison result which will
be used to extend a local solution of a Riccati equation to a solution on the
interval [0,T].

Lemma 2.4.3. Let G: [0,¥ [ � R ! R be a function which is locally Lipschitz in its
second argument. Consider, for t2 [T0, T], the differential equation

¶ty(t) = G(t, y(t)) , y(T) = 0 ,

and let x(t) and z(t) be bounded functions satisfying the differential inequalities

¶t x(t) � G(t, x(t)) , x(T) = 0 ,

and

¶tz(t) � G(t, z(t)) , z(T) = 0 .

Then z(t) � y(t) � x(t) on [T0, T].

Proof. See Walter (1998, p. 96).

The following lemma provides an explicit solution to the Riccati equations
(2.4.3)–(2.4.5) for the case where the functions h and k are constant. Related
results appear in Kraft ( 2003) and Maghsoodi (1996).

Lemma 2.4.4. Suppose thatx(t) = x̄, k(t) = k̄, m(t) = m̄and h(t) = h̄ for some
x̄, k̄, m̄, h̄ 2 R such that

� 2 x̄2h̄ < k̄2 , (2.4.15)

and

k̄ + a > 0 , (2.4.16)
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where a=
p

k̄2 + 2h̄x̄2 . Then the (real-valued) solution of the Riccati equations
(2.4.3)–(2.4.5) is given by

A(t, T) = �
m̄
x̄2

"

(k̄ � a) (T � t) � 2 log

 
1 � ne� a(T� t)

1 � n

!#

, (2.4.17)

B(t, T) = 2h̄
�
k̄ + acoth

�
1
2

a(T � t)
�� � 1

, (2.4.18)

andn = ( k̄ � a) / (k̄ + a) . The functions A(�, T) and B(�, T) are bounded and are
continuously differentiable with bounded �rst-order derivatives.

Proof.

It is straightforward to verify that A and B solve Eq. (2.4.3) and (2.4.5). Observe
that condition ( 2.4.15) ensures that A and B are real-valued. Sincex 7! coth(x)
is decreasing and bounded from below by 1 on ]0,T], it follows that B is
monotone and bounded on [0,T]. Condition ( 2.4.16) implies that n < 1 so A is
also bounded on [0,T]. Since A(�, T) and B(�, T) satisfy Eq. (2.4.3) and (2.4.5),
it follows that their �rst-order derivatives are continuous and bounded.

Set hmin = min 0� s� T h(s), hmax = max0� s� T h(s), and kmin = min 0� s� T k(s)
which is justi�ed since since h and k are bounded. Consider the family of
Riccati equations

(
¶t j L(t, u) = kmin j L(t, u) + 1

2 x̄2 j L(t, u)2 � min (0, hmin) , t 2 [0,u] ,

j L(u, u) = 0

(2.4.19)

and the family

(
¶t j U (t, u) = kmin j U (t, u) + 1

2 x̄2 j U (t, u)2 � max(0, hmax) , t 2 [0,u] ,

j U (u, u) = 0 ,

(2.4.20)

both indexed by u 2 [0,T]. The next lemma establishes a lower bound and an
upper bound for solutions of the Riccati equation ( 2.4.3) for the case where
a = 0 and x(t) = x̄ for some x̄ 2 ]0,¥ [. Note that we explicitly allow for
the possibility that the source term h(t) of the Riccati equation (2.4.3) changes
sign.
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Lemma 2.4.5. Suppose that h is bounded and either equals zero or changes sign
�nitely many times, and that

hmin > 0 or kmin >
q

� 2x̄2hmin . (2.4.21)

If on the interval (T0, T] the function B(�, T) is a solution to the Riccati equation
(2.4.3) with a = 0 andx(t) = x̄ for somex̄ 2 ]0,¥ [, then

j L(t, T) � B(t, T) � j U (t, T) ,

for t 2 (T0, T].

Proof.

Condition ( 2.4.21) implies that Eqs. (2.4.15) and (2.4.16) are satis�ed for the
values h̄ = hmin and k̄ = kmin. Indeed, h̄ > 0 implies (2.4.15) is trivially satis�ed
while k̄ + a = k̄ +

p
k̄2 + 2h̄x̄2 > k̄ + jk̄j � 0. If h̄ � 0 then k̄ + a = k̄ +p

k̄2 + 2h̄x̄2 � k̄ > 0 so (2.4.16) is also satis�ed and ( 2.4.15) is satis�ed by
construction. It thus follows from Lemma 2.4.4 that the solutions j L(t, u) and
j U (t, u) to the Riccati equations (2.4.19) and (2.4.20) exist and are bounded
on [0,u] for all 0 � u � T.

If B(�, T) changes sign at t, then ¶t B(t, T) = � h(t). Hence on intervals where
h(t) does not change sign,B(�, T) can change sign only once. Since, by assump-
tion, the function h(t) changes sign only �nitely many times, it follows that
B(�, T) changes sign only �nitely many times. Therefore we may partition the
interval (T0, T] into a �nite number of subintervals

(t0, t1], (t1, t2], . . . , (tN � 1, tN ] ,

with t0 = T0, tN = T and such that B(t i , T) = 0 while the function B(�, T) has
constant sign on each of these subintervals.

Take 1 � i � N and consider the interval (t i � 1, t i ]. Assume that B(�, T) is
negative on (t i � 1, t i ]. By Eq. (2.4.19) we have that j L(t, t i ) is also negative on
that interval, so

¶t j L(t, t i ) � L (t, j L(t, t i )) , (2.4.22)

with L as de�ned in Eq. (2.4.4), while

¶t B(t, T) = L (t, B(t, T)) , (2.4.23)

for t 2 (t i � 1, t i ] and B(t, T) = j L(t, t i ) at the endpoint t = t i . Hence by
Lemma 2.4.3 the solution B(t, T) is bounded from below by j L(t, t i ) on (t i � 1, t i ].
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Note that L is locally Lipschitz in its second argument. We also see that
j L(t, T) is decreasing in T by (2.4.18), so it follows that

j L(t, T) � j L(t, t i ) � B(t, T) � 0 ,

for t 2 (t i � 1, t i ].

Now consider the case where B(�, T) is positive on (t i � 1, t i ]. We have that
j U (t, t i ) � 0 by (2.4.20) so

¶t j U (t, t i ) � L (t, j U (t, t i )) , (2.4.24)

for t 2 (t i � 1, t i ]. Hence by Lemma 2.4.3 the solution B(t, T) is bounded from
above by j U (t, t i ) on (t i � 1, t i ]. Sincej U (t, T) is increasing in T, see Lemma2.4.4,
it follows that

0 � B(t, T) � j U (t, t i ) � j U (t, T) ,

for t 2 (t i � 1, t i ].

Since j L(t, T) � 0 and j U (t, T) � 0 on all intervals (t i � 1, t i ] we see that
j L(t, T) � B(t, T) � j U (t, T) on all these intervals, which proves the result as
stated.

The following lemma establishes conditions under which the Laplace trans-
form Eq. (2.4.2) has a �nite-valued solution.

Lemma 2.4.6. Suppose thatx(t) = x̄ for somex̄ 2 ]0,¥ [. If the conditions of
Lemma2.4.5 hold, then the (unique) solution B(t, T) to the Riccati equation

(
¶t B(t, T) = L (t, B(t, T)) , 0 � t � T ,

B(T, T) = 0 ,
(2.4.25)

in which L is de�ned as in Eq. (2.4.4), exists and is bounded on[0,T]. Moreover
B(t, T) is continuously differentiable and¶t B(t, T) is bounded for t2 [0,T].

Proof.

If we can show that a solution B(t, T) exists and is bounded for all t 2 [0,T],
then we immediately have that ¶t B(t, T) is bounded for all such t due to
Eq. (2.4.25).

The righthand side of the Riccati equation ( 2.4.25) is continuous (since h and k
are continuous) and locally Lipschitz continuous in the second argument with
a Lipschitz constant which does not depend on time. From Picard-Lindelöf,
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see Teschl (2012, Thm. 2.2), we know that there exists a unique solution B(�, T)
to the Riccati differential equation on the interval (T0, T] for some T0< T.

It follows from Lemma 2.4.5 that B(�, T) is bounded on (T0, T]. Hence, by
arguments similar to those used in the proof of Lemma 2.4.2, the interval of
existence can be extended to[0,T].

2.5 the optimal consumption and investment strategy

In this Section we will prove Theorem 2.3.2. First, to show that the market
introduced in Section 2.2 does not admit arbitrage, we will construct an equiv-
alent measure eP such that all assets, expressed in units of the money-market
account, are eP-martingales. We can construct such a measureeP using the likeli-
hood process de�ned by the Doléans-Dade exponential of the market price of
risk, as the next lemma shows. Note that Novikov's condition is not satis�ed
in general for this stochastic exponential, see Kraft (2003, p. 59).

Lemma 2.5.1. The stochastic exponential

Z0(t) = exp
�

�
Z t

0
q(u)dW(u) �

1
2

Z t

0
jjq(u)jj 2du

�
(2.5.1)

de�nes a Radon-Nikodym derivative and the associated measure

eP(A) = EP [Z0(T)1A ] , for all A 2 F (T) , (2.5.2)

is a martingale measure for the economy, i.e.b-discounted asset prices are martingales
under this measure.

Proof. Using Lemma 2.4.2 together with the boundedness of the functions
t 7! xi Bj (t, T1), i, j = 1, 2, and t 7! y i (t)/ xi , i = 1, 2, it can be shown that
b-discounted prices of tradeables are eP-martingales. A detailed proof is given
in Section 2.8.

From Lemma 2.5.1 we conclude that the economy does not admit arbitrage;
and it follows from Remark 2.2.1 that the economy introduced in Section 2.2
is complete so that the martingale measure de�ned in Lemma 2.5.1 is unique,
see Karatzas and Shreve (1998, Thm. 1.4.2, Thm. 1.6.6. and Prop. 1.7.4).

Remark 2.5.2. From a standard result in arbitrage theory6 the price of a survival
bond, which pays the amountF(T1) at time T1, is given by

F(t, T1) = b(t) E eP

h
b(T1) � 1 F(T1)

�
�
� F (t)

i
. (2.5.3)

6 See for example Karatzas and Shreve (1998, Prop. 2.2.3).
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The survival distributionF is bounded, hence we may apply the Feynman-Kac theo-
rem7 to express the price of the survival bond in terms of the solution to the Riccati
differential equation (2.2.9). We conclude that the price process (2.2.8) of the survival
bond coincides with the replication cost of its payoff.

Applying Itô's lemma to the product of the state price density H (t) = Z0(t)/ b(t)
and the wealth process Xx,c,p yields, by Eqs. (2.2.10) and (2.5.1),

H (t)Xx,c,p (t) +
Z t

0
H (u)c(u)du

= x +
Z t

0
H (u)[S (u, T1)p (u) � Xx,c,p (u)q(u)]0dW(u) ,

(2.5.4)

for 0 � t � T. The de�nition of admissible strategies requires the wealth
process and consumption to be nonnegative. Consequently every admissible
strategy (c, p ) satis�es the budget constraint

E
�

H (T)Xx,c,p (T) +
Z T

0
H (u)c(u)du

�
� x . (2.5.5)

Indeed, since the lefthand side of Eq. (2.5.4) is nonnegative if (c, p ) 2 A , while
the righthand side is a local martingale, it follows that the righthand side of
Eq. (2.5.4) is a supermartingale. Taking expectations in Eq. (2.5.4) thus leads to
the budget constraint ( 2.5.5); this inequality will play an essential role in the
veri�cation of the candidate optimal strategy in the proof of Lemma 2.5.4.

The stopping time t , which models the time of death of the investor, is not
adapted to the �ltration F (t) since it depends on both the mortality rate and
the exponentially distributed random variable Q. Using iterated conditioning
the following alternative representation of the value function can be estab-
lished.

Lemma 2.5.3. The value function equals

V (x) = sup
(c,p )2A

E
� Z T

0
U1(t, c(t))dt + U2(Xx,c,p (T))

�
, (2.5.6)

in which U1(t, x) = F(t)U1(x) and U2(x) = F(T)U2(x).

Proof. See Section2.8.

The following lemma, the proof of which is adapted from Karatzas and Shreve
(1998), provides conditions ensuring that the problem from De�nition 2.3.1

7 See Karatzas and Shreve (1991, Thm. 5.7.6).
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has a unique solution. Let I1 : [0,T] � (0,¥ ] ! [0,¥ ) and I2 : (0,¥ ] ! [0,¥ ),
de�ned by

I1(t, y) = F(t)
1

1� p y
1

p� 1 and I2(y) = Y F(T)
1

1� p y
1

p� 1 , (2.5.7)

with Y = U
1

1� p , be the inverses of the marginal utility functions c 7! ¶c U1(t, c)
and x 7! ¶xU2(x) respectively.

Lemma 2.5.4. Let x > 0 be an amount of initial wealth. There exists an optimal
strategy(c, p ) 2 A for Problem2.3.1 if there is a v(x) 2 [0,¥ [ such that

w(0,v(x)) = x , (2.5.8)

where

w(t, y) =
1

H (t)
E

� Z T

t
H (s) I1(s, yH (s))ds+ H (T) I2(yH (T))

�
�
�
� F (t)

�
.

The optimal consumption strategy c and optimal wealth process X are given by

c(t) = I1(t, v(x)H (t)) , (2.5.9)

and

X(t) = w(t, v(x)) . (2.5.10)

If V (x) < ¥ then the optimal strategy is unique up to almost-everywhere equivalence.

Proof.

First we will construct an investment strategy p such that the wealth pro-
cessXx,c,p , with consumption c as in Eq. (2.5.9), replicates the (nonnegative)
candidate optimal wealth process Eq. (2.5.10) and, in particular, leads to the
terminal wealth

z := w(T, v(x)) = I2(v(x)H (T)) . (2.5.11)

Let M (t) = H (t)X(t) +
Rt

0 H (u) c(u) du with c(t) and X(t) as in Eqs. (2.5.9)–
(2.5.10), and note that

M (t) = E
� Z T

0
H (t) I1(t, v(x)H (t))dt + H (T) I2(v(x)H (T))

�
�
�
� F (t)

�
.
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Since E jM (t)j = w(0,v(x)) = x < ¥ we conclude that M is a Doob martin-
gale. The martingale representation theorem8 guarantees the existence of an
adapted processg satisfying

RT
0 jjg(u)jj 2du < ¥ and

M (t) = x +
Z t

0
g(u) dW(u) .

The reciprocal of the process Z0 de�ned in ( 2.5.1) satis�es

Z � 1
0 (t)q(t)d eW(t) = Z � 1

0 (t)q(t)(dW(t) + q0(t)dt) = : d(Z � 1
0 (t)) .

Applying Itô's lemma we �nd

d
�

X(t)
b(t)

�
= Z � 1

0 (t)d(H (t)X(t)) + H (t)X(t)d(Z � 1
0 (t))

+ d
D

HX , Z � 1
0

E

t

= Z � 1
0 (t)

�
g(t)d eW(t) � H (t)c(t)dt

�

+ H (t)X(t)q(t)Z � 1
0 (t)d eW(t)

=
1

b(t)
1

H (t)

h
g(t)+

�
M (t) �

Z t

0
H (u)c(u)du

�
q(t)

i
d eW(t)

�
1

b(t)
c(t)dt . (2.5.12)

Comparing this expression to Eq. (2.2.10) we �nd that if we choose the asset
allocation

p (t) =
1

H (t)

h
g(t) +

�
M (t) �

Z t

0
H (u)c(u)du

�
q(t)

i
S (t, T1) � 1 , (2.5.13)

then the corresponding wealth process Xx,c,p satis�es Xx,c,p (t) = X(t), and in
particular Xx,c,p (T) = z. It remains to show that the allocation ( 2.5.13) de�nes
a portfolio process, and that the pair (c, p ) is admissible. The paths of q are
almost surely continuous since we required the functions y i to be continuous.
Therefore we have

RT
0 jjq(t)jj 2 dt < ¥ and it follows that max 0� t � T 1/ Z0(t) <

¥ almost surely. Moreover, the paths of M, b and t 7!
Rt

0 H (u)c(u) du are con-
tinuous so that their supremum is �nite almost surely on the interval [0,T]. Re-

8 See Karatzas and Shreve (1991, pp. 182–184).
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call that, by the martingale representation theorem, jjg jj 2
2 =

RT
0 jjg(u)jj 2du <

¥ . From these estimates it follows that
Z T

0
jp (t)S (t, T1)q0(t)j dt

=
Z T

0

�
�
�
�

1
H (t)

�
g(t) +

�
M (t) �

Z t

0
H (u)c(u)du

�
q(t)

�
q0(t)

�
�
�
� dt

� jj bjj ¥ jj Z � 1
0 jj ¥

�
jjg jj 2jjqjj 2 + jjqjj 2

2

�
jj M jj ¥ +

Z T

0
H (u)c(u)du

��

< ¥ .

In the last step we used the Cauchy-Schwarz inequality. Likewise,

Z T

0

�
jjg(t)jj + jj

�
M (t) �

Z t

0
H (u)c(u)du

�
q(t)jj

� 2

dt

� jj g jj 2
2 +

�
jj M jj ¥ +

Z T

0
H (u)c(u)du

� 2
jjqjj 2

2

+ 2
�

jj M jj ¥ +
Z T

0
H (u)c(u)du

�
jjg jj 2jjqjj 2 < ¥ .

Hence, by the triangle inequality,

Z T

0
jjp (t)S (t, T1)jj 2 dt

=
Z T

0
jj b(t)Z � 1

0 (t)
�

g(t) +
�

M (t) �
Z t

0
H (u)c(u)du

�
q(t)

�
jj 2 dt

� jj bjj 2
¥ jj Z � 1

0 jj 2
¥

Z T

0

�
jjg(t)jj + jj

�
M (t) �

Z t

0
H (u)c(u)du

�
q(t)jj

� 2

dt

< ¥ .

We conclude that p is a portfolio process. Finally, the pair (c, p ) is admissible
since the wealth process (2.5.10) and the consumption process are nonnegative
by construction.

Next we will establish optimality and uniqueness of the optimal strategy. Due
to Lemma 2.5.3 we may rewrite the problem from De�nition 2.3.1 as

V (x) = sup
(c,p )2A

E
� Z T

0
U1(t, c(t))dt + U2(Xx,c,p (T))

�
, (2.5.14)
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in which U1(t, x) = F(t) xp

p and U2(x) = U F(T) xp

p are concave functions of x.

Let (c0, p 0) be an admissible pair. Due to the concavity of U1(t, �) and Eq. (2.5.9)
we have

U1(t, c0(t)) � U1(t, c(t)) � (c0(t) � c(t)) ¶cU1(t, c(t))

= ( c0(t) � c(t)) v(x)H (t) , (2.5.15)

almost surely for every 0 � t � T. Similarly, due to the concavity of U2,

U2(Xx,c0,p 0
(T)) � U2(z) � (Xx,c0,p 0

(T) � z) ¶xU2(z)

= ( Xx,c0,p 0
(T) � z) v(x)H (T) , (2.5.16)

almost surely. Integrating the inequalities ( 2.5.15) and (2.5.16) we �nd

E
� Z T

0
U1(t, c0(t))dt + U2(Xx,c0,p 0

(T))
�

� E
� Z T

0
U1(t, c(t))dt + U2(z)

�

� v(x) E
� Z T

0
(c0(t) � c(t)) H (t)dt + ( Xx,c0,p 0

(T) � z)H (T)
�

� 0 ,

by the budget constraint ( 2.5.5). This proves optimality. Uniqueness (up to
almost-everywhere equivalence) follows from Eq. ( 2.5.15) and Eq. (2.5.16) pro-
vided that V (x) < ¥ .

Remark 2.5.5. If w(0, 1) < ¥ then condition (2.5.8) in Lemma2.5.4 is satis�ed for

any initial level of wealth x> 0. Indeed, since w(0,y) = y
1

p� 1 w(0, 1) , it follows
that if w(0, 1) < ¥ then the function v: ]0,¥ [! [0,¥ [ de�ned by

v(x) = xp� 1w(0, 1)1� p (2.5.17)

is the inverse of x7! w(0,x).

The following auxiliary result gives the multiplicative Doob-Meyer decompo-
sition 9 of H (s) I1(s, H (s)) , for 0 � s � T, and of H (T) I2(H (T)) .

Lemma 2.5.6. Assume w(0, 1) < ¥ . The optimal consumption and optimal terminal
wealth satisfy

H (s) I1(s, H (s)) = L (s)m(s) , (2.5.18)

9 See Jamshidian (2007, Prop. 4.2).
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for 0 � s � T, and

H (T) I2(H (T)) = YL (T)m(T) , (2.5.19)

in which

L (t) = exp

(
p

1 � p

Z t

0
q(u)dW(u) �

1
2

�
p

1 � p

� 2 Z t

0
jjq(u)jj 2du

)

(2.5.20)

is a local martingale and

m(t) = exp
�

�
1

1 � p

Z t

0
l (u)du +

p
1 � p

Z t

0
r(u)du

+
p

2(1 � p)2

Z t

0
jjq(u)jj 2du

�
,

(2.5.21)

is a process of �nite variation.

Proof. The identities (2.5.18) and (2.5.19) follow from straightforward computa-
tion.

We proceed to derive expressions for the optimal consumption strategy and
optimal terminal wealth which are explicit up to the evaluation of a condi-
tional expectation. Later we will show that this conditional expectation has a
representation as a Laplace transform that can be evaluated using Lemma2.4.1.

Proposition 2.5.7. Let

n(t) =
Z T

t
L(t, u)du + Y L(t, T) , (2.5.22)

in which

L(t, s) =
1

L (t)m(t)
E [L (s)m(s)jF (t)] . (2.5.23)

If w(0, 1) < ¥ then the optimal consumption and wealth process for the problem in
De�nition 2.3.1 are given by

c(t) =
1

n(t)
X(t) , X(t) =

x
H (t)

n(t)
n(0)

L (t)m(t) . (2.5.24)

The value function is �nite and satis�es

V (x) =

8
>><

>>:

1
p

n(0)1� p xp , if p 6= 0 ,

� M0 + n(0) log
�

x
n(0)

�
, if p = 0 ,

(2.5.25)

in which M0 is a (�nite) constant, given by Eq. (2.8.6).
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Proof. See Section2.8.

In the special case where the short rate is deterministic and l � 0 we �nd that
formula ( 2.5.22) simpli�es to n(t) = 1/ m(t)

RT
t m(u)du + m(T)/ m(t) . We thus

see that Proposition 2.5.7 in this case coincides with the solution of Merton's
classical portfolio optimization problem.

The following result provides conditions on the parameters of the short rate
and the mortality rate process that imply w(0, 1) < ¥ ; thus ensuring, by Re-
mark 2.5.5, the existence of a solution for the problem from De�nition 2.3.1.

Proposition 2.5.8. Assume that the functionsy i , i = 1, 2, are analytic on[0,T].
The problem2.3.1 has a solution which is unique up to almost-everywhere equivalence
when p � 0. When p2 ]0, 1[ this is still the case if the parameters of the short rate
and mortality rate processes satisfy

min
s2 [0,T]

�
ki + p

1� py i (s)
�

> 0 , (2.5.26)

for i = 1, 2and

p [ (k1 � y 1,min)2 + (y 2
1)max� (y 1,min)2

1� p ] < k2
1 � 2px2

1 , (2.5.27)

p [ (k2 � y 2,min)2 + (y 2
2)max� (y 2,min)2

1� p ] < k2
2 + 2x2

2 , (2.5.28)

where
y i ,min = min

s2 [0,T]
y i (s), (y 2

i )max = max
s2 [0,T]

y i (s)2.

Furthermore, for given T> 0, L(t, T) has an af�ne representation which is almost
surely continuous in t and bounded on the domain0 � t � T.

Proof.

By Lemma 2.4.2 the stochastic exponential L in (2.5.20) is a P-martingale on
[0,T] since we required the functions y i (t), i 2 f 1, 2, 3g, to be continuous and

bounded on [0,T]. Hence we may de�ne the measure
^
P by

d
^
P

dP
= L (T) . (2.5.29)

From Girsanov's Theorem10 we �nd that the short rate

r(t) = r0 +
Z t

0
(m1(u) � ^

k1(u)r(u))du +
Z t

0
x1

q
r(u) d

^
W1(u) ,

10 See Karatzas and Shreve (1991, Thm. 3.5.1).
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in which
^

W1(t) = W1(t) � p
1� p

Rt
0 q0

1(s)ds,
^
k1(t) = k1 + p

1� p y 1(t), and the
mortality rate

l (t) = l 0 +
Z t

0
(m2(u) � ^

k2(u) l (u))du +
Z t

0
x2

q
l (u) d

^
W2(u) ,

in which
^

W2(t) = W2(t) � p
1� p

Rt
0 q0

2(s)ds,
^
k2(t) = k2 + p

1� p y 2(t), remain

independent under
^
P. Using Bayes' rule we can rewrite Eq. (2.5.23) as

L(t, T) =
1

L (t)m(t)
EP [L (T)m(T)jF (t)] =

1
m(t)

E ^
P

[m(T)jF (t)] .

Hence we �nd, using Eq. ( 2.5.21),

L(t, T) = exp
�

�
Z T

t
h3(u) du

�
E ^

P

�
exp

�
�

Z T

t
h1(u)r(u)du

� �
�
�
� r(t)

�

� E ^
P

�
exp

�
�

Z T

t
h2(u) l (u)du

� �
�
�
� l (t)

�
, (2.5.30)

where

h1(t) = �
1

1 � p

 

p +
1
2

p
1 � p

�
y 1(t)

x1

� 2
!

,

h2(t) = �
1

1 � p

 

� 1 +
1
2

p
1 � p

�
y 2(t)

x2

� 2
!

,

and

h3(t) = �
1
2

p
(1 � p)2

�
y 3(t)

x3

� 2

.

We will now use Lemma 2.4.6 to prove that the conditions of Lemma 2.4.1 are
satis�ed for the Laplace transforms in Eq. ( 2.5.30); it then follows that L(t, T),
0 � t � T, has an af�ne representation. Since y i , i = 1, 2, are analytic on
an open set containing [0,T],11 it follows from the identity theorem for real
analytic functions 12 that, for every a 2 R, either y i (t) = a on [0,T] or the zero
set f t : y i (t) � a = 0g does not contain an accumulation point. Consequently,
the functions hi are either identically zero on [0,T] or change sign only a

11 A function being analytic on a closed set implies that it is analytic on an open covering of that
set, see Rudin (1976, Thm. 8.4).

12 See for example Rudin (1976, Thm. 8.5).
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�nite number of times. Moreover, the functions hi are continuous and hence
bounded on [0,T]. The last factor in (2.5.30) which involves the function h3
is therefore always �nite. To apply Lemma 2.4.6 to the �rst two factors in
Eq. (2.5.30), we need to verify that condition ( 2.4.21) is satis�ed. For p � 0 we
see that hi (t) � 0 for i = 1, 2 so the condition is always satis�ed in that case.
We therefore only need to consider p 2 ]0, 1[. For i = 1 we need to check that

min
s2 [0,T]

(k1 + p
1� py 1(s)) 2 > � 2x2

1 min
s2 [0,T]

� p
1� p(1 + 1

2(1� p) (y 1(s)/ x1)2)

=
2px2

1
1 � p

+
p

(1 � p)2 max
s2 [0,T]

y 1(s)2.

But since p > 0 and k1 + p
1� py 1(s) > 0 for all s 2 [0,T], the minimum of

the expression on the lefthand side must be attained at the point where y 1 is
minimal. We then multiply both sides of the inequality with 1 � p to get

k2
1(1 � p) + 2pk1y 1,min + p2

(1� p) y 2
1,min > 2px2

1 + p
(1� p) (y 2

1)max

which gives

k2
1 � 2px2

1 > p(k1 � y 1,min)2 � py 2
1,min � p2

(1� p) y 2
1,min + p

(1� p) (y 2
1)max

= p [ (k1 � y 1,min)2 + (y 2
1)max� (y 1,min)2

(1� p) ].

The casei = 2 can be treated in a similar fashion.

We can thus apply Lemma 2.4.1 to the Laplace transforms in Eq. (2.5.30) and
we �nd that

L(t, T) = e� A1(t,T)� A2(t,T)� B1(t,T)r(t)� B2(t,T) l (t)� A3(t,T) , (2.5.31)

in which A3(t, T) =
RT

t h3(u) du, while A i (�, T) and Bi (�, T), i = 1, 2, are the
solutions to

¶t Bi (t, T) = ^
ki (t)Bi (t, T) +

1
2

x2
i Bi (t, T)2 � hi (t) , (2.5.32)

¶t A i (t, T) = � mi (t) Bi (t, T) , (2.5.33)

with initial conditions A i (T, T) = Bi (T, T) = 0, and these functions are bounded
and continuously differentiable by Lemma 2.4.6.

Finally, to establish existence of a solution to the problem in De�nition 2.3.1
we have to verify that the conditions of Lemma 2.5.4 are satis�ed. From Re-
mark 2.5.5 and the identity w(0, 1) = n(0) it follows that this is equivalent to
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proving that n(0) < ¥ , which follows from the almost sure boundedness of
L(t, T) on [0,T].

The next proposition characterizes the optimal hedging strategy. Given any
admissible nonnegative consumption process, there exists a portfolio process
which replicates the optimal wealth, see Eq. (2.5.13) in the proof of Lemma 2.5.4.
Moreover, the choice of the portfolio process only affects the diffusion term of
the discounted wealth process, while the drift term depends on the consump-
tion process. By comparing the dynamics of the optimal wealth process to the
dynamics of the three basic tradeables in the (complete) market, we can deter-
mine the trading strategy which �nances the optimal consumption plan and
leads to the optimal distribution of terminal wealth at time T.

Proposition 2.5.9. Under the conditions of Lemma2.4.5 the dynamics of the optimal
wealth and consumption process satisfy

d
�

X(t) +
Rt

0 c(u)du
�

X(t)
= h0(t)

db(t)
b(t)

+ h1(t)
dP(t, T1)
P(t, T1)

+ h2(t)
dF(t, T1)
F(t, T1)

+ h3(t)
dS(t)
S(t)

, (2.5.34)

where,
8
>>>>>>>><

>>>>>>>>:

h0(t) = 1 � å 3
i= 1 hi (t)

h1(t) = 1
B1(t,T1)

�
1

1� p

�
y 1(t)

x2
1

� r y 3(t)
x1x3r

�
+ X1(t)

n(t)

�
� h2(t),

h2(t) = 1
B2(t,T1)

�
1

1� p
y 2(t)

x2
2

+ X2(t)
n(t)

�
,

h3(t) = 1
1� p

y 3(t)
r x 2

3
,

(2.5.35)

in which,

Xi (t) = Y Bi (t, T)L(t, T) +
Z T

t
Bi (t, u)L(t, u) du , (2.5.36)

and Bi are the solutions of (2.5.32) and L is given by Eq. (2.5.31).

Proof. See Section2.8.

We conclude from Proposition 2.5.9 that the optimal strategy invests a fraction
h1(t) of wealth in bonds, a fraction h2(t) in survival bonds, a fraction h3(t)
in stocks and the remaining wealth h0(t) is invested in the money-market
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account. The portfolio weights depend on the short rate r and the mortality
rate l . These rates are observable due to their af�ne structure; their values can
be inferred from the price of the zero-coupon bond P(�, T1) and the price of
the survival bond F(�, T1) respectively.

Proposition 2.5.10. The hedging demand (as a fraction of wealth) for all assets in the
economy is bounded.

Proof. Fix i 2 f 1, 2g and let j L(�, u) and j U (�, u) be the family, indexed by u 2
[0,T], of lower and upper bounds for Bi (�, u) as constructed in Lemma 2.4.5.
Since j L(t, u) is decreasing in u, it follows that

j L(t, T) �
Xi (t)
n(t)

=
1

n(t)

�
j L(t, T)n(t) � Xi (t)

�

=
1

n(t)

Z T

t

�
j L(t, T) � Bi (t, u)

�
L(t, u)du

+ Y L(t, T)
�
j L(t, T) � Bi (t, T)

�

�
1

n(t)

Z T

t

�
j L(t, T) � j L(t, u)

�
L(t, u)du

� 0 .

Similarly, since j U (t, u) is increasing in u,

j U (t, T) �
Xi (t)
n(t)

�
1

n(t)

Z T

t

�
j U (t, T) � Bi (t, u)

�
L(t, u)du

�
1

n(t)

Z T

t

�
j U (t, T) � j U (t, u)

�
L(t, u)du

� 0 .

Hence

j L(t, T) �
Xi (t)
n(t)

� j U (t, T) .

2.6 economic analysis of the model

Huang et al. (2012) establish a relation between the parameter p of the power
utility functions de�ned in Eqs. ( 2.3.2) and (2.3.3), and the optimal initial con-
sumption c(0). In Theorem 2.6.1 we show that a similar relation holds in our
model setup.
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Theorem 2.6.1. Consider two models: the �rst model has a deterministic mortality
rate l det, while in the second model the mortality ratel stoch is stochastic. Assume
that y stoch

2 (t) � 0,13 whereasy det
2 (t) = 0.14 If the survival probabilities are the same

in both models, that is, if for all s2 [0,T]

EP

h
e�

Rs
0 l stoch(u)du

i
= e�

Rs
0 l det(u)du , (2.6.1)

then for0 � p < 1,

cdet(0) � cstoch(0) and Vdet(x) � V stoch(x) ,

while for p � 0,

cdet(0) � cstoch(0) and Vdet(x) � V stoch(x) .

We thus �nd that a stochastic mortality rate, and a nonnegative market price
of longevity risk, lead to a difference in the consumption rate and the value
function. The sign of the difference depends on the coef�cient of relative risk
aversion. Note that in Huang et al. ( 2012), where it is assumed that longevity
risk is not tradeable, the value function in the stochastic mortality model al-
ways exceeds the value function in the deterministic model, regardless of the
coef�cient of relative risk aversion. To prove Theorem 2.6.1 we need the fol-
lowing Lemma.

Lemma 2.6.2. Assume thaty 2(s) � 0 for all s2 [0,T].

If 0 � p < 1, then, for all t2 [0,T],

E ^
P

h
e�

RT
t l (u)du

�
�
� F (t)

i
� EP

h
e�

RT
t l (u)du

�
�
� F (t)

i
, (2.6.2)

whereas if p� 0, then, for all t2 [0,T],

E ^
P

h
e�

RT
t l (u)du

�
�
� F (t)

i
� EP

h
e�

RT
t l (u)du

�
�
� F (t)

i
. (2.6.3)

Proof. See Section2.8.

Lemma 2.6.2 relates the survival probability under P to its value under
^
P and

shows that their relation depends qualitatively on the risk aversion coef�cient.
We can now prove Theorem 2.6.1.

13 This corresponds to the case where the drift of the survival bond carries a positive risk pre-
mium.

14 If the mortality rate is deterministic, then there is no longevity risk, therefore we have
y det

2 (t) = 0.
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Proof of Theorem2.6.1.

Fix s 2 ]0,T] and recall that, by Eq. (2.5.30),

Lstoch(0,s) = cL E ^
P

h
exp

�
�

1
1 � p

Z s

0
l stoch(u) du

�

� exp
�

1
2

p
(1 � p)2

Z s

0
jjq2(u)jj 2 du

� i
,

in which

cL = E ^
P

�
exp

�
�

Z s

0
h1(u)r(u)du

��
exp

�
�

Z s

0
h3(u) du

�
� 0 .

For 0 < p < 1 we �nd

Lstoch(0,s) � cL E ^
P

h
f

�
e�

Rs
0 l stoch(u) du

�i
,

in which f (u) = u
1

1� p is an increasing, strictly convex function. Hence, by
Jensen's inequality

E ^
P

h
f

�
e�

Rs
0 l stoch(u) du

�i
� f

�
E ^

P

h
e�

Rs
0 l stoch(u) du

i�
. (2.6.4)

Using Lemma 2.6.2 and the fact that f is an increasing function we conclude
that

f
�

E ^
P

h
e�

Rs
0 l stoch(u) du

i�
� f

�
EP

h
e�

Rs
0 l stoch(u) du

i�
,

in which the P-expectation represents the survival probability.

On the other hand, for the deterministic model we �nd, using the fact that
y det

2 (t) = 0,

Ldet(0,s) = cL f
�

e�
Rs

0 l det(u) du
�

,

Since, by assumption,

EP

h
e�

Rs
0 l stoch(u) du

i
= e�

Rs
0 l det(u) du ,

we conclude that Lstoch(0,s) � Ldet(0,s) for 0 < p < 1 and for all s 2 ]0,T].
Consequently,

nstoch(0) =
Z T

0
Lstoch(0,s) ds+ Y Lstoch(0,T)

�
Z T

0
Ldet(0,s) ds+ Y Ldet(0,T) = ndet(0) ,
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and the result for 0 < p < 1 follows from Eqs. ( 2.5.24) and (2.5.25).

Note that for p = 0 the inequalities above hold as equalities, henceLstoch(0,s) =
Ldet(0,s) for p = 0 and s 2 ]0,T]. If p < 0 then f is a concave increasing
function. In this case all inequalities above are reversed and we �nd that
Lstoch(0,s) � Ldet(0,s) for all s 2 ]0,T].

The demand for survival bonds in Proposition 2.5.9 has a deterministic compo-
nent which earns the risk premium and a stochastic component that represents
the hedging demand. The stochastic part X2(t)/ n(t) reduces to a deterministic
term only in the special case where B2 is constant. Due to the boundary con-
dition in Eq. ( 2.5.32) this happens only if B2 � 0. Hence we conclude that
there will not be a market price of risk function in this model which makes
the demand for longevity derivatives vanish. This means that there is no least
favourable market completion in the sense of Karatzas et al. (1991). Indeed, in
that paper it is shown that if certain assets are not available for trading, then
the optimal strategy coincides with the strategy that is optimal for a, �ctitious,
complete market where the optimal terminal wealth has minimal expected
utility (or, is `least favourable') among all possible market completions. More-
over, the optimal terminal wealth in this �ctitious completion can be replicated
almost surely using a strategy that does not invest in the illiquid assets.

2.7 conclusion

In this chapter we have formulated an optimal consumption and investment
problem with a positive stochastic mortality rate and a time-varying market
price of risk. We have derived conditions which guarantee that there is no
convex set of admissible investment strategies, or even a trivial strategy which
only invests in the bank account, which give rise to in�nite expected utility of
consumption or terminal wealth. We can characterize the optimal consump-
tion and investment strategy explicitly and show that the hedging demand for
all assets in the economy remains bounded.

In our setup we have completed the market by the introduction of an asset
which allows the investor to earn a risk premium for longevity risk. If such an
asset would not be available, the market becomes incomplete in the sense that
not all mortality-dependent terminal wealth and consumption pro�les can be
generated by the investor. A common approach for handling incompleteness
in optimal investment problems is to search for the `least favourable' market
completion, that is, the market price of risk under which it is optimal not to
invest in a non-tradeable asset such as the survival bond, see Karatzas et al.
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(1991). In our market setting no speci�cation of the market price of longevity
risk can make the survival bond redundant, as can easily be seen from our
optimal portfolio equations. This means that an investor will always bene�t
from the extension of investment opportunities that is provided by longevity-
based derivatives.

Our results show that for investors who are only moderately risk averse 15,
restrictions must be imposed on the risk premium for longevity risk to get a
well-posed problem. These restrictions depend on the level of risk aversion, on
the mean reversion speed and on the volatility of the mortality rate process.
Some care must therefore be taken if one wants to use utility indifference
pricing methods to extend classical asset pricing theory to survival bonds,
longevity swaps and other mortality-dependent �nancial products.

2.8 proofs

Proof of Lemma2.5.1.

From Lemma 2.4.2 it follows that, for i 2 f 1, 2, 3g and 0 � t � T,

E
�
exp

�
�

Z t

0
qi (u)dWi (u) �

1
2

Z t

0
jjqi (u)jj 2du

��
= 1 .

Since W1, W2 and W3 are independent we conclude that Z0 is a martingale,
and Eq. (2.5.2) de�nes by Girsanov's theorem, see Karatzas and Shreve (1991,
Thm. 3.5.1), a measure equivalent to P. Moreover, eW(t) = W(t) +

Rt
0 q(u)du is

a eP-Brownian motion.

From Itô's lemma we obtain that the product of the state price density H (t) =
Z0(t)/ b(t) and the stock price satis�es

H (t)S(t) = S(0) +
Z t

0
[sS(u) � q(u)] H (u)S(u)dW(u) . (2.8.1)

The product of the bond price and the state price density satis�es

H (t)P(t, T1) = P(0,T1) +
Z t

0
[sP(u) � q(u)] H (u)P(u, T1)dW(u) . (2.8.2)

Similarly, for the survival bond we �nd

H (t)F(t, T1) = F(0,T1) +
Z t

0
[sF(u) � q(u)] H (u)F(u, T1)dW(u) . (2.8.3)

15 in the sense that our risk aversion parameter p is larger than zero
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Observe that the processes in Eq. (2.8.1), (2.8.2) and (2.8.3) are local martingales
and can be rewritten as stochastic exponentials of the form (2.4.7). Since the
functions t 7! xi Bj (t, T1), i, j = 1, 2, and t 7! y i (t)/ xi , i = 1, 2, are bounded
and continuous, and using the independence of Wi , i = 1, 2, 3, under P, we
conclude from Lemma 2.4.2 that the products of S, P(�, T1) and F(�, T1) with
the state price density H are P-martingales. Since Z0(t) is a Radon-Nikodym
derivative by Girsanov's theorem, it follows that the b-discounted prices of
these tradeables areeP-martingales.

Proof of Lemma2.5.3.

Using the tower rule and the fact that U2(Xx,c,p (T)) is F (T)-measurable we
obtain

E [U2(Xx,c,p (T))1t > T ] = E [E [U2(Xx,c,p (T))1t > T jF (T)]]

= E [U2(Xx,c,p (T))E [1t > T jF (T)]]

= E
�
U2(Xx,c,p (T)) F(T)

�
.

Using Fubini's theorem (the integrand is nonnegative) and the fact that U1(c(t))
is F (t)-progressively measurable, we can apply the same argument to obtain

E
� Z T

0
U1(c(t)) 1t > t dt

�
= E

� Z T

0
E [U1(c(t)) 1t > t j F (t)] dt

�

= E
� Z T

0
F(t)U1(c(t))dt

�
.

Consequently,

V (x) = sup
(c,p )2A

E
� Z T^ t

0
U1(c(t))dt + U2(Xx,c,p (T))1t > T

�

= sup
(c,p )2A

E
� Z T

0
U1(c(t)) 1t > t dt + U2(Xx,c,p (T))1t > T

�

= sup
(c,p )2A

E
� Z T

0
F(t)U1(c(t))dt + F(T)U2(Xx,c,p (T))

�
.

Lemma 2.8.1. The utility functions U1(t, �) and U2, de�ned in Lemma2.5.3, satisfy
the relations

U1(s, I1(s, y)) =

8
<

:

1
p

y I1(s, y) , p 6= 0 ,

m(s) log(m(s)/ y) , p = 0 ,
(2.8.4)
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for 0 � s � T and for all y> 0, and

U2( I2(y)) =

8
<

:

1
p

y I2(y) , p 6= 0 ,

Y m(T) log(Y m(T)/ y) , p = 0 ,
(2.8.5)

for all y > 0.

Proof.

If p 6= 0 then for power utility it holds that p U1(t, x) = x ¶xU1(t, x). Take
x = I1(t, y) then p U1(t, I1(t, y)) = I1(t, y) ¶xU1(t, I1(t, y)) = y I1(t, y). The
other identities follow from similar computations.

Proof of Lemma2.5.7.

From the proof of Lemma 2.5.4 we know that the optimal consumption strat-
egy and the optimal terminal wealth are given by Eq. ( 2.5.9) and Eq. (2.5.11)
respectively. Observe that the integrand of the optimal wealth process ( 2.5.10)
is positive; hence we may apply the conditional Fubini theorem together with
Lemma 2.5.6 to obtain

X(t) =
1

H (t)
E

� Z T

t
H (u) I1(u, v(x)H (u))du + H (T) I2(v(x)H (T))

�
�
�
� F (t)

�

=
1

H (t)
v(x)

1
p� 1 L (t)m(t)

� Z T

t
L(t, u)dt + Y L(t, T)

�

=
x

H (t)
n(t)
n(0)

L (t)m(t) .

In the last step we used Eq. (2.5.17) and the fact that w(0, 1) = n(0). For the
optimal consumption process Eq. (2.5.9) we �nd, using Eq. ( 2.5.18),

c(t) = I1(t, v(x)H (t)) =
x

w(0, 1)
I1(t, H (t)) =

x
w(0, 1)

L (t)m(t)
H (t)

=
X(t)
n(t)

.

By substitution of the optimal terminal wealth ( 2.5.11) and optimal consump-
tion strategy (2.5.9) into the value function Eq. ( 2.5.14) we obtain

V (x) = v(x)
p

p� 1 E
� Z T

0
U1(t, I1(t, H (t))) dt + U2( I2(H (T)))

�
.

From Lemma 2.8.1 we have for p 6= 0 that

E [U1(t, I1(t, H (t))) ] = Y � 1 E [U2( I2(H (t))) ] = p� 1L(0,t) .
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Consequently,

V (x) =
1
p

v(x)
p

p� 1 n(0) =
1
p

�
x

w(0, 1)

� p

n(0) =
1
p

n(0)1� p xp < ¥ .

The value function for the case p = 0 is given by

V (x) = � M + n(0) log
�

x
n(0)

�
,

in which

M0 = E
� Z T

0
F(t) log

�
H (t)
F(t)

�
dt + Y F(T) log

�
H (T)

YF(T)

��
, (2.8.6)

is a constant and

log
�

H (t)
F(t)

�
= �

Z t

0
r(u) du+

Z t

0
l (u) du �

Z t

0
q(u)dW(u) �

1
2

Z t

0
jjq(u)jj 2 du .

The terms on the righthand side are bounded in expectation. To check this for

the �rst term, take
k2

1
� 2x2

1
< h̄ < 0 so that the Laplace transform E [e� h̄

Rt
0 r(u) du]

is �nite by Lemma 2.4.1 and Lemma 2.4.6. It follows that
Rt

0 r(u) du has �nite
moments of any order. The other terms can be bounded in expectation by sim-
ilar arguments. In particular, the stochastic integral over the Brownian motion
is a martingale and vanishes in expectation. Thus M < ¥ .

Lemma 2.8.2 (Leibniz' rule for Itô integrals) . For all0 < T < ¥ de�ne the process
eL(�, T) by

eL(t, T) = eL(0,T) +
Z t

0
em(u, T) du +

2

å
i= 1

Z t

0
exi (u, T)dWi (u) (2.8.7)

where W(t) = ( W1(t),W2(t)) is a Brownian motion,em is an adapted function
[0,T] � [0,T] � W ! R andex is an adapted function[0,T] � [0,T] � W ! R2.

If for i = 1, 2 ,

Z t

0

Z t

0
j em(u, s)jds du < ¥ a.s. for all t2 [0,T] , (2.8.8)

Z t

0

� exi (u, s)1u� s
	 2

du < ¥ a.s. for all t2 [0,T] and s2 [0,T] , (2.8.9)
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Z t

0

� Z T

0
exi (u, s)1u� s ds

� 2

du < ¥ a.s. for all t2 [0,T] , (2.8.10)

and

t 7!
Z T

0

� Z t

0
exi (u, s)1u� s dWi (u)

� 2

ds (2.8.11)

is almost surely continuous then, for �xed T,

d
� Z T

t
eL(t, s)ds

�
=

�
� eL(t, t) +

Z T

t
em(t, s)ds

�
dt

+
2

å
i= 1

� Z T

t
exi (t, s)ds

�
dWi (t) .

Proof.

A proof can be found in Munk and Sørensen ( 2000, Section A). The conditions
of the Lemma are taken from Heath et al. ( 1992) and are required to justify the
interchange of a stochastic integral and a Lebesgue integral.

Proof of Lemma2.5.9.

Applying Itô's lemma to the optimal wealth process in Eq. ( 2.5.24) gives

X(t)
b(t)

=
x

n(0)
L (t)
Z0(t)

m(t)n(t)

= x +
Z t

0
a0(u) du +

Z t

0

x m(u)n(u)
n(0)

d
�
L (u)Z � 1

0 (u)
�

+
Z t

0

x m(u)L (u)
n(0)Z0(u)

dn(u)

= x +
Z t

0
a1(u) du +

Z t

0

1
1 � p

X(u)
b(u)

q(u)d eW(u)

+
Z t

0

1
n(u)

X(u)
b(u)

dn(u) , (2.8.12)

for some processesa0 and a1. Notice that the last stochastic integral on the
righthand side has a diffusion component and a component of �nite varia-
tion. To determine the dynamics of the process n(t) =

RT
t L(t, u)du + Y L(t, T)
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we apply Lemma 2.8.2. First, we verify that the conditions of this lemma are
satis�ed. From Eq. ( 2.5.31) and Itô's lemma we obtain

L(t, T) = L(0,T) �
Z t

0

�
r(u)¶t B1(u, T) + l (u)¶t B2(u, T)

+ å 3
i= 1 ¶t A i (u, T)

�
L(u, T) du �

Z t

0
B1(u, T)L(u, T) dr(u)

�
Z t

0
B2(u, T)L(u, T) dl (u) +

1
2

Z t

0
B1(u, T)2dhr, r i u

+
1
2

Z t

0
B2(u, T)2dhl , l i u . (2.8.13)

Observe that Bi (�, s) is bounded, uniformly in s, for i = 1, 2 by Lemma 2.4.5.
Consequently the same holds for A i (�, s), for i = 1, 2, and hence for L(�, s).
Moreover, the paths of r are almost surely continuous, hence �nite on [0,T]. It
follows that for all t 2 [0,T] and all s 2 [0,T]

Z t

0

�
L(u, s)B1(u, s)x1

q
r(u)

	 2
du < ¥ , a.s., (2.8.14)

and, for all t 2 [0,T]
Z t

0

� Z T

0
L(u, s)B1(u, s)x1

q
r(u) ds

� 2

du < ¥ , a.s. (2.8.15)

Similarly, from the continuity of l we have, for all t 2 [0,T] and all s 2 [0,T]
Z t

0

�
L(u, s)B2(u, s)x2

q
l (u)

	 2
du < ¥ , a.s., (2.8.16)

and, for all t 2 [0,T]
Z t

0

� Z T

0
L(u, s)B2(u, s)x2

q
l (u) ds

� 2

du < ¥ , a.s. (2.8.17)

Hence conditions (2.8.9) and (2.8.10) are met. It follows from Eqs. ( 2.5.32)–
(2.5.33), Lemma 2.4.5 and Eqs. (2.4.17)–(2.4.18) that the derivatives ¶t A i (�, s),
¶t Bi (�, s), i = 1, 2, are bounded uniformly in s 2 [0,T]. Therefore, the drift
term in Eq. (2.8.13) satis�es condition ( 2.8.8). Thus we can apply Lemma 2.8.2
and conclude that, for some process a2,

d
� Z T

t
L(t, u)du

�
= a2(t) dt �

Z T

t
B1(t, u)L(t, u)du dr(t)

�
Z T

t
B2(t, u)L(t, u)du dl (t) . (2.8.18)
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For X1 and X2 as in Eq. (2.5.36), we obtain

dn(t) = d
� Z T

t
L(t, u)du + Y L(t, T)

�

= a3(t) dt � X1(t) dr(t) � X2(t) dl (t) , (2.8.19)

for a certain process a3. Substituting ( 2.8.19) into (2.8.12) we �nd, for certain
processesa4 and a5,

X(t)
b(t)

= x +
Z t

0
a4(u) du

+
Z t

0

X(u)
b(u)

�
1

1 � p

�
�

y 1(u)
x1

q
r(u)d eW1(u) �

y 2(u)
x2

q
l (u)d eW2(u)

�
y 3(u)

x3
d eW3(u)

�
�

1
n(u)

�
X1(u)dr(u) + X2(u)dl (u)

� �

= x +
Z t

0
a5(u) du �

Z t

0

X(u)
b(u)

 
1

1 � p
y 3(u)
x2

3 r

!

x3 r d eW3(u)

+
Z t

0

X(u)
b(u)

 
1

1 � p
� y 2(u)

x2
2

�
X2(u)
n(u)

!

x2

q
l (u) d eW2(u)

+
Z t

0

X(u)
b(u)

 
1

1 � p
� y 1(u)

x2
1

�
X1(u)
n(u)

!

x1

q
r(u) d eW1(u) . (2.8.20)

On the other hand, if h is the vector of fractions of wealth invested in each of
the asset classes, then from Eq. (2.2.10) we have

X(t)
b(t)

= x �
Z t

0

c(u)
b(u)

du +
Z t

0

X(u)
b(u)

h(u) S (u, T1) d eW(u) . (2.8.21)

The optimal portfolio weights are obtained when we use martingale represen-
tation to equate the diffusion terms in Eq. ( 2.8.20) and Eq. (2.8.21).

Proof of Lemma2.6.2.

From Lemma 2.4.1 we know that the survival probability, which is calculated
as an expectation under P, satis�es

EP

h
e�

RT
t l (u)du

�
�
� F (t)

i
= e� eA2(t,T)� eB2(t,T) l (t) ,

where eB2(�, T) solves
(

¶t eB2(t, T) = k2 eB2(t, T) + 1
2x2

2
eB2(t, T)2 � 1 ,

eB2(T, T) = 0 ,
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and eA2(t, T) =
RT

t m2(u) eB2(u, T) du .

Similarly, under
^
P we have

E ^
P

h
e�

RT
t l (u)du

�
�
� F (t)

i
= e� bA2(t,T)� bB2(t,T) l (t) ,

where bB2(�, T) solves
(

¶t bB2(t, T) = ^
k2(t) bB2(t, T) + 1

2x2
2

bB2(t, T)2 � 1 ,
bB2(T, T) = 0 ,

and bA2(t, T) =
RT

t m2(u) bB2(u, T) du .

Further note that bB2(t, T) � 0 and eB2(t, T) � 0 for all t 2 [0,T] due to the
negative source term and the terminal condition.

Consider �rst the case where 0 � p < 1. Sincey 2(t) � 0 by assumption, we
have

^
k2(t) = k2 +

p
1 � p

y 2(t) � k2 ,

for all t. By Lemma 2.4.3 we thus obtain that 0 � bB2(t, T) � eB2(t, T). This

implies that e� bB2(t,T)z � e� eB2(t,T)z for all z � 0. Moreover,

bA(t, T) =
Z T

t
m2(u) bB(u, T) du �

Z T

t
m2(u) eB(u, T) du = eA(t, T) ,

hence

e� bA2(t,T)� bB2(t,T)z � e� eA2(t,T)� eB2(t,T)z ,

for all z � 0.

Inequality ( 2.6.3) is obtained by similar reasoning. Note that if p � 0 then
^
k2(t) � k2 for all t, hence the direction of the inequalities are reversed.
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3 C O N V E R G E N C E O F T H E L O N G - T E R M I N T E R E S T R AT E
I N H E AT H - J A R R O W- M O RT O N M O D E L S

In this chapter we discuss the behaviour of long-term interest rates in Heath
Jarrow-Morton (HJM) models. Given a mode of convergence, the long rate
is de�ned to be the asymptotic interest rate in the limit when the expiration
date tends to in�nity, provided that this limit exists. If the interest rate is
a forward rate, then this quantity is commonly referred to as the ultimate
foward rate (UFR).

In Section 3.1, the HJM framework is introduced, which is a general interest
rate model that allows for a large range of forward rate dynamics. In Subsec-
tion 3.3.1 and 3.3.2 we review existing results on ucp and almost sure conver-
gence of long-term rates, some of which have appeared earlier in Deelstra and
Delbaen (1995), El Karoui et al. (1998), Yao (1999a) and Biagini et al. (2016), and
we present those results in a uni�ed framework. In Subsection 3.3.3 we study
the existence of the long rate as a limit in the S1 norm, which is stronger than
ucp convergence, and we provide necessary and suf�cient conditions such
that these limits exist, formulated in terms of the HJM volatility function.

3.1 the hjm framework

Consider a probability space (W, F , P) on which W = ( W1, . . . ,Wd)0 is a d-
dimensional Brownian motion, with independent components, under P. Let
p(t, T) denote the time t � 0 price of a zero-coupon bond that pays 1 unit of
currency at time T � t. The instantaneous forward rate f (t, T) is the forward
rate at time t corresponding to the time interval [T, T + d[ with d # 0, that is,

f (t, T) = lim
d#0

1
d

log
p(t, T)

p(t, T + d)
= � ¶T log p(t, T) .

Consequently, bond prices can be expressed asp(t, T) = exp(�
RT

t f (t, s)ds).
The exponential (or continuously compounded) rate is de�ned by

z(t, T) =
1

T � t

Z T

t
f (t, u) du , 0 � t � T . (3.1.1)

55
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In the Heath-Jarrow-Morton (HJM) framework the instantaneous forward rate
f (�, T), for given f (0,T) with T � 0, is assumed to satisfy

f (t, T) = f (0,T) + A(t, T) + M (t, T) , (3.1.2)

in which

t 7! A(t, T) =
Z t

0
a(u, T)du,

is a �nite variation process and

t 7! M (t, T) =
Z t

0
s(u, T)dW(u) ,

a local martingale, where s : R+ � R+ � W ! R1� d and a: R+ � R+ � W ! R
are such that, for all T > 0,

Z T

0

Z T

0
ja(s, u)j ds du< ¥ , and sup

0� s� T
jjs(s, t)jj < ¥ . (3.1.3)

We further assume that a and s are Rd-valued, progressively measurable pro-
cesses. That is, for every 0� t � T the map (s, w) 7! s(s, T, w) on [0,t] � W
and the map (s, w) 7! a(s, T, w) on [0,t] � W are measurable with respect
to the sigma algebra generated by the Cartesian product of sets in B[0,t]
and F (t), where B[0,t] denotes the Borel s-algebra of [0,t]

As a standing assumption, we impose that no arbitrage possibilities exist. We
adopt the same notion of no-arbitrage as in Hubalek et al. ( 2002). Thus, we
assume that there exists a measureQ, locally equivalent to P, such that, for
all t � 0 and h � 0, the quotient B(t)/ B(t + h) is Q-integrable where B(t) :=
exp(

Rt
0 f (s, s) ds), and such that discounted bond prices B(t) � 1p(t, T) are Q-

martingales for 0 � t � T.

Due to Eq. (3.1.3) we can write 1

d log p(t, T) = f (t, t)dt �
Z T

t
d f(t, u)du

= f (t, t)dt � dt
Z T

t
a(t, u)du � dW(t)

Z T

t
s(t, u)du

= r(t)dt � b(t, T)dt � S(t, T)dW(t) , (3.1.4)

with r(t) := f (t, t) the short rate and

b(t, T) =
Z T

t
a(t, u)du, S(t, T) =

Z T

t
s(t, u)du .

1 See Leibniz' rule for Itô integrals, Lemma 2.8.2 in Chapter 2.
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BecauseQ is locally equivalent to P, it follows from Björk ( 2004, Thm. A.52,
Prop. B.39) that there exists, for every t � 0, a martingale L such that dP/ dQ =
L(s) on F (s) for 0 � s � t. The martingale representation theorem (Karatzas
and Shreve, 1991, p. 182–184) gives us a processj , called the market price of
risk, such that dL(s) = j (s)L(s)dW(s), 0 � s � t.

The processt ! p(t, T) for t 2 [0,T] is the price of a tradeable for every T > 0
and its discounted value must thus be a martingale under Q. By Itô's lemma

dp(t, T)
p(t, T)

= d log p(t, T) + 1/ 2 dhlog p(�, T)i t

= r(t)dt � S(t, T)dW(t) �
�

b(t, T) � 1/ 2kS(t, T)k2
�

dt ,

in which jjS(t, T)jj 2 = S(t, T)S(t, T)0, and we conclude that B(t) � 1p(t, T) be-
comes aQ-martingale if and only if

� j (t)S(t, T)0= b(t, T) � 1/ 2kS(t, T)k2 ,

which gives after differentiation with respect to T the well-known HJM equa-
tion:

a(t, T) = s(t, T)
� Z T

t
s(t, u)du � j (t)

� 0

. (3.1.5)

We will discuss two well-known examples that we will need later on.

Example 3.1.1. The short rate r(t) in the Vasicek model satis�es

dr(t) = [ m� kr(t)] dt + s0 dW(t) ,

for given values r(0) 2 R and s0, k 2 R+ , m2 R. The price of a zero-coupon bond
has a representation aslog p(t, T) = D(t, T) � h(t, T)r(t) in which h and D satisfy
the Riccati equations

¶th(t, T) = kh(t, T) � 1, h(T, T) = 0 ,

¶t D(t, T) = mh(t, T) �
1
2

s2
0h2(t, T), D(T, T) = 0 .

By Itô's lemma and Fubini's theorem

d f(t, T) = d (� ¶T log p(t, T))

= [� ¶T¶t D(t, T) + ¶T¶th(t, T)r(t) + ( m� kr(t))¶Th(t, T)] dt

+ s0¶Th(t, T)dW(t)

= s2
0h(t, T)¶Th(t, T) dt + s0¶Th(t, T)dW(t)
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Solving the �rst Riccati equation thus gives the following HJM drift and diffusion
coef�cients for the Vasicek model

s(t, T) = s0 ¶Th(t, T) = s0 e� k(T� t) ,

and

a(t, T) = s(t, T)
Z T

t
s(t, u) du =

1
k

(s0 s(t, T) � s2(t, T)) .

Example 3.1.2. In the Cox-Ingersoll-Ross model the short rate r(t) with r (0) > 0
satis�es

dr(t) = [ m� kr(t)] dt + s0

q
r(t)dW(t) ,

in which k � 0 and s0 > 0. The price of a zero-coupon bond has a representation as
log p(t, T) = y (t, T) � B(t, T)r(t) in which y and B satisfy the Riccati equations

¶ty (t, T) = mB(t, T), y (T, T) = 0 ,

¶t B(t, T) = kB(t, T) +
1
2

s2
0B2(t, T) � 1, B(T, T) = 0 .

An application of Itô's lemma yields

d f(t, T) = d (� ¶T log p(t, T))

= [� ¶T¶ty (t, T) + ¶T¶t B(t, T)r(t) + ( m� kr(t))¶TB(t, T)] dt

+ s0¶TB(t, T)
q

r(t)dW(t)

= s2
0B(t, T)¶TB(t, T)r(t) dt + s0¶TB(t, T)

q
r(t)dW(t)

Solving the Riccati equations thus gives the following HJM drift and diffusion coef�-
cients for the CIR model

s(t, T) = s0¶TB(t, T)
q

r(t)

= s0g2�
k sinh(1/ 2 g(T � t)) + g cosh(1/ 2 g(T � t))

� � 2
q

r(t) ,

and

a(t, T) = s(t, T)
Z T

t
s(t, u) du =

1
2

s2
0 ¶TB2(t, T)r(t) ,

in which g = ( k2 + 2s2
0)

1
2 .
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3.2 almost sure convergence on a finite horizon

In this section we consider almost sure convergence of the instantaneous for-
ward rate f (t, T) in an HJM model to a limit f¥ 2 R on a �nite horizon. Note
that it is not natural to impose that the exponential yield z(t, T) tends to a con-
stant in �nite time due to its de�nition as an average instantaneous forward
rate.

De�nition 3.2.1. An HJM model is said to have an ultimate forward rate f¥ with
point of convergence tu 2 [0,¥ ) if f (t, t + x) = f¥ almost surely for all t� 0 and
every x� tu.

For given x > tu, De�nition 3.2.1 requires that f (t, t + x) = f¥ holds for all
t � 0, rather than for t = 0 only. Hence we achieve that having an ultimate
forward rate is not merely a property of the initial forward curve T 7! f (0,T),
but that this property is present in all future curves generated by the dynamics
of the forward rate.

Our de�nition of the ultimate forward rate (UFR) is closely related to the
one used by the European regulator EIOPA. If the 1-year forward Libor rate
Rt,T := p(t, T)/ p(t, T + 1) � 1 beyond maturity tu = 60 is equal to R� , then
we say that the ultimate forward rate in the sense of EIOPA equals R� . On the
other hand, if the UFR in the sense of De�nition 3.2.1 exists and is equal to
f¥ = log(1 + R� ), then

lim
T! ¥

log(1 + Rt,T) = lim
T! ¥

Z T+ 1

T
f (t, t + s)ds= log(1 + R� ) .

Hence, convergence of the instantaneous forward rate implies convergence of
the 1-year forward Libor rate.

The following proposition characterises the existence of the ultimate forward
rate in terms of the volatility process of an HJM model.

Proposition 3.2.2. An HJM model has ultimate forward rate f¥ with point of con-
vergence tu 2 [0,¥ ), i.e.

f (t, t + x) = f¥ a.s. for all t� 0 and every x� tu ,

if and only if

f (0,x) = f¥ , for x � tu , (3.2.1)

and

s(t, t + x) = 0 , for x > tu . (3.2.2)
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Proof.

(If)
The result follows directly by substituting Eq. ( 3.2.1) and (3.2.2) into the gen-
eral HJM forward rate dynamics. This yields that, for all x > tu,

0 = f (t, t + x) � f (0,t + x)

=
Z t

0
a(u, t + x)du +

Z t

0
s(u, t + x)0dW(u) , (3.2.3)

and s(t, t + x) = 0 implies a(t, t + x) = 0 by Eq. (3.1.5).

(Only if)
Suppose that f (t, t + x) = f¥ a.s. for all t � 0 and all x � tu. In particular, for
t = 0, we have f (0,x) = f¥ for all x � tu which implies Eq. ( 3.2.1). Taking
quadratic variations on the lefthand side and the righthand side in Eq. ( 3.2.3)
yields, for all t � 0 and all x � tu,

0 = E
� Z t

0
s2(u, t + x)du

�
.

Hence Eq. (3.2.2) is also satis�ed.

To create UFR-consistent models we can thus take any forward rate model
speci�ed in terms of its volatility term structure function s(t, T) and de�ne

f U (t, T) = f (0,T) +
Z t

0
aU (s, T)ds+

Z t

0
sU (s, T)dW(s) ,

with

sU (t, T) = s(t, T)g(T � t),

aU (t, T) = g(T � t)s(t, T)
� Z T

t
g(u � t)s(t, u)du � j (t)

�
,

where the maturity-dependent scalar function g must satisfy g(t) = 0 for
t � tu. If the UFR is required to leave bond prices unchanged for T � t � t l
then we must have g(t) = 1 for t � t l . The maturity t l is called `last liquid
point'.

We thus �nd a general formula for an UFR-consistent dynamic term structure
model with maturity-dependent interpolation:

p(t, T) = exp
�
�

Z T

t
dv

�
f (0,v) +

Z t

0
g(v � s)s(s, v)

�
dW(s)

� f (s)0ds+
Z v

s
g(u � s)s(s, u)0du ds

���
,

with g(t) = 1t< t l + g̃(t)1t2 [t l ,tu] for some scalar function g̃.



3.3 convergence on an infinite horizon 61

3.3 convergence on an infinite horizon

Contrary to the setting discussed in the previous section, in which the ultimate
forward rate was attained before a certain �nite expiration date, yield curve
extrapolation methods such as the Smith-Wilson procedure prescribed by the
European regulator EIOPA imply that the term structure approaches such a
limit asymptotically as the maturity date tends to in�nity. In this section we
discuss whether the result of Proposition 3.2.2 can be extended to HJM models
on an in�nite horizon in which the long rate converges.

3.3.1 Ucp convergence of long-term rates

In this subsection, we study convergence in ucp (uniform in probability on
compact intervals) of long-term interest rates. A sequence of processesXn is
said to converge to X in ucp if P(sups< t jXn(s) � X(s)j > #) ! 0 asn ! ¥ for
all #> 0 and all t > 0.

A variant of the following proposition, without the conditions required to en-
sure ucp convergence, �rst appeared in El Karoui et al. ( 1998) and Yao (1999a).
A more general and formal result, for HJM models on the state space S+

d of
symmetric positive semide�nite matrices, can be found in Biagini et al. ( 2016).
We will give an alternative proof here for the special case of an HJM model.
The main tool that is used in the proof is a dominated convergence theorem
for Itô integrals, see Protter (2005, Thm. 32, Chapter IV). This theorem will be
used to establish that the Itô integral M in Eq. (3.1.2) converges to zero in ucp.

Proposition 3.3.1. Let 0 � q � 1 and assume that, eventually2 in T,

jj j (t)jj 2 + jjS(t, T)jj 2 � G2(t) Tq , 0 � t � T , (3.3.1)

almost surely, in which G is a process satisfyingE
Rn

0 G2(s) ds< ¥ for every n> 0.
Then the long zero coupon rate satis�eslim T! ¥ z(t, T) = z¥ (t) in ucp, with

z¥ (t) = z¥ (0) +
1
2

Z t

0
d(s) ds, (3.3.2)

if

z¥ (0) := lim
T! ¥

z(0,T) and d(s) := lim
T! ¥

T� 1jjS(s, T)jj 2 ,

2 We say that a property holds eventuallyin T if there exists a �nite constant T0 such that the
property holds for all T � T0.
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exist almost surely. Moreover, if Eq. (3.3.1) holds with q< 1 then d(t) = 0 for all
t � 0.

Proof.

Using the HJM drift condition Eq. ( 3.1.5) we obtain from Eq. ( 3.1.4) that

log p(t, T) = log p(0,T) +
Z t

0

�
r(s) �

1
2

jjS(s, T)jj 2 + j (s)S(s, T)0
�

ds

�
Z t

0
S(s, T)dW(s) ,

in which r(s) = f (s, s) denotes the short rate, while j (s)S(s, T)0 is commonly
referred to as the term premium. Since z(t, T) = � 1

T� t log p(t, T) it follows
that

z(t, T) =
T

T � t
z(0,T) �

1
T � t

Z t

0

�
r(s) �

1
2

jjS(s, T)jj 2 + j (s)S(s, T)0
�

ds

+
1

T � t

Z t

0
S(s, T) dW(s) . (3.3.3)

By Eq. (3.3.1) we have that, for suf�ciently large T > 0,

T� 1jjS(t, T)jj 2 � G2(t) ,

almost surely, and due to the assumptions of the proposition, G satis�es
Z t

0
G2(s) ds < ¥ .

It follows from the dominated convergence theorem that, almost surely,

0 = lim
T! ¥

Z t

0

�
�
�
�
jjS(s, T)jj 2

T
� d(s)

�
�
�
� ds

= lim
T! ¥

Z t

0

�
�
�
�
jjS(s, T)jj 2

T � t
�

T
T � t

d(s)
�
�
�
� ds.

By the triangle inequality
�
�
�
�
jjS(s, T)jj 2

T � t
� d(s)

�
�
�
� �

�
�
�
�
jjS(s, T)jj 2

T � t
�

T
T � t

d(s)
�
�
�
� +

�
�
�
�

T
T � t

d(s) � d(s)
�
�
�
� .

Consequently,

lim
T! ¥

Z t

0

�
�
�
�
jjS(s, T)jj 2

T � t
� d(s)

�
�
�
� ds = 0 , a.s. (3.3.4)
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However, what we need is ucp convergence. Observe that

sup
w< t

�
�
�
�

Z w

0

�
jjS(s, T)jj 2

T � t
� d(s)

�
ds

�
�
�
� � sup

w< t

Z w

0

�
�
�
�
jjS(s, T)jj 2

T � t
� d(s)

�
�
�
� ds

=
Z t

0

�
�
�
�
jjS(s, T)jj 2

T � t
� d(s)

�
�
�
� ds .

Since the right hand side tends to zero almost surely for T ! ¥ we also have
convergence in probability, that is, for all t > 0 and every #> 0,

P
�

sup
w< t

�
�
�
�

Z w

0

�
jjS(s, T)jj 2

T � t
� d(s)

�
ds

�
�
�
� > #

�
! 0 as T ! ¥ .

From the Cauchy-Schwarz inequality and Eq. ( 3.3.1) it follows that, for suf�-
ciently large T > 0,

T� 1j j (t)S(t, T)0j � T� 1jj j (t)jj jj S(t, T)jj � G2(t) ,

hence by the dominated convergence theorem, almost surely,

lim
T! ¥

1
T � t

Z t

0
mP(s, T) ds = lim

T! ¥

1
T � t

Z t

0
r(s) ds

+
Z t

0
lim

T! ¥

1
T � t

j (s)S(s, T)0ds= 0. (3.3.5)

The last step follows since lim T! ¥ T� 1jS(t, T)j = 0 and neither j (t) nor r(t)
depends on T. We have thus established ucp convergence of the �nite variation
part of the exponential yield dynamics. It remains to show that the Itô integral
also converges.

Fix j 2 f 1, . . . ,dg. By Eq. (3.3.1), for T > 0, eventually in T,

T� 1jSj (t, T)j � T� 1
2 jSj (t, T)j � T� 1

2 jjS(t, T)jj � G(t) ,

in which E
Rn

0 G2(s) ds< ¥ for all n > 0. Moreover, for all t � 0,

lim
T! ¥

T� 1jSj (t, T)j � lim
T! ¥

T� 1
2 G(t) = 0.

By the dominated convergence theorem for stochastic integrals, see Theo-
rem 32 in Protter ( 2005, Chapter IV), it follows that, for all t � 0 and every
#> 0,

P
�

sup
w< t

�
�
�
�
1
T

Z w

0
Sj (s, T) dWj (s)

�
�
�
� > #

�
! 0 as T ! ¥ .
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Since this holds for every j 2 f 1, . . . ,dg we �nd, by Minkowski's inequality,
that the diffusion term in Eq. ( 3.3.3) vanishes in ucp.

Finally, if Eq. ( 3.3.1) holds with q < 1 then d(t) = lim T! ¥ T� 1jjS(t, T)jj 2 �
lim T! ¥ G2(t)Tq� 1 = 0.

Proposition 3.3.1 states that if the squared Euclidean norm jjS(t, T)jj 2 of the
bond volatility is bounded from above by G2(t)Tq for some q 2 [0, 1[, in which
G is a suitably integrable function, then the exponential yield converges to a
constant long rate in ucp.3 On the other hand, if jjS(t, T)jj 2 � G2(t)Tq for
some q > 1 and

Rt
0 G2(s) ds> 0 then

lim
T! ¥

1
T � t

Z t

0

1
2

jjS(s, T)jj 2 ds �
1
2

lim
T! ¥

Tq

T � t

Z t

0
G2(s) ds = ¥ .

Hence in this case the exponential long rate, i.e. the limit T ! ¥ in Eq. (3.3.3),
is in�nite. In the intermediate situation, where jjS(t, T)jj asymptotically be-
haves as

p
T, the long rate can be a �nite-valued non-constant process, pro-

vided that the conditions of Proposition 3.3.1 are satis�ed.

Since d(t) = lim T! ¥ T� 1jjS(t, T)jj 2 � 0 we obtain that the exponential rate
is nondecreasing. This conclusion is similar to that of the Dybvig-Ingersoll-
Ross theorem, see Theorem3.3.7 in Section 3.3.2, and this has been noted
earlier in Yao (1999a) and Biagini et al. (2016). We stress that if z(t, T) tends
to z¥ (t) in ucp, then we cannot conclude, based on Lemma 3.3.1, that z¥ (t)
is nondecreasing unless a bounding process G is given which satis�es the
properties stated in the lemma. Summarising, we have the following corollary.

Corollary 3.3.2. Under the conditions of Proposition3.3.1, the exponential long rate
z¥ is nondecreasing.

In EIOPA ( 2016) the European insurance regulator invited stakeholders to dis-
cuss their proposal for the estimation of the ultimate forward rate for insurers.
In this consultation paper it is proposed to exclude the term premium from
the UFR estimate. The following remark shows that this is consistent with long
term interest rate behaviour for HJM models.

Remark 3.3.3. It follows from Eq. (3.3.5) in the proof of Proposition3.3.1 that the
term premium j (�)S(�, T)0, i.e. the premium for the risk of holding �xed income
investments, disappears from the dynamics of the long zero coupon rate. A related
observation was made in Yao (1999a, Remark3.1).

3 In particular, notice that if jjS(t, T)jj 2 2 O (( T � t)q) as T ! ¥ for some 0 � q � 1, then the
conditions of Proposition 3.3.1 are satis�ed since (T � t)q � Tq for q � 0 and 0 � t � T. Here,
f (x) 2 O (g(x)) as x ! ¥ means that eventually j f (x)j � Cjg(x)j.
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The next lemma shows that Corollary 3.3.2 and Remark 3.3.3 also hold for the
long instantaneous forward rate.

Lemma 3.3.4. Assume that the instantaneous forward rate f(t, T) and the long in-
stantaneous forward rate f¥ (t) are continuous in both t and T. If f(�, T) ! f¥ in
ucp as T! ¥ , then also z(�, T) ! f¥ in ucp as T! ¥ .

Proof. See Section3.4.

We discuss two examples to illustrate Proposition 3.3.1.

Example 3.3.5. We show that the Vasicek model from Example3.1.1 satis�es the
conditions of Proposition3.3.1. The volatility of the bond price saties�esS(t, T) =
RT

t s(t, u) du = s0
k (1 � e� k(T� t) ). Consequently, T�

1
2 jS(t, T)j = s0

k T� 1
2 (1 �

e� k(T� t) ). Observe thatlim T! ¥ T� 1
2 jS(t, T)j = 0. Also, lim T! t T� 1

2 jS(t, T)j = 0

for all t � 0. Therefore T�
1
2 jS(t, T)j can be bounded by a function G(t) which is

locally square integrable.

Example 3.3.6. In this example, we show that the Cox-Ingersoll-Ross model from Ex-
ample3.1.2 satis�es the conditions of Proposition3.3.1. The volatility of the bond price

satis�esS(t, T) =
RT

t s(t, u) du = s0B(t, T)
p

r(t). Consequently, T�
1
2 jS(t, T)j =

s0 T� 1
2 B(t, T)

p
r(t). The function B(t, T) is bounded by a constant independent of t

and T, hencelim T! ¥ T� 1
2 jS(t, T)j = 0. Moreover,lim T! t T� 1

2 jS(t, T)j = 0 since

B(t, t) = 0. Therefore T�
1
2 jS(t, T)j can be bounded by a function G(t) which satis�es

the square integrability condition of Proposition3.3.1.

3.3.2 Almost sure convergence of long-term rates

This section is concerned with almost sure convergence of long-term rates. The
long instantaneous forward rate is de�ned by f¥ (t) = lim x! ¥ � ¶x log p(t, t +
x), whenever the limit exists, while the exponential long rate is given by
z¥ (t) = lim x! ¥ � x� 1 log p(t, t + x), provided that the limit exists. Our mo-
tivation to study this type of convergence stems from the following theorem,
which gives an important implication for the dynamics of the long rate, if such
rate exists as an almost sure limit.

Theorem 3.3.7 (Dybvig-Ingersoll-Ross) . If z¥ (t) and z¥ (s) exist almost surely for
0 � t � s, then the exponential long rate z¥ is nondecreasing almost surely.

Proof. See Theorem3.1 in Hubalek et al. ( 2002).



66 convergence of the long -term interest rate in hjm models

The Dybvig-Ingersoll-Ross theorem states that the exponential long rate (if
it exists) must be a nondecreasing process. The following lemma shows that
Theorem 3.3.7 also holds for the long instantaneous forward rate.

Lemma 3.3.8. If the long instantaneous forward rate exists almost surely for some
t � 0, then the exponential long rate also exists and f¥ (t) = z¥ (t).

Proof. For all w 2 W such that f¥ (t) = c for some constant c 6= 0 we have by
l'Hôpital's rule that

z¥ (t) = lim
T! ¥

RT
t f (t, u) du

T � t
= lim

T! ¥

¶T
RT

t f (t, u) du

¶T(T � t)
= lim

T! ¥
f (t, T) = f¥ (t) .

For w 2 W such that f¥ (t) = 0 it also holds that z¥ (t) = 0.

The converse of Lemma 3.3.8 does not hold; indeed, a counterexample is ob-
tained by taking f (t, T) = 1 + sin(T).

The following proposition provides suf�cient conditions such that the term
structure almost surely converges to an exponential long rate. In addition to
the conditions imposed in Proposition 3.3.1, we require that the mean of the
squared bond volatility is of order Tq for some 0 � q < 1. Notice that these
conditions are thus too strong to allow non-constant behaviour of the long
rate, because in that case we would need the result to hold for q = 1.

Proposition 3.3.9. Suppose that the conditions of Proposition3.3.1 hold. Further,
assume that there exist constants q2 [0, 1[ and C � 0 such that, given any �xed
t � 0, eventually4 in T,

E jjS(t, T)jj 2 � C Tq . (3.3.6)

Thenlim T! ¥ z(t, T) = z¥ (0) almost surely for every t� 0.

Proof.

Fix t � 0 and assume that Eq. (3.3.6) holds for all T � T0 for some T0 > t + 1.
Consider the estimate

¥

å
u= T0

E
� Z t

0

jjS(s, u)jj 2

(u � t)2 ds
�

�
Z ¥

T0� 1

Z t

0

Cuq

(u � t)2 ds du =
Z ¥

T0� 1

Ctuq

(u � t)2 du.

Since
R¥

T0� 1 uq� 2 du < ¥ , for 0 � q < 1, it follows from the limit comparison
test that the integral on the righthand side is �nite. Itô isometry yields that,
for every t � 0,

¥

å
u= T0

E

�
�
�
�

Z t

0

1
u � t

S(s, u)dW(s)
�
�
�
�

2

=
¥

å
u= T0

E
� Z t

0

jjS(s, u)jj 2

(u � t)2 ds
�

< ¥ .

4 See footnote2.
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Applying Fubini's theorem gives

E

"
¥

å
u= T0

�
�
�
�

Z t

0

1
u � t

S(s, u)dW(s)
�
�
�
�

2
#

< ¥ .

Hence, almost surely,

¥

å
u= T0

�
�
�
�

Z t

0

1
u � t

S(s, u)dW(s)
�
�
�
�

2

< ¥ .

Since the sum converges, the summand must almost surely vanish in the limit,
i.e.

lim
u! ¥

Z t

0

1
u � t

S(s, u)dW(s) = 0 a.s.

By the same arguments as in the proof of Proposition 3.3.1, see Eq. (3.3.4), the
�nite variation part of the exponential yield process in Eq. ( 3.3.3) converges
almost surely with d(t) = 0 for all t � 0.

Based on Proposition 3.3.9 it is easy to prove almost sure convergence of long-
term rates in the Vasicek and CIR models as we will show in Examples 3.3.10
and 3.3.11. Related results are presented in Deelstra and Delbaen (1995). The
analysis in that paper focuses on the almost sure convergence of the long-
term averaged short rate, which is modelled by an extended CIR process, and
convergence of the Itô integral is established based on Kronecker's lemma.
Zhao (2009) and Bao and Yuan (2013) have further extended these results to
two-dimensional CIR processes with jumps.

Example 3.3.10. In case of the Vasicek model, the bond volatilityS(t, T) = s0/ k (1 �
e� k(T� t) ) is deterministic and bounded. It follows from Proposition3.3.9 that the
exponential long rate in the Vasicek short rate model is constant.

Example 3.3.11. For the CIR model it holds thatS(t, T) = s0B(t, T)
p

r(t), hence

E jjS(t, T)jj 2 = s2
0B(t, T)2E jr(t)j ,

SinceE jr(0)j = r(0) and lim t! ¥ E jr(t)j = m/ k, the righthand side is bounded
uniformly in t and T. It follows from Proposition3.3.9 that the exponential long rate
in the CIR short rate model is constant.

3.3.3 S1 convergence of long-term rates

In Section 3.2 we provided a characterisation of HJM models for which the
long rate exists as an (almost sure) limit which is already attained for a �nite
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maturity. In this section our objective is to extend this result to the case of
an in�nite horizon. In addition to the suf�cient conditions discussed in Sec-
tions 3.3.1 and 3.3.2 for ucp and almost sure convergence, we thus now also
seek to formulate necessary conditions for convergence to a long rate. This
raises the question which type of convergence could give us such a result.

In the current section we consider uniform convergence in L1, which for semi-
martingales is commonly referred to as S1 convergence. Given an adapted
processX, the S1 norm is de�ned by, see Protter ( 2005, Section V.2),

jj X jj S1 = jj X � jj L1 , X � = sup
t � 0

jX(t)j .

The L1 norm in this chapter is always with respect to the probability mea-
sure P. Convergence in probability is weaker than convergence in L1(P), and
uniform convergence on compacts, discussed in Subsection 3.3.1, is weaker
than uniform convergence on [0,¥ [. Therefore, convergence with respect to S1

is stronger than ucp convergence.

To formulate our results, we must also introduce the H 1 norm for semimartin-
gales. For a �nite variation process Â this norm is, see Protter (2005),

jj Â jj H 1 = E
� Z ¥

0
jdÂ(s)j

�
,

in which
R¥

0 jdÂ(s)j denotes the �rst order variation 5 of Â on [0,¥ [, while for
a local martingale M̂ it holds that

jj M̂ jj H 1 = E
�
[M̂ , M̂ ]

1
2
¥

�
,

where [�, �]¥ denotes the quadratic covariation on the interval [0,¥ [. For gen-
eral semimartingales, the H 1 norm is de�ned as an in�mum of such expres-
sions over all possible decompositions, but we will not need such generality in
our context, since the instantaneous forward rate process (3.1.2) is a so called
special semimartingale which has a unique decomposition 6.

The following result is adapted from Barlow and Protter ( 1990). This lemma
will allow us to characterise the existence of a, possibly non-constant, long rate
in HJM models in terms of the drift and volatility function of the instantaneous
forward rate process.

5 The �rst-order variation of a function f : [a, b] ! R is de�ned by sup P å nP � 1
j= 1 j f (xj+ 1) � f (xj )j,

where the supremum is taken over all partitions P = f a = x1, x2, . . . ,xnP = bg.
6 A semimartingale X with decomposition X(t) = X(0) + A(t) + M (t) is said to be special if

A(0) = M (0) = 0 and A is predictable. The decomposition of a special semimartingale is
unique, see Protter (2005, Chapter III, Thm. 30).
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Lemma 3.3.12. Let f X(t, T)gT� 0 be a family of special semimartingales with canon-
ical decomposition X(t, T) = X(0,T) + A(t, T) + M (t, T), satisfying, for some con-
stant K,

jj A(�, T)jj H 1 � K , for all T � 0 . (3.3.7)

If the procesŝX satis�es

lim
T! ¥

jj X(�, T) � X̂ jj S1 = 0 , (3.3.8)

and its canonical decompostion isX̂(t) = X̂(0) + Â(t) then

lim
T! ¥

jj A(�, T) � Â jj S1 = 0 , (3.3.9)

and

lim
T! ¥

jj M (�, T)jj H 1 = 0 , (3.3.10)

as T ! ¥ . Conversely, if Eqs. (3.3.9) and (3.3.10) are satis�ed, then Eq. (3.3.8) holds
with X̂(t) = X̂(0) + Â(t).

Proof. The proof is an application of Corollary 2 in Barlow and Protter ( 1990),
for details see Section3.4.

In the subsequent analysis we do not impose convergence of the instantaneous
forward rate process f (t, T) uniformly for t 2 [0,T], because this would imply
that the future short rate f (T, T) and forward rates at longer times to maturity
must converge to the same limiting process. Instead, in Proposition 3.3.13, we
exclude forward rates with short maturities.

To achieve this, we apply Lemma 3.3.12 to a restriction of the family of forward
rate processesf f (�, T)gT� 0 to the domain f (t, T) j t � h(T)g, in which h is a
continuous bijection from [0,¥ [ onto itself satisfying h(t) < t. Notice that
h(t) = t would yield the triangular subset of R2 that commonly supports
the instantaneous forward rate. For �xed t � 0, we thus retain the behaviour
of f (t, T) for large T. But for values of t that are close to T, we do not require
convergence of the forward rate.

Without loss of generality we take j = 0. Indeed, if the S1 limit exists, then
this implies convergence to the same long rate in ucp for every �xed t � 0,
and we know that the long rate, as a ucp limit, does not depend on the market
price of risk by Remark 3.3.3 and Lemma 3.3.4.
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Proposition 3.3.13. Let f¥ be a �nite variation process satisfying f¥ (t) = f¥ (0) +
A¥ (t) with A ¥ (0) = 0, and suppose that

E
� Z ¥

0
jd f¥ (s)j

�
< ¥ . (3.3.11)

Consider the family of instantaneous forward rate processesf f (�, T)gT� 0 with canon-
ical decomposition given by Eq. (3.1.2) for every �xed T � 0. Let h be a continuous
bijection from[0,¥ [ onto itself satisfying h(s) < s, and asssume that, for some con-
stant K,

E
� Z h(T)

0
js(s, T)S(s, T)0j ds

�
� K , for all T � 0 . (3.3.12)

Then

lim
T! ¥

E
�

sup
0� t � h(T)

�
� f (t, T) � f¥ (t)

�
� �

= 0 , (3.3.13)

if and only if

lim
T! ¥

E
�

sup
0� t � h(T)

�
� A(t, T) � A¥ (t)

�
� �

= 0 , (3.3.14)

and

lim
T! ¥

E

2

4
� Z h(T)

0
jjs(s, T)jj 2 ds

� 1
2

3

5 = 0 . (3.3.15)

In particular, if s � 0 and A¥ (t) = 0 for t � 0, then condition (3.3.14) is equivalent
to

lim
T! ¥

E
� Z h(T)

0
s(s, T)S(s, T)0ds

�
= 0 . (3.3.16)

Proof. The proof follows by applying Lemma 3.3.12 to the family of semi-
martingales

ef (t, T) = f (t ^ h(T), T) + 1t> h(T) ( f¥ (t) � f¥ (h(T))) , t � 0 ,

indexed by T � 0. See Section3.4 for details.

If the long rate is a nondecreasing process, and its mean is bounded uniformly
in t � 0, then condition ( 3.3.11) holds. Indeed, in this case,

E
Z ¥

0
jd f¥ (s)j = lim

t! ¥
E [ f¥ (t)] � f¥ (0) < ¥ .
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It is shown in El Karoui et al. ( 1998) and Biagini et al. (2016) that the long
rate converges in ucp provided that the HJM volatility function s(t, T) is even-
tually bounded by a constant multiple of 1/

p
T � t for suf�ciently large T. In

Corollary 3.3.15 we will provide a similar statement for S1 convergence. No-
tice that Proposition 3.3.13 depends on the choice of the function h. To estab-
lish convergence it is suf�cient to �nd an h for which the conditions of this
proposition are satis�ed, whereas to rule out convergence we must show that
they are violated for any h. Therefore, we �rst need the following lemma.

Lemma 3.3.14. Let H denote the set of continuous bijections from[0,¥ [ onto itself
that satisfy h(t) < t for all t � 0. Then

1. If a � 1 thenlim sup T! ¥ Ta � (T � h(T)) a = ¥ for all h 2 H ;

2. If a < 1 thenlim T! ¥ Ta � (T � h(T)) a = 0 for some h2 H .

Proof. See Section3.4.

The next corollary states that, if the HJM volatility coef�cient is bounded from
above by a deterministic function of time to maturity which falls off suf�-
ciently fast, then the long rate is constant.

Corollary 3.3.15. If for some C� 0 and r 2 ]� 1, � 1/ 2[ ,

js(t, T)j � C(T � t)r ,

then the instantaneous forward rate in the corresponding HJM model converges, inS1,
to a constant long rate.

Proof. Let r 2 ]� 1, � 1/ 2[, then by Lemma 3.3.14 there exists an h 2 H such
that lim T! ¥ T2+ 2r � (T � h(T)) 2+ 2r = 0. Hence

lim
T! ¥

Z h(T)

0
s2(s, T) ds � C2 lim

T! ¥

T1+ 2r � (T � h(T)) 1+ 2r

1 + 2r
= 0 ,

and

lim
T! ¥

Z h(T)

0
s(s, T)S(s, T) ds � C2 lim

T! ¥

T2+ 2r � (T � h(T)) 2+ 2r

2(1 + r)2 = 0 .

The result follows by Proposition 3.3.13.

From Lemma 3.3.14 and the proof of Corollary 3.3.15 it is also clear that if
s(t, T) � C(T � t)r for some C > 0 and r 2 [� 1/ 2, 0], then condition ( 3.3.12)
of Proposition 3.3.13 is not satis�ed regardless of the choice of h. Hence, in
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contrast to Proposition 3.3.1 on ucp convergence7, the previous corollary does
not give us information about the case where r = � 1/ 2. In Example 3.3.18 we
will show that it is nevertheless possible for the instantaneous forward rate to
converge in S1 to a non-constant long rate.

The next examples serve to illustrate that the Vasicek and Cox-Ingersoll-Ross
short rate models converge in S1 to a constant long rate, which is in line
with our �ndings in previous sections for ucp and almost sure convergence.
Example 3.3.17 shows that the exclusion of short maturities is essential.

Example 3.3.16. Consider the Vasicek short rate model from Example3.1.1. For every
t > 0,

a(t, T) = s2
0 e� k(T� t)

Z T

t
e� k(u� t) du =

s2
0
k

e� k(T� t) [1 � e� k(T� t) ] .

It follows that, for all t> 0,

E
Z t

0
a(u, T) du =

1
2

s2
0k� 2e� 2kT(ekt � 1)(2ekT � ekt � 1) .

Take h(t) = #t, for some0 < #< 1, then the lefthand side of Eq. (3.3.12) equals

E
Z #T

0
a(u, T) du =

1
2

k� 2s2
0 (2e� k(1� #)T � e� 2k(1� #)T � 2e� kT + e� 2kT),

which tends to0 as T ! ¥ so Eq. (3.3.14) is satis�ed for A¥ = 0. Similarly, since

Z #T

0
s2(s) ds =

1
2

k� 1s2
0 (e� 2k(1� #)T � e� 2kT) ,

it follows that Eq. (3.3.15) is satis�ed:

E

" � Z #T

0
s2(s, T) ds

� 1
2
#

=
1
2

p
2s0k� 1/ 2

�
e� 2k(1� #)T � e� 2kT

� 1/ 2

,

because the right hand side vanishes as T! ¥ . Eq. (3.3.11) is trivially satis�ed for
A¥ = 0. Hence, we conclude that the instantaneous forward rate in the Vasicek model
converges to a constant.

7 Notice that, due to S(t, T) =
RT

t s(s, T) ds, the choice r = � 1/ 2 in Corollary 3.3.15 correponds
to q = 1 in Proposition 3.3.1.
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Example 3.3.17. Consider the CIR short rate model from Example3.1.2 and observe
that we have the following almost sure bound on the HJM diffusion coef�cient

0 � s(t, T) = s0g2
q

r(t)(k sinh(1/ 2 g(T � t)) + g cosh(1/ 2 g(T � t))) � 2

� s0

q
r(t) cosh� 2(1/ 2 g(T � t)) � 4s0

q
r(t) e� g(T� t) .

We thus �nd that s(t, T) is bounded by4
p

r(t) times the volatility function of the
Vasicek model. From here on, the computations are therefore similar to those in Exam-
ple3.3.16.

Set h(t) = #t, for some0 < # < 1, then the lefthand side of Eq. (3.3.12) admits the
following almost sure bound:

E
Z #T

0
a(u, T) du � 8g � 2s2

0
�
2e� 2g(1� #)T � e� 2g(1� #)T

� 2e� gT + e� 2gT �
sup
s� #T

E jr(s)j .

The righthand side tends to0 as T ! ¥ so Eq. (3.3.14) is satis�ed for A¥ = 0.
Similarly, since

E
Z #T

0
s2(s) ds � 8g � 1s2

0(e� 2g(1� #)T � e� 2gT) sup
s� #T

E jr(s)j ,

it follows from Jensen's inequality that Eq. (3.3.15) is satis�ed:

E

" � Z #T

0
s2(s, T) ds

� 1
2
#

�
�

E
� Z #T

0
s2(s, T) ds

�� 1
2

=

 

8g � 1 s2
0 (e� 2g(1� #)T � e� 2gT) sup

s� #T
E jr(s)j

! 1
2

,

because the right hand side vanishes as T! ¥ . Eq. (3.3.11) is trivially satis�ed if
A¥ = 0. We thus conclude that the instantaneous forward rate in the CIR model
converges inS1 to a constant.

The exclusion of short maturities, enforced by taking#< 1, cannot be omitted for the
Cox-Ingersoll-Ross model. To see this, consider the estimate

g cosh(1/ 2g(T � t)) + k sinh(1/ 2g(T � t)) � (g + k) cosh(1/ 2g(T � t))

� (g + k)e1/ 2g(T� t) .
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We thus have the following lower bound for the Cox-Ingersoll-Ross forward rate
volatility

s(t, T) � s0 g2(g + k) � 2 e� g(T� t)
q

r(t) .

Consequently,

a(t, T) = s(t, T)
Z T

t
s(t, u) du � s2

0 g3 (g + k) � 4 e� g(T� t) [eg(T� t) � 1] r(t) .

Using Fubini we obtain

E
Z T

0
a(u, T) du �

1
2

s2
0 g2 (g + k) � 4(1 � e� gT)2 inf

s< T
E jr(s)j .

The righthand side tends to12s2
0 g2 (g + k) � 4 inf s> 0 E jr(s)j almost surely as T!

¥ . This limit is strictly positive if r(0) > 0, so (3.3.16) is not satis�ed for h(T) = T.

In the following example we construct an HJM model in which the term struc-
ture converges in S1 to a non-deterministic and non-constant long rate.

Example 3.3.18. Let the HJM volatility function be given by

s(t, T) =
1
2

p
2

8
<

:
(T � t) � 1/ 2 z(t)1/ 4, if 0 � t < T,

0 , otherwise,
(3.3.17)

in which z(t) = 1 + 2
p

2
Rt

0 z(s) dW(s) is a geometric Brownian motion.

From the HJM drift condition it follows thata(t, T) = z(t)1/ 2, for 0 � t < T, and
zero otherwise. The semimartingale decomposition for the instantaneous forward rate
thus satis�es

M (t, T) =
Z t

0

z(s)1/ 4

(T � s)1/ 2
dW(s) , A(t, T) =

Z t

0
z(s)1/ 2 ds .

Set h(t) = #t, for some0 < # < 1. Since z(t)1/ 2 is a supermartingale with exponen-
tially decaying mean we �nd,

E
� Z #T

0
ja(s, T)j ds

�
=

Z #T

0
E jz(s)1/ 2j ds =

Z #T

0
e� s ds = 1 � e� #T � 1 .

De�ne f¥ (t) = f¥ (0) + A¥ (t) with A ¥ (t) =
Rt

0 z(s)1/ 2 ds. This process satis�es

E
Z ¥

0
jd f¥ (s)j = E

Z ¥

0
z(s)1/ 2 ds = 1 .
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For T > 1/ # we �nd, using Jensen's inequality and Fubini's theorem,

E

" � Z #T

0
js(s, T)j2 ds

� 1/ 2
#

�
�

E
� Z #T

0
js(s, T)j2 ds

�� 1/ 2

=

 
1
2

E

" Z #T

0

z(s)1/ 2

T � s
ds

#! 1/ 2

=
�

1
2

Z #T

0

e� s

T � s
ds

� 1/ 2

�
�

1
2(1 � #)T

Z #T

0
e� s ds

� 1/ 2

=
�

1 � e� #T

2(1 � #)T

� 1/ 2

.

The right-hand side vanishes as T! ¥ . Finally, A(t, T) � A¥ (t) = 0 for every T�
0. Hencesupt< #T j f (t, T) � f¥ (t)j converges to zero in mean by Proposition3.3.13
with h(t) = #t for any 0 < #< 1.

If we had taken s(t, T) = 1
2

p
2 (T � t) � 1/ 2 z(t)1/ 2 in Example 3.3.18, then the

no-arbitrage drift coef�cient a(t, T) = z(t) would be a geometric Brownian
motion. In this case condition ( 3.3.11) of Proposition 3.3.13, which states that
the long rate should be �nite in expectation, does not hold.

For completeness, we note that the above analysis can also be applied to the
exponential yield z(t, T). Using Itô's lemma one can show that z(t, T) has the
semimartingale decomposition z(t, T) = z(0,T) + A(t, T) + M (t, T) for t < T
in which

A(t, T) =
Z t

0

1
T � s

�
� r(s) +

1
2

jjS(s, T)jj 2 + z(s, T)
�

ds, (3.3.18)

while

M (t, T) =
Z t

0

1
T � s

S(s, T) dW(s) , (3.3.19)

and where we assumed as before that j = 0.

Proposition 3.3.19. Let z¥ be a �nite variation process satisfying z¥ (t) = z¥ (0) +
A¥ (t) with A ¥ (0) = 0, and suppose that

E
� Z ¥

0
jdz¥ (s)j

�
< ¥ . (3.3.20)

Consider the family of zero coupon yield processesf z(�, T)gT� 0 with canonical de-
composition given by Eqs. (3.3.18) and (3.3.19) for every �xed T � 0. Let h be a
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continuous bijection from[0,¥ [ onto itself satisfying h(s) < s, and asssume that, for
some constant K,

E
� Z h(T)

0
jdA(s, T)j

�
� K , for all T � 0 . (3.3.21)

Then

lim
T! ¥

E
�

sup
0� t � h(T)

�
�z(t, T) � z¥ (t)

�
� �

= 0 , (3.3.22)

if and only if

lim
T! ¥

E
�

sup
0� t � h(T)

�
� A(t, T) � A¥ (t)

�
� �

= 0 , (3.3.23)

and

lim
T! ¥

E

2

4
� Z h(T)

0

1
(T � s)2 jjS(s, T)jj 2 ds

� 1
2

3

5 = 0 , (3.3.24)

with A (t, T) as de�ned in Eq. (3.3.18).

Proof. Apply Lemma 3.3.12 to the family of (continuous) semimartingales

ez(t, T) = z(t ^ h(T), T) + 1t> h(T) (z¥ (t) � z¥ (h(T))) , t � 0 ,

indexed by T � 0.

3.4 proofs

Proof of Lemma3.3.4.

For 0 � s � t < T consider the estimate

jz(s, T) � f¥ (s)j =
�
�
�
�

1
T � s

Z T

s
f (s, u) du � f¥ (s)

�
�
�
�

�
1

T � s

Z T

s
j f (s, u) � f¥ (s)j du

=
1

T � s

( Z p
T

s
j f (s, u) � f¥ (s)j du +

Z T
p

T
j f (s, u) � f¥ (s)j du

)

�

p
T

T � t
sup

u�
p

T

j f (s, u) � f¥ (s)j +
T

T � t
sup

p
T� u� T

j f (s, u) � f¥ (s)j .
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Fix #> 0 and t � 0. From our previous estimate we obtain

P
�

sup
s< t

jz(s, T) � f¥ (s)j > #
�

� P

 p
T

T � t
sup
s< t

sup
u�

p
T

j f (s, u) � f¥ (s)j

+
T

T � t
sup
s< t

sup
p

T� u� T

j f (s, u) � f¥ (s)j > #

!

� P

 p
T

T � t
sup
s< t

sup
u�

p
T

j f (s, u) � f¥ (s)j >
#
2

!

+ P

 
T

T � t
sup
s< t

sup
p

T� u� T

j f (s, u) � f¥ (s)j >
#
2

!

. (3.4.1)

By the extreme value theorem

Kt,T := argmax(s,u)2 [0,t]� [0,
p

T] j f (s, u) � f¥ (s)j ,

is nonempty and compact due to the continuity of f and f¥ . Hence, for all
0 � t � T, we can choose

v(t, T) 2 argmax(h,r )2Kt,T
r ,

that is, we take v(t, T) to be an element in the compact set Kt,T for which the
second coordinate v2(t, T) is maximal.

Let A denote the set of those elements inW for which there exists an M > 0
such that v2(t, T) � M eventually in T. Since T 7! v2(t, T) is nondecreasing
by construction of v, we can write

A =
[

M2N

f v2(t, T) � M eventually in Tg =
[

M2N

\

n2N

f v2(t, n) � Mg .

Moreover,

f v2(t, n) � Mg =
\

a,b2Q
a� t, b�

p
n

[

a0,b02Q
a0� t, b0� M

fj f (a, b) � f¥ (a)j � j f (a0, b0) � f¥ (a0)jg .

Hence A is measurable.

By the continuity of f and f¥ there exists a random variable C such that, on
the set A,

j f (v1(t, T), v2(t, T)) � f¥ (v1(t, T)) j < C, eventually in T.
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Consequently, on A,

lim
T! ¥

p
T

T � t
sup
s< t

sup
u�

p
T

j f (s, u) � f¥ (s)j

= lim
T! ¥

p
T

T � t
j f (v1(t, T), v2(t, T)) � f¥ (v1(t, T)) j

� C lim
T! ¥

p
T

T � t
= 0 .

On the other hand, we have v2(t, T) ! ¥ as T ! ¥ on the set Ac = Wn A,
hence

lim
T! ¥

P

 

Ac \

( p
T

T � t
sup
s< t

sup
u�

p
T

j f (s, u) � f¥ (s)j >
#
2

)!

� lim
T! ¥

P

 

Ac \

(

sup
s< t

sup
u�

p
T

j f (s, u) � f¥ (s)j >
#
2

)!

= lim
T! ¥

P
�

Ac \
�

sup
s< t

j f (s, v2(t, T)) � f¥ (s)j >
#
2

��

� lim
v! ¥

P
�

sup
s< t

j f (s, v) � f¥ (s)j >
#
2

�
= 0 .

It follows that the �rst term on the righthand side in Eq. ( 3.4.1) vanishes as
T ! ¥ .

Similarly, by the continuity of f (t, �) and the extreme value theorem we can
take, for all 0 � s � T, w(s, T) 2 argmaxp

T� u� T j f (s, u) � f¥ (s)j . Notice that

w(s, T) �
p

T ! ¥ as T ! ¥ hence the second term on the righthand side in
Eq. (3.4.1) also vanishes by the assumption of the lemma.

Proof of Lemma3.3.12.

Let An(t) = A(t, xn) and Mn(t) = M (t, xn) for some sequencef xng¥
n= 0 such

that xn ! ¥ as n ! ¥ . If we set Xn(t) = X(t, xn) then we can write Xn(t) =
Xn(0) + An(t) + Mn(t). By Eq. (3.3.8) we have

jj Xn � X̂ jj S1 ! 0 , asn ! ¥ .

It follows from Corollary 2 in Barlow and Protter ( 1990) that

jj An � Â jj S1 ! 0 and jj Mnjj H 1 ! 0 ,
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as n ! ¥ . Since this holds for any sequence f xng¥
n= 0 such that xn ! ¥ as

n ! ¥ , we obtainEqs. (3.3.9) and (3.3.10).

It remains to prove the converse. Let f xng¥
n= 0 be any sequence such thatxn !

¥ as n ! ¥ . Write Xn(t) = Xn(0) + An(t) + Mn(t) with An(t) = A(t, xn)
and Mn(t) = M (t, xn). We must show that

0 = lim
n! ¥

jj (Xn � X̂) � jj L1(P)

= lim
n! ¥

jj (Xn(0) � X̂(0) + An � A¥ + Mn) � jj L1(P) .

Because supt jX + Yj � supt jX j + supt jYj, we obtain

jj (Xn(0) � X̂(0) + An � A¥ + Mn) � jj L1(P)

� jj (Xn(0) � X̂(0)) � + ( An � A¥ ) � + ( Mn) � jj L1(P) .

Using Minkowski's inequality we �nd

jj (Xn(0) � X̂(0)) � + ( An � A¥ ) � + ( Mn) � jj L1(P)

� jj Xn(0) � X̂(0)jj L1(P) + jj (An � A¥ ) � jj L1(P) + jj (Mn) � jj L1(P) .

From Protter (2005, Chapter V, Thm. 2) we have that there exists a universal
(i.e. independent of the semimartingale) constant c1 such that

jj (Mn) � jj L1(P) = jj Mnjj S1 � c1jj Mnjj H 1 .

Hence we arrive at

jj (Xn � X̂) � jj L1(P) � jj Xn(0) � X̂(0)jj L1(P)

+ jj (An � A¥ ) � jj L1(P) + c1jj Mnjj H 1 .

The righthand side vanishes in the limit as n ! ¥ .

Proof of Proposition3.3.13.

Consider the family of semimartingales ef (t, T) = f (0,T) + eA(t, T) + eM (t, T),
indexed by T � 0, in which

eA(t, T) = A(t ^ h(T), T) + 1t> h(T) (A¥ (t) � A¥ (h(T))) ,

is a process of �nite variation, and

eM (t, T) = M (t ^ h(T), T) ,
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is a local martingale. For given T � 0, the semimartingale ef (�, T) is special,
hence its decomposition is unique8. Note that for �xed t � 0 and suf�ciently
large T, it holds that ef (t, T) = f (t, T).

The rest of the proof follows from an application of Lemma 3.3.12 to the family
of semimartingales f ef (�, T)gT� 0. Equation (3.3.8) can be written as

jj ef (�, T) � f¥ jj S1 = E
�
sup

t
j ef (t, T) � f¥ (t)j

�

= E
�

sup
0� t � h(T)

j f (t, T) � f¥ (t)j
�

.

Similarly, Eq. (3.3.9) can be expressed as

jj eA(�, T) � A¥ jj S1 = E
�
sup

t
j eA(t, T) � A¥ (t)j

�

= E
�

sup
0� t � h(T)

jA(t, T) � A¥ (t)j
�

,

or, if s � 0 and A¥ (t) = 0 for all t � 0,

jj eA(�, T)jj S1 = jj sup
0� t � h(T)

�
�
�
�

Z t

0
a(s, T) ds

�
�
�
� jj L1(P) = E

� Z h(T)

0
a(s, T) ds

�
,

with a(t, T) = s(t, T)S(t, T)0 by Eq. (3.1.5). For Eq. (3.3.10) we obtain,

jj eM (�, T)jj H 1 = E
�
[ eM (�, T), eM (�, T)]

1
2
¥

�

= E

2

4
� Z h(T)

0
jjs(s, T)jj 2 ds

� 1
2

3

5 .

Finally, given T � 0 and K � 0, condition (3.3.7) satis�es

K � jj eA(�, T)jj H 1 = E
� Z ¥

0
jd eA(s, T)j

�

= E
� Z h(T)

0
ja(s, T)j ds+

Z ¥

h(T)
jd f¥ (s)j

�
.

This condition is met for every T � 0 if Eqs. (3.3.11) and (3.3.12) hold.

8 See footnote6.
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Proof of Lemma3.3.14.

Part 1: If there is no largest T for which T � h(T) � a
1

1� a , with a � 1, then the
statement of the lemma clearly holds since in that case there is a subsequence
that converges to in�nity. We may thus assume that eventually T � h(T) >

a
1

1� a . Observe that if x > a
1

1� a then the derivative of the function x 7! xa

exceeds 1. Hence forT suf�ciently large, the increment of this function on the
interval [T � h(T), T] is at least linear, that is,

lim
T! ¥

Ta � (T � h(T)) a � lim
T! ¥

h(T) = ¥ .

Part 2: For a � 0 the statement holds for any h. Assume therefore 0 < a < 1.
By the mean value theorem there exists a u 2 [T � h(T), h(T)] such that

Ta � (T � h(T)) a = h(T)aua� 1 � ah(T)( T � h(T)) a� 1 .

Hence, h(T) = Tb with b satisfying 0 < b < 1 and b + a � 1 < 0 will work.





4 O N T H E L O N G R AT E I N FA C T O R M O D E L S O F T H E
T E R M S T R U C T U R E

This chapter is based on J. de Kort,A note on the long rate in factor models of the
term structure, To appear in: Mathematical Finance. doi: 10.1111/ma�. 12151.

In this chapter, we consider factor models of the term structure based on a
Brownian �ltration. We show that the existence of a non-deterministic long
rate in a factor model of the term structure implies, as a consequence of the
Dybvig-Ingersoll-Ross theorem, that the model has an equivalent representa-
tion in which one of the state variables is non-decreasing. For two-dimensional
factor models, we prove moreover that if the long rate is non-deterministic,
the yield curve �attens out, and the factor process is asymptotically non-
deterministic, then the term structure is unbounded. Finally, following up on
an open question in El Karoui et al. ( 1998), we provide an explicit example of a
three-dimensional af�ne factor model with a non-deterministic yet �nite long
rate in which the volatility of the factor process does not vanish over time.

4.1 introduction

A theorem by Dybvig, Ingersoll, and Ross ( 1996) states that the long-term in-
terest rate in an arbitrage-free term structure model cannot decrease over time.
Nevertheless, the long rate can be a non-deterministic process. It was shown
in El Karoui et al. ( 1998) that a Heath-Jarrow-Morton model may generate a
non-deterministic long rate if, for large maturities, the volatility of the instan-
taneous forward rate vanishes suf�ciently fast to make the long rate �nite, and
suf�ciently slow to ensure that it is nonconstant. In this chapter we consider
the question whether the subclass of term structure models known as factor
models is rich enough to admit a �nite stochastic long rate if we additionally
require that the volatility of the factor process does not vanish asymptotically
over time. We show that this question can be answered af�rmatively, but that
at least three state variables are required.

The result of Dybvig, Ingersoll and Ross has been extended in a number of di-
rections. For example, for weaker notions of convergence of the long rate, see

83
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Goldammer and Schmock (2012). Kardaras and Platen (2012) considered the
convergence speed of the zero-coupon yields at different times as the maturity
date tends to in�nity. Recently, Biagini et al. ( 2016) studied the behaviour of
the long rate in HJM models where instantaneous forward rates are driven
by af�ne processes on a state space of symmetric positive semide�nite matri-
ces. In another interesting paper, Biagini and Härtel ( 2014) look at interest rate
models driven by Lévy processes and �nd that if the driving process has paths
of �nite variation and negative jumps only then, contrary to the diffusion case,
volatility does not necessarily need to vanish for large maturities in order for
the long rate to be �nite. Dybvig et al. ( 1996) also proved that the long rate
cannot increase almost surely if the state space is �nite. Schulze (2008) gener-
alized this result to in�nite state spaces. In other recent work, Zhao ( 2009) and
Bao and Yuan (2013) characterize almost sure convergence to a constant long
rate in two-factor Cox-Ingersoll-Ross (CIR) models with Lévy jumps. To build
a model in which the long Libor-rate can randomly move up and down, with-
out violating no-arbitrage, Brody and Hughston ( 2016) use discount functions
of the generalized hyperbolic type; these are discount functions for which the
relation between rates and bond prices is not asymptotically exponential.

Long-term �xed income returns in models that admit a factor representation
have previously been studied by Deelstra and Delbaen ( 1995). They consid-
ered a single-factor generalized CIR process and proved that the long rate
converges almost surely to a random variable which is proportional to the re-
version level of the CIR process. Based on these results, Deelstra et al. (2000)
suggests a modi�cation of a three-factor short rate model introduced by Tice
and Webber (1997) such that the long rate converges to a stochastically time-
varying mean-reversion level. The present chapter is concerned with models
in which not only the short rate but also the yield or the instantaneous for-
ward rate admits a factor representation. In models where the short rate has
a factor structure, the instantaneous forward rate inherits this factor structure
only if the bond price has an exponential af�ne representation. Yao ( 1999b),
using an instantaneous forward rate speci�cation with separable volatility
function and building on results in Ritchken and Sankarasubramanian ( 1995),
constructs a factor model with two state variables in which the long rate is
non-deterministic. Both the factor process and the yield curve parameteriza-
tion in that model are time-inhomogeneous, and the volatility of the factor
process vanishes over time. In the work of El Karoui et al. ( 1998) a series
of two-dimensional af�ne factor models is discussed. They �nd that, in their
examples, either the continuously compounded rate is in�nite or the model
contains a nondecreasing state variable.
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We extend these results by showing that a term structure model with three
state variables, with one of the state variables having �nite variation, is the
most parsimonious model speci�cation based on a Brownian �ltration that
can accommodate a stochastic long rate if we require that the volatility of the
factor process does not vanish over time. We thus show that the properties
exempli�ed by the models in El Karoui et al. ( 1998) are general characteristics
which are shared by all two-dimensional factor models. Finally, we provide
an explicit example of an af�ne factor model in which the long rate converges
almost surely to a nondecreasing stochastic process.

The chapter is structured as follows. In Proposition 4.2.2 we prove that, up
to a change of coordinates, any factor-based model in which the long-rate
is not deterministic while the term structure of interest rates does not go to
in�nity must have a nondecreasing state variable, where we allow the factor
process to be time-inhomogeneous. In Proposition 4.3.1 we show that, under
mild conditions, the presence of a stochastic long rate in a factor model with
two state variables implies that the term structure is unbounded. Finally, in
Proposition 4.4.1 we construct a factor model with a stochastic long rate which
is �nite almost surely.

4.2 the long rate in factor models

Let (W, F , P, (F t ) t � 0) be a �ltered probability space on which is de�ned a
d-dimensional P-Brownian motion W. The time t price p(t, T) of a zero-coupon
bond, paying 1 unit of currency at time T, is modelled as an Itô process for 0 �
t � T with respect to (F t )0� t � T. We assume that p(T, T) = 1 and p(t, T) > 0
for all 0 � t � T. The instantaneous forward rate is de�ned by r(t, x) =
� ¶x log p(t, t + x), while the exponential (or continuously compounded) rate
is given by z(t, x) = � x� 1 log p(t, t + x) for all x > 0.

As in Chapter 3, we impose as a standing assumption that no arbitrage possi-
bilities exist. Following Hubalek et al. ( 2002), we thus assume that there exists
a measureQ, locally equivalent to P, such that, for all t � 0 and x � 0, the quo-
tient B(t)/ B(t + x) is Q-integrable where B(t) := exp(

Rt
0 r(s, 0) ds), and such

that discounted bond prices B(t) � 1p(t, T) are Q-martingales for 0 � t � T.

Consider a time-inhomogeneous af�ne term structure model in which the
Musiela parameterised instantaneous forward rates r : R+ � R+ ! R satisfy

r(t, x) := f (t, t + x) = h0(x) +
d

å
i= 1

l i (x)Yi (t) , (4.2.1)
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where h0 : R+ ! R and l i : R+ ! R, i 2 f 1, . . . ,dg, are continuously differen-
tiable F0-measurable functions. The stochastic factorY is de�ned by

Y(t) =
Z t

0
D(s,Y(s)) ds+

Z t

0
V (s,Y(s))dW(s) , (4.2.2)

in which D : R+ � Rd� 1 ! Rd� 1 and V : R+ � Rd� 1 ! Rd� d are continuous
functions such that (4.2.2) admits a strong solution. Notice that the assumption
Y(0) = 0 is not restrictive. If Y(0) = y0 6= 0 then we may apply our analysis to
Z(t) := Y(t) � y0 satisfying dZ(t) = D(t, Z(t) + y0) dt + V (t, Z(t) + y0)dW(t)
and Z(0) = 0, and changeh0 accordingly. We will refer to the components of
Y as the state variables. The number of driving factors may be smaller than
the number of state variables, for instance if V has rows consisting only of
zeroes. The Musiela parameterised exponential rates satisfy

z(t, x) = H (x) +
d

å
i= 1

L i (x)Yi (t) , (4.2.3)

in which H (x) = 1
x

Rx
0 h0(s) dsand L (x) = 1

x

Rx
0 l (s) ds.

For x = 0 we let L (x) and H (x) be de�ned by their righthand side limits
h0(0) and l (0). This setup includes the model of El Karoui et al. ( 1998), but
we do not follow their requirements that D and V must be af�ne or time-
homogeneous functions of the factor process Y. Indeed, to obtain the setup
in El Karoui et al. ( 1998), we can set A(T � t) =

RT� t
0 l (s) ds, b(T � t) =

RT� t
0 h0(s) dsand T = t + x, then � log p(t, T) = A(T � t)Y(t) + b(T � t).

The long instantaneous forward rate f¥ and the exponential long rate z¥ are
de�ned by

f¥ (t) = lim
x! ¥

f (t, t + x) and z¥ (t) = lim
x! ¥

z(t, x) ,

provided that the corresponding limits exist. We say that the limit “exists” if
the lim sup and the lim inf are random variables that agree almost surely. No-
tice that we do not require the limit to be �nite. In general, the long rate in
models of the form ( 4.2.1) is not necessarily a measurable function. An alterna-
tive de�nition of the long-term interest rate, which guarantees measurability,
is discussed in Goldammer and Schmock (2012) and Brody and Hughston
(2016). In this paper however, we use the following characterisation of the
existence, as a random variable, of the long instantaneous forward rate.

Proposition 4.2.1. Assume that the elements off 1,Y1(t0), . . . ,Yd(t0)g are almost
surely linearly independent for at least one t0 2 ]0,¥ [. Then the long instantaneous
forward rate exists for every t� 0 if and only if lim x! ¥ l (x) and lim x! ¥ h0(x)
exist.
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Proof. (If) Suppose that lim x! ¥ l (x) = z and lim x! ¥ h0(x) exist. From Eq. (4.2.1)
we obtain that, for all t � 0, the long rate satis�es f¥ (t) = f¥ (0) + å d

i= 1 zi Yi (t) .
We thus �nd that the long instantaneous forward rate is a linear combination
of the state variables and hence is a random variable for every t � 0.

(Only if) Let t0 be such that the elements of f 1,Y1(t0), . . . ,Yd(t0)g are almost
surely linearly independent. By assumption there is a set U � W with P(U ) =
0 such that lim x! ¥ f (t0, t0 + x, w) exists point-wise for every w 2 Uc. Consider
the set V = f (Y1(t0, w), . . . ,Yd(t0, w)) : w 2 Ucg and suppose that dim (V ) <
d, that is, there exists someb 2 Rd+ 1, b 6= 0 such that å d

j= 1 b j vj = b0 whenever
v 2 V. Then

b0 =
d

å
j= 1

b jYj (t0, w) , for all w 2 Uc,

which contradicts the assumption that the elements of f 1,Y1(t0), . . . ,Yd(t0)g
are almost surely linearly independent. Hence there must be w1, . . . ,wd 2 Uc

such that yi := ( Y1(t0, wi ), . . . ,Yd(t0, wi )) 0, i 2 f 1, . . . ,dg, span Rd. Write U =
(y1, . . . ,yd)0, then U is a d � d matrix of full rank, therefore U� 1 exists. By
Eq. (4.2.1) we have that lim x! ¥ h0(x) exists (take t = 0) and lim x! ¥ Ul (x)
exists (take t = t0). It follows that

lim
x! ¥

l (x) = lim
x! ¥

U� 1(Ul (x)) = U� 1 lim
x! ¥

Ul (x) exists .

The next proposition shows that in factor models with a nondeterministic
long rate, a linear combination of the state variables driving the instantaneous
forward rate is nondecreasing.

Proposition 4.2.2. Suppose that the conditions of Proposition4.2.1 hold. If the long
instantaneous forward rate exists for all t� 0 and is nondeterministic for t> 0, then
the term structure model in Eqs. (4.2.1)–(4.2.2) has an equivalent representation in
which the nondecreasing long instantaneous forward rate coincides with one of the
state variables, plus a constant.

Proof. From Eqs. (4.2.1) and (4.2.2), we obtain

f (t, t + x) � f (0,x) =
d

å
i= 1

l i (x)

" Z t

0
D i (s,Y(s)) ds

+
Z t

0

d

å
j= 1

Vi j (s,Y(s))dWj (s)

#

. (4.2.4)
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By Proposition 4.2.1, we have that z = lim x! ¥ l (x) and lim x! ¥ h0(x) exist.
We thus �nd that the long rate satis�es, for all t � 0,

f¥ (t) � f¥ (0) =
d

å
i= 1

zi

" Z t

0
D i (s,Y(s)) ds

+
Z t

0

d

å
j= 1

Vi j (s,Y(s))dWj (s)

#

. (4.2.5)

Theorem 3.3.7 implies, together with Lemma 3.3.8, that the long instantaneous
forward rate is a nondecreasing process; therefore it has �nite �rst-order vari-
ation and thus cannot have a nonzero diffusion term. It follows that zV = 0
almost surely for every t � 0 and

f¥ (t) = f¥ (0) +
d

å
i= 1

zi

Z t

0
D i (s,Y(s)) ds.

If z = 0 then by Eq. (4.2.5) the long rate is constant which is precluded by the
assumptions of the proposition. Hence z 6= 0 and it follows that V is singular.
If the factor process Y is one-dimensional, that is, if d = 1, then either V = 0
or z = 0 must hold. In both cases the long rate is deterministic.

Assume therefore that d � 2. Becausez 6= 0 there must be an i � 2 f 1, . . . ,dg
such that zi � 6= 0. De�ne the (invertible) d � d matrix M by

M =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

1
...

z1 z2 � � � zi � � � � � � � zd
...

1

1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

. (4.2.6)

The matrix M has zero entries outside the main diagonal and the i � -th row.
De�ne

eY(t) := MY (t) and el (x) := l (x)M � 1 . (4.2.7)

The process eY(t) satis�es eY(0) = 0 and

deY(t) = eD(t, eY(t)) dt + eV (t, eY(t))dW(t) , (4.2.8)
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in which eD(t, y) = MD (t, M � 1y) and eV (t, y) = MV (t, M � 1y) . The factor
model de�ned through h0, el and eY is equivalent to the one de�ned by h0, l
and Y. Indeed,

r(t, x) = h0(x) +
d

å
i= 1

l i (x)Yi (t) = h0(x) +
d

å
i= 1

l i (x)M � 1MYi (t)

= h0(x) +
d

å
i= 1

el i (x) eYi (t) .

The i � -th state variable satis�es eYi � (t) = å d
i= 1 ziYi (t) = f¥ (t) � f¥ (0). We have

thus established that the model (4.2.1) has a representation in which, up to a
constant shift, the non-decreasing long instantaneous forward rate coincides
with one of the state variables.

The existence of the exponential long rate can be characterised in terms of the
existence of limx! ¥ L (x) and lim x! ¥ H (x), as the following result shows.

Proposition 4.2.3. Assume that the elements off 1,Y1(t0), . . . ,Yd(t0)g are almost
surely linearly independent for at least one t0 2 [0,¥ [. Then the exponential long rate
exists for every t� 0 if and only if lim x! ¥ L (x) andlim x! ¥ H (x) exist.

Proof. The proof is similar to the proof of Proposition 4.2.1 and we omit the
details.

We can also formulate a variation of Proposition 4.2.2 in which the conditions
have been slightly weakened.

Proposition 4.2.4. Suppose that the conditions of Proposition4.2.3 hold. If the expo-
nential long rate exists for all t� 0 and is non-deterministic for t> 0, then the term
structure model in Eqs. (4.2.1)–(4.2.3) has an equivalent representation in which the
non-decreasing exponential long rate coincides with one of the state variables, plus a
constant.

Proof. As in the proof of Proposition 4.2.2 one can show that lim x! ¥ L (x) = :
z 6= 0. Using the transformation

eY(t) = MY (t) and eL (t) = L (t)M � 1 , (4.2.9)

where M is de�ned as in Eq. ( 4.2.6), a representation can be established in
which, up to a constant shift, the exponential long rate coincides with one of
the state variables. The rest of the proof is similar to the proof for Proposi-
tion 4.2.2.
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4.3 the two -dimensional case

In the following proposition we consider two-dimensional factor models that
admit a non-deterministic long rate. We show that the term structure is even-
tually unbounded if the factor process is asymptotically non-deterministic and
the forward curve �attens for large expiration dates. The second condition re-
�ects the fact that little market information is available about the far future,
hence the instantaneous rate for lending or borrowing should not differ much
between long-dated maturities. We say that a model is asymptotically deter-
ministic almost surely if

P
�

lim
t! ¥

hYi t < ¥
�

= 1 . (4.3.1)

Notice that t 7! hYi t is point-wise nondecreasing hence, for any a � 0 and
j 2 f 1, 2g,

�
w 2 W j lim

t! ¥



Yj

�
t

2 [0,a]
	

=
\

k2N

�
w 2 W j



Yj

�
k

2 [0,a]
	

,

and it follows that lim t! ¥ hYi t is a random variable. The forward curve is said
to �atten if

lim
x! ¥

¶xh0(x) = 0 and lim
x! ¥

¶x l i (x) = 0 for i = 1, 2. (4.3.2)

Consider the factor model in Eq. ( 4.2.1) with d = 2 and suppose that the
conditions of Proposition 4.2.2 hold. We then have the following result.

Proposition 4.3.1. If the factor process Y(t) with d = 2 is not asymptotically de-
terministic almost surely and the forward curve �attens for long maturities, then
lim t! ¥ f¥ (t) = ¥ almost surely. Moreover, the term structure x7! r(t, x) is un-
bounded over time, that is, there exists a random variable X: W ! [0,¥ [ such that
lim t! ¥ r(t, X) = ¥ .

Proof. From the proof of Proposition 4.2.2, we have that lim x! ¥ l (x) = z 6= 0.
Assume, without loss of generality, that z2 6= 0 and apply the coordinate
transformation de�ned in Eqs. ( 4.2.7) and (4.2.8) with

M =

 
1 0

z1 z2

!

,
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so that eY1(t) = Y1(t), eY2(t) = z1eY1(t) + z2eY2(t) and el 1(x) = l 1(x) � z1
z2

l 2(x)

while el 2(x) = 1
z2

l 2(x). The factor process (4.2.2) can thus be written as

eY1(t) =
Z t

0
eD1(s, eY(s)) ds

+
Z t

0
eV11(s, eY(s))dW1(s) +

Z t

0
eV12(s, eY(s))dW2(s) ,

eY2(t) =
Z t

0
eD2(s, eY(s)) ds .

(4.3.3)

As before, we use Theorem3.3.7 and Lemma 3.3.8 to conclude that the second
row of the volatility matrix must be zero, i.e. eV21 = eV22 = 0.

BecauseQ is locally equivalent to P, there exists, for every t � 0, a martin-
gale L such that dP/ dQ = L(s) on F (s) for 0 � s � t. Hence, dL(s) =
j (s)L(s)dW(s), 0 � s � t, for a certain process j called the market price
of risk. The HJM drift condition in Musiela form, see for example Björk and
Svensson (2001, Prop. 4.1), requires that for all eY(t)

2

å
i= 1

el i (x) eD i (t, eY(t)) = ¶xr(t, x) +
2

å
j= 1

esj (t, x, eY(t))
Z x

0
esj (t, u, eY(t)) du

�
2

å
j= 1

j j (t)esj (t, x, eY(t)) , (4.3.4)

in which esj (t, x, y) = å 2
i= 1

el i (x) eVi j (t, y) for y 2 Rd� 1 and j 2 f 1, 2g. The
second term on the righthand side in Eq. ( 4.3.4) can be written as

2

å
j= 1

esj (t, x, eY(t))
Z x

0
esj (t, u, eY(t)) du

=
2

å
j= 1

 
2

å
i= 1

el i (x) eVi j (t, eY(t))

! Z x

0

 
2

å
k= 1

el k(u) eVkj(t, eY(t))

!

du

=
2

å
i= 1

2

å
k= 1

�
eHik(t, eY(t)) el i (x)

Z x

0
el k(u) du

�
, (4.3.5)

where eHik(t, eY(t)) := å 2
j= 1

eVi j (t, eY(t)) eVkj(t, eY(t)) is the ( i , k)-th element of the

symmetric matrix eH = eV eV0. Integrating the drift condition Eq. ( 4.3.4) on the
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interval [0,t] and using eV21 = eV22 = 0 (hence eH12 = eH21 = eH22 = 0), we �nd
that

2

å
i= 1

el i (x)
Z t

0
eD i (s, eY(s)) ds = ¶xh0(x)t +

2

å
i= 1

¶xel i (x)
Z t

0
eYi (s) ds

+ L(x)
Z t

0
eH11(s, eY(s)) ds� el 1(x)

Z t

0

2

å
j= 1

eV1j (s, eY(s)) j j (s) ds , (4.3.6)

in which L(x) = el 1(x)
Rx

0
el 1(u) du. Due to the coordinate transformation in

Eq. (4.2.7), we have

lim
x! ¥

el 1(x) = 0 and lim
x! ¥

el 2(x) = 1 .

Moreover, the �attening of the forward curve is preserved under the transfor-
mation in Eq. ( 4.2.7), that is

lim
x! ¥

¶xel (x) = 0 .

The functions ¶xh0(x), ¶x l (x) and l (x) are continuous with �nite limits for
x ! ¥ ; hence they are bounded functions of x. By assumption, the func-
tions D and V, and hence also eD and eV, are continuous. Because the Itô in-
tegrals in Eq. (4.3.3) have versions with continuous sample paths, it follows
that the integrals over eY(t), eD(t, eY(t)) , eH11(t, eY(t)) and eV (t, eY(t)) appearing
in Eq. (4.3.6) are �nite almost surely for all t 2 [0,¥ [. By taking the limit
x ! ¥ in Eq. (4.3.6), we thus obtain that

f¥ (t) � f¥ (0) =
Z t

0
eD2(s, eY(s)) ds = lim

x! ¥
L(x)

Z t

0
eH11(s, eY(s)) ds . (4.3.7)

The lefthand side exists for every t � 0 by the assumptions of Proposition 4.2.2.
Therefore, lim x! ¥ L(x) exists. Notice that

Rt
0

eH11(s, eY(s)) ds = 0 would imply
that eH11(t, eY(t)) = 0 for any t > 0, contradicting our assumption that the long
rate is non-deterministic. Likewise, lim x! ¥ L(x) 6= 0 because we assumed that
the long rate is not constant.

If lim x! ¥ L(x) = ¥ then f¥ (t) = ¥ for all t > 0 by Eq. (4.3.7). It thus remains
to prove lim t! ¥ f¥ (t) = ¥ for the case limx! ¥ L(x) < ¥ . The quadratic
covariation of Yi (t) and Yk(t), with i, k 2 f 1, 2g, satis�es

hYi ,Yki t =
Z t

0

�
Vi1(s,Y(s))Vk1(s,Y(s)) + Vi2(s,Y(s))Vk2(s,Y(s))

�
ds

=
Z t

0
Hik(s,Y(s)) ds.
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Because eH12 = eH21 = eH22 = 0, the quadratic variation of the factor process
can be expressed as

hYi t =
Z t

0
diag H (s,Y(s)) ds = diag

Z t

0
M � 1 eH (s, eY(s))( M 0) � 1 ds

=
�

1, z2
1z� 2

2

� Z t

0
eH11(s, eY(s)) ds, (4.3.8)

where we use “diag” to denote the main diagonal of a matrix. Due to the
assumption that lim t! ¥ hYi t = ¥ almost surely, we conclude from Eqs. (4.3.7)
and (4.3.8) that lim t! ¥ f¥ (t) = ¥ almost surely.

We next proceed to prove that the term structure x 7! r(t, x) is unbounded in
time. Suppose that el 1 � 0, then L(x) = el 1(x)

Rx
0

el 1(u) du = 0 for all x � 0
which is not possible due to our assumption that the long rate is non-constant.
We may thus assume that there exists a 0 � x0 < ¥ such that el 1(x0) 6= 0.
Consider the term structure at x = x0, i.e.

r(t, x0) = h0(x0) + Z(t) , Z(t) := el 1(x0) eY1(t) + el 2(x0) eY2(t) .

As Z has a version with continuous sample paths, the subset U of W for which
t 7! Z(t) is bounded on [0,¥ [ can be expressed as

U =
[

n2N

\

m2Q+

f Z(m) � ng ,

henceU is measurable. Forw 2 Uc we have that r(�, x0) is unbounded on [0,¥ [.
Because limx! ¥ el 1(x) = 0 and lim x! ¥ el 2(x) = 1 it follows that el 1 is not pro-
portional to el 2 and consequently there exists an 0 � x1 < ¥ such that

el 1(x0)el 2(x1) 6= el 2(x0)el 1(x1) . (4.3.9)

The term structure in x = x1 satis�es

r(t, x1) = h0(x1) + a1Z(t) + a2eY2(t) ,

in which

a1 = el 1(x1)/ el 1(x0) and a2 = � a1el 2(x0) + el 2(x1) .

Note that a2 6= 0 due to Eq. (4.3.9). BecauseeY2(t) = f¥ (t) � f¥ (0) it follows
that r(�, x1) is unbounded on [0,¥ [ for w 2 U. SetX := x0 + ( x1 � x0)1U then
lim t! ¥ r(t, X) = ¥ almost surely.

We thus �nd that, in all factor models with two state variables satisfying the
conditions of Propositions 4.2.2 and 4.3.1, the long instantaneous forward rate
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tends to in�nity over time, and there exists at least one �nite expiration date
for which the corresponding instantaneous forward rate is unbounded. We
have shown in the proof that the �nite expiration date for which this happens
may depend on the stochastic scenario.

Similar to Proposition 4.3.1, we can formulate the following result on the be-
haviour of the long exponential yield in factor models with two state variables.
We will say that the yield curve �attens if

lim
x! ¥

¶xH (x) = 0 and lim
x! ¥

¶xL i (x) = 0, for i = 1, 2 .

Consider the factor model in Eq. ( 4.2.3) with d = 2 and assume that the condi-
tions of Proposition 4.2.4 hold. Then we have the following proposition.

Proposition 4.3.2. If the factor process Y(t) with d = 2 is not asymptotically
deterministic almost surely and the yield curve �attens for long maturities, then
lim t! ¥ z¥ (t) = ¥ almost surely. Moreover, the term structure x7! z(t, x) is un-
bounded over time, that is, there exists a random variable X: W ! [0,¥ [ such that
lim t! ¥ z(t, X) = ¥ .

Proof. From the proof of Proposition 4.2.4 we have lim x! ¥ L (x) = z 6= 0.
Assume, without loss of generality, that z2 6= 0 and apply the coordinate trans-
formation de�ned in Eqs. ( 4.2.8) and (4.2.9). Then eL 1(x) = L 1(x) � z1

z2
L 2(x)

and eL 2(x) = 1
z2

L 2(x), while the transformed factor process eY then satis�es
Eq. (4.3.3). Integrating the drift condition in Eq. ( 4.3.6) on the interval [0,x]
and multiplying both sides by 1

x we obtain, for x > 0,

2

å
i= 1

eL i (x)
Z t

0
eD i (s, eY(s)) ds =

1
x

Z x

0
L(u) du

Z t

0
eH11(s, eY(s)) ds

+
h0(x) � h0(0)

x
t +

2

å
i= 1

el i (x) � el i (0)
x

Z t

0
eYi (s) ds

� eL 1(x)
Z t

0

2

å
j= 1

eV1j (s, eY(s)) j j (s) ds, (4.3.10)

in which

1
x

Z x

0
L(u) du =

1
x

Z x

0
el 1(u)

Z u

0
el 1(v) dv du =

1
2

x eL 2
1(x) .

Observe that, for i 2 f 1, 2g,

el i (x)
x

=
1
x

eL i (x) + ¶x eL i (x) . (4.3.11)
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Due to the coordinate transformation in Eq. ( 4.2.9) we have lim x! ¥ eL 1(x) = 0
while lim x! ¥ eL 2(x) = 1. Moreover, the �attening of the yield curve is pre-
served under the transformation, that is, lim x! ¥ ¶x eL (x) = 0. Hence, the
righthand side in Eq. ( 4.3.11) vanishes in the limit as x ! ¥ for i 2 f 1, 2g.
Likewise, one can show that lim x! ¥ h0(x)/ x = 0. Taking the limit x ! ¥ in
Eq. (4.3.10) we thus obtain

z¥ (t) � z¥ (0) =
Z t

0
eD2(s, eY(s)) ds

=
1
2

h
lim
x! ¥

x eL 2
1(x)

i Z t

0
eH11(s, eY(s)) ds .

The rest of the proof is similar to the proof of Proposition 4.3.1.

4.4 the higher -dimensional cases

In this section we show that the result of Proposition 4.3.1 does not necessarily
hold for d > 2 by constructing an explicit example of an af�ne factor model
with d = 3 in which the long rate is �nite and non-deterministic, while the fac-
tor process is not asymptotically deterministic. We will use Ai and Bi to denote
the Airy functions of the �rst and second kind respectively, see Abramowitz
and Stegun (1964, Chapter 10). The Airy functions are linearly independent
solutions v to the Stokes equation xv � ¶xxv = 0.

Let m1, k1, k2, s1 and s2 be constants satisfying 2m1 > s2
1 and s2 > 0. We de�ne

processesY1(t) and Y2(t) by

Y1(t) =
Z t

0
[m1 � k1Y1(s)] ds+

Z t

0
s1

q
Y1(s)dW1(s) , (4.4.1)

and

Y2(t) = 1 �
Z t

0
k2Y2(s) ds+

Z t

0
s2

q
Y2(s)dW2(s) . (4.4.2)

A strong solution exists for the square-root processes Y1(t) and Y2(t) due to the
Yamada-Watanabe theorem, see Karatzas and Shreve (1991, Theorem 5.2.13). A
third state variable Y3(t), which we de�ne by

Y3(t) =
Z t

0
Y2(s) ds, (4.4.3)

is nondecreasing and �nite almost surely, because Y2(t) is positive and mean
reverting to zero in �nite time with probability one. Observe that the pro-
cess Y(t) de�ned by Eqs. ( 4.4.1)–(4.4.3) is not asymptotically deterministic
as lim t! ¥ hY1i t = ¥ .
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Consider the factor model

r(t, x) = h0(x) + l 1(x)Y1(t) + l 2(x)Y2(t) + Y3(t) , (4.4.4)

with Y(t) as in Eqs. (4.4.1)–(4.4.3) and

l 1(x) = l 1(0)
�
cosh

�
1
2

gx
�

+
k1

g
sinh

�
1
2

gx
�� � 2

, (4.4.5)

where g = ( k2
1 + 2l 1(0)s2

1)
1
2 and

l 2(x) =
2
y

2

4 f +
1
2

y x �

 
C1¶1Ai (f + 1

2y x) � C2¶1Bi(f + 1
2y x)

C1 Ai (f + 1
2y x) � C2 Bi(f + 1

2y x)

! 2
3

5 , (4.4.6)

in which

f = ( k2
2 + 2l 2(0)s2

2)/ y 2, y = ( 2s2)2/3 ,

while

C1 = k Bi(f ) � y¶1Bi(f ), C2 = k Ai (f ) � y¶1Ai (f ), (4.4.7)

and

h0(x) = h0(0) + m1

Z x

0
l 1(s) ds. (4.4.8)

Suppose that l 1(0) > 0 and l 2(0) > 0. The next proposition shows that the
long rate in this model is �nite and non-deterministic.

Proposition 4.4.1. The factor model in Eqs. (4.4.4)–(4.4.8) is arbitrage-free. More-
over, the long instantaneous forward rate in this model is �nite almost surely and
satis�es

f¥ (t) = h0(0) +
2m1

g + k1
+

Z t

0
Y2(s) ds. (4.4.9)

Before proving Proposition 4.4.1, we need the following auxiliary result.

Lemma 4.4.2.

lim
x! ¥

¶1 Bi(u(x))
Bi2(u(x))

= 0 , lim
x! ¥

"

u(x) �
�

¶1 Bi(u(x))
Bi(u(x))

� 2
#

= 0 , (4.4.10)

in which u(x) := f + 1
2y x, with y > 0.
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Proof. By l'Hôpital and the identity ¶xx Bi(x) = x Bi(x) we have

lim
x! ¥

�
Bi(x)

¶1 Bi(x)

� 2

= lim
x! ¥

2 Bi(x)¶1 Bi(x)
2¶1 Bi(x)¶11 Bi(x)

= lim
x! ¥

1
x

= 0 . (4.4.11)

Another application of l'Hôpital yields the following expression for the rela-
tive asymptotic behaviour of ¶1 Bi(x) and Bi(x)

lim
x! ¥

� p
x Bi(x)

¶1 Bi(x)

� 2

= lim
x! ¥

2x Bi(x)¶1 Bi(x) + Bi2(x)
2x Bi(x)¶1 Bi(x)

= lim
x! ¥

�
1 +

Bi(x)
2x¶1 Bi(x)

�
= 1 . (4.4.12)

Because limx! ¥ ¶1 Bi(x) = ¥ , it follows from Eq. ( 4.4.12) and l'Hôpital that

lim
x! ¥

¶1 Bi(x)
Bi2(x)

= lim
x! ¥

¶1 Bi(x)
p

x Bi(x)
lim
x! ¥

p
x

Bi(x)

= 1 � lim
x! ¥

1
2
p

x ¶1 Bi(x)
= 0 .

This proves the �rst part of Eq. ( 4.4.10).

By the chain rule and the identity ¶11 Bi(x) = x Bi(x) we have

¶x¶1 Bi(u(x)) = 2y � 1¶xx Bi(u(x)) =
1
2

y u(x) Bi(u(x)) . (4.4.13)

From Eqs. (4.4.11) and (4.4.13) together with l'Hôpital we thus �nd

lim
x! ¥

h
u(x) �

�
¶1 Bi(u(x))
Bi(u(x))

� 2 i

= lim
x! ¥

u(x) Bi2(u(x)) � (¶1 Bi(u(x))) 2

Bi2(u(x))

= lim
x! ¥

h 1
y Bi(u(x))¶1 Bi(u(x))

� 1
2

y Bi2(u(x))

+ y u(x) Bi(u(x))¶1 Bi(u(x)) � 2¶1 Bi(u(x))¶x¶1 Bi(u(x))
�i

= lim
x! ¥

Bi(u(x))
2¶1 Bi(u(x))

= 0 . (4.4.14)

This establishes the second part of Eq. (4.4.10).

We can now prove Proposition 4.4.1.
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Proof of Proposition4.4.1.

Let r(t, x) = h0(x) + å 3
i= 1 l i (x)Yi (t) with Y as de�ned in Eqs. ( 4.4.1)–(4.4.3).

By integrating the drift condition Eq. ( 4.3.4) on the interval [0,x] with j = 0
we �nd that, to exclude arbitrage, the functions A(x) =

Rx
0 l (s) dsand b(x) =Rx

0 h0(s) dsmust satisfy

0

B
@

¶x A1(x)

¶x A2(x)

¶x A3(x)

1

C
A =

0

B
@

¶x A1(0)

¶x A2(0)

¶x A3(0)

1

C
A +

0

B
@

� k1 0 0

0 � k2 1

0 0 0

1

C
A

0

B
@

A1(x)

A2(x)

A3(x)

1

C
A �

1
2

0

B
@

s2
1 A2

1(x)

s2
2 A2

2(x)

0

1

C
A ,

(4.4.15)

and

¶xb(x) = ¶xb(0) + m1A1(x) . (4.4.16)

The �rst and third ODE admit closed-form solutions:

A1(x) = 2l 1(0)
�
k1 + g coth

�
1
2

gx
�� � 1

and A3(x) = x .

Differentiation yields Eq. ( 4.4.5) and l 3(x) = 1. The solution to the second
ODE can be expressed in terms of solutions of the Stokes equation. Indeed, if
we apply the transformations

A2(x) =
2¶xw(x)
s2

2w(x)
, w(x) = e� 1

2k2xz(x) , z(x) = v(f +
1
2

y x) , (4.4.17)

then v(x) satis�es the Stokes equation 0 = xv(x) � ¶xxv(x). The solution to
this equation is v(x) = C3 Ai (x) + C4 Bi(x) and the values of C3 and C4 are
determined by the boundary condition A2(0) = 0. It follows that

A2(x) = �
k2

s2
2

+
4

y 2

C1¶1 Ai (f + 1
2y x) � C2¶1 Bi(f + 1

2y x)

C1 Ai (f + 1
2y x) � C2 Bi(f + 1

2y x)
,

with C1 and C2 as in Eq. (4.4.7). Differentiation of this expression yields Eq. ( 4.4.6).
Using Lemma 4.4.2 and Eqs. (4.4.5)–(4.4.6) we �nd

lim
x! ¥

l 1(x) = lim
x! ¥

l 2(x) = 0 , (4.4.18)

and

lim
x! ¥

h0(x) = h0(0) +
2m1

g + k1
. (4.4.19)
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Hence, f¥ (t) = f¥ (0) + Y3(t) and Eq. (4.4.9) follows. The long rate is �nite
becauseY2(t) hits zero in �nite time with probability one.

The requirement in Proposition 4.3.1 which states that the factor process must
be asymptotically non-deterministic cannot be omitted. Indeed, observe from
Proposition 4.4.1 that the factor model de�ned by r(t, x) = h0(0) + l 2(x)Y2(t) +
Y3(t) satis�es all other requirements, but it has a �nite and non-deterministic
long rate.

In this chapter, we have shown how to construct a parsimonious factor model
of the term structure which has the property that the long rate of interest
is non-deterministic. Up to a coordinate transformation, the dynamics of the
long rate in any such model must coincide with the dynamics of one of the
state variables. This state variable thus has �nite �rst-order variation as a
consequence of the Dybvig-Ingersoll-Ross theorem. To exclude unrealistic be-
haviour, such as the long rate tending to in�nity over time or the forward
rates eventually becoming deterministic, at least three state variables must
be included in the model. Finally, we have proposed a tractable term structure
model in which the long rate follows an integrated Cox-Ingersoll-Ross process.
An open question is whether similar results can be derived using the more gen-
eral de�nitions of the long rate appearing in Goldammer and Schmock ( 2012)
and Brody and Hughston ( 2016).





5 T E R M S T R U C T U R E E X T R A P O L AT I O N A N D
A S Y M P T O T I C F O RWA R D R AT E S

This chapter is based on J. de Kort and M.H. Vellekoop, Term structure extrap-
olation and asymptotic forward rates, Insurance: Mathematics and Economics,67
(2016): 107–119.

In this chapter, we investigate inter- and extrapolation methods for term struc-
tures under constraints in order to generate market-consistent estimates which
describe the asymptotic behavior of forward rates. Our starting point is the
method proposed by Smith and Wilson, which is used by the European insur-
ance supervisor EIOPA. We use the characterization of the Smith-Wilson class
of interpolating functions as the solution to a functional optimization problem
to extend their approach in such a way that forward rates will converge to
a value which is an outcome of the optimization process instead of a value
which is given a priori. Precise conditions are stated which guarantee that the
optimization problems involved are well-posed on appropriately chosen func-
tion spaces. As a result, a well-de�ned optimal asymptotic forward rate can be
derived directly from prices and cash�ows of traded instruments. This allows
practitioners to use raw market data to extract information about long term
forward rates, as we will show in a study which analyzes historical EURIBOR
swap data.

5.1 introduction

Every �nancial institution that uses a discount curve to estimate the current
value of future cash�ows has to decide how to construct such a curve from
information that can be found in the �xed income markets. In such markets,
cash�ows are de�ned for a limited number of payment dates so curve con-
struction will require certain interpolation methods. If the �nancial institution
needs to assess the value of cash�ows with maturities that exceed the ma-
turities of observable market instruments, or when the market information
for these longer maturities is known to be unreliable, there is also a need for
extrapolation of the curve. This last problem arises naturally for many insur-
ance companies and pension funds, since by the very nature of their busi-

101
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ness their liabilities stretch out much further into the future than those of the
average �nancial institution. At the same time, regulatory frameworks such
as the Solvency II proposals for European insurers stress the importance of
market-consistent pricing of liabilities. This raises the question how one can
systematically incorporate market information in a discount curve, while at
the same time recognizing that a subjective choice has to be made for maturi-
ties in between or beyond those that can be directly related to available market
instruments.

Yields and forward rates provide natural coordinates to characterize discount
curves and several parametrized functional forms have therefore been pro-
posed which describe the yield curve or the forward curve rather than the
discount curve itself. Well-known examples include the approaches of Nelson
and Siegel (1987) and Svensson (1994) which use given functions with three
and four free parameters respectively to �t the entire yield curve. Since it is im-
possible to recover the exact prices of all market instruments using only a few
parameters, some optimality criterion must be de�ned to decide which values
of the parameters are chosen. In practice one often minimizes a weighted sum
over the squares of the pricing errors for a given set of �xed income instru-
ments.

If one insists that all observed market prices must be �tted exactly and allows
the introduction of a larger number of parameters to achieve this, we face a
standard interpolation problem. An important criterion to decide which in-
terpolation methods should be applied, is the desired degree of smoothness
of the resulting interpolating function. It is clear that piecewise linear func-
tions can perfectly interpolate a given set of yields for different maturities, but
this leads to a yield curve which will not be differentiable, and the associated
forward curve will be discontinuous.

To achieve smoother discount-, yield- and forward curves, standard spline-
based interpolation methods have been proposed and certain modi�cations
based on the particular application at hand have been suggested. An overview
of the many possible methods is given in a paper by Hagan and West ( 2006).
Smoothness is important, but there are other desirable properties of interpo-
lating functions which are analyzed in that study, such as preserving mono-
tonicity or convexity in the given dataset. The authors also investigate whether
changes in the input data which are restricted to the vicinity of a particular
maturity may in�uence the values of the interpolated discount curve at maturi-
ties far away from it. Strong non-local sensitivities in an interpolation method
make it less suitable for risk management purposes since it complicates the
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use of �xed income market instruments to mitigate the interest rate risk in a
portfolio of liabilities.

Similar considerations play a role when deciding on a method to extrapolate
the discount curve beyond the last maturities for which reliable market infor-
mation is available. Compared to the interpolation problem, the extrapolation
problem for term structures has received considerably less attention in the lit-
erature until recently. The new Solvency II regulatory framework for European
insurers EIOPA (2010) has changed this, since the prescribed method to con-
struct the term structure from market data incorporates the assumption that
forward rates must converge to an a priori speci�ed value which was chosen
to be 4.2%. The class of interpolating functions that is used is the one proposed
in earlier work by Smith and Wilson ( 2000). The Smith-Wilson functions are
exponential tension splines with a given tension parameter. They were intro-
duced by Schweikert (1966) and �rst proposed as interpolating functions for
term structures by Barzanti and Corradi ( 1998a,b). Andersen (2007) character-
ized the corresponding interpolating curves in terms of a more convenient
basis of functions and showed how non-local sensitivities are controlled by
the tension parameter.

Exponential tension spline functions form the solution to an explicit optimiza-
tion problem for interpolation under the constraint that a set of given data
points must be �tted exactly. The optimization criterion aims at making both
the �rst order derivatives and the second order derivatives of the interpolating
function small, in the sense that one minimizes the integral over all maturities
of their squared values. Criteria based on second-order derivatives have often
been used as a basis for term structure interpolation, see for example Adams
and Van Deventer (1994), Adams (2001) and Lim and Xiao ( 2002). Smith and
Wilson then added the constraint that the asymptotic forward rate is given a
priori.

In this chapter we use similar criteria to extend the interpolation problem to
the case where the limit of forward rates is assumed to exist, but not given
a certain value on beforehand. This not only makes it possible to construct
discount curves without such a restrictive assumption but it also provides
information on the behavior of forward rates at high maturities in historical
data, without making speci�c model assumptions. This provides a way to es-
tablish whether the values that are imposed in regulatory frameworks such as
the one by EIOPA are consistent with what is found in market data at times
of high market liquidity. There is already some empirical evidence that long
term rates are in fact highly uncertain. This is for example the conclusion of a
recent paper by Balter et al. (2014) where a Bayesian approach is used to de-
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scribe parameter uncertainty in a Vasicek short rate model. At the end of this
chapter some further empirical evidence will be presented, which suggests
that long term forward rates have been rather stable before the �nancial crisis
of 2008but that they have decreased considerably after the crisis.

The structure of the chapter is as follows. First we de�ne the constrained term
structure interpolation problem and the solution proposed by Smith & Wilson
in the next two sections. We analyse its properties in section 5.4 and use this
to solve a related but unconstrained optimization problem in section 5.5. In
section 5.6 another method is presented which directly describes the interpo-
lation problem in terms of forward or yield curves instead of discount curves.
This has the advantage of generating a very intuitive and simple formula for
the asymptotic forward rate in terms of market yields at different maturities.
In section 5.7 we show some numerical results based on market data and we
draw conclusions and provide some proofs in the last two sections.

5.2 term structure interpolation

Term structures can be represented in many equivalent ways. As in earlier
chapters, we use the notation p(t, T) for the amount to be paid at a time t � 0
to receive a certain single unit of currency at a later time T � t, i.e. the zero-
coupon bond price at time t for maturity T. The continuous-time yield y(t, T)
and instantaneous forward rate f (t, T) are then de�ned by

f (t, T) = �
¶

¶T
ln p(t, T), y(t, T) = �

ln p(t, T)
T � t

,

so

p(t, T) = e� (T� t)y(t,T) = e�
RT

t f (t,u)du.

Since we do not have a continuum of bond prices available we must use inter-
polation methods and it is necessary to use extrapolation methods for times
beyond the maximal bond maturity that is available in the market.

To do so, we will assume that at the current time t = 0 we know the market
prices mi of certain �xed income instruments which pay given amounts ci j at
given times uj � 0. Here i 2 I = f 1, 2, ...,nI g refers to a certain instrument
and j 2 J = f 1, 2, ..,nJ g to all possible times where payments may occur. If
asseti does not pay anything at time uj the corresponding value ci j is simply
set to zero. Note that we only consider the static problem in this chapter, which
deals with the term structure at a �xed time t that we take to be time zero
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without loss of generality. This term structure may then be used as an input
for dynamic models for interest rates: see for example the books by Cairns
(2004) or Brigo and Mercurio ( 2007) for details on such models. We will also
assume that prices must be �tted exactly. Alternatively one may use a least
squares approach, maximum likelihood methods or a Bayesian framework, as
in Fisher et al. (1995), Cairns (1998), Sack (2000) and Cairns and Pritchard
(2001). We will not require that the interpolating curve for forwards is locally
monotone or convex when the inputs for the forward curve have the same
property, see Hagan and West (2006) for a method based on given forward
values (instead of �xed income prices) which satis�es this requirement.

An interpolating curve p̄(0,t) for the observed �xed income instruments must
thus satisfy

(8i 2 I ) mi = å
j2J

ci j p̄(0,uj ). (5.2.1)

To decide how the curve is de�ned in between the time points uj , a speci�c
criterion is needed since there are many possible ways to do this. Often a
criterion is chosen which regulates the smoothness of the interpolating curve.
One could for example require the �rst and second order derivatives of an
interpolating curve g to stay small in a quadratic sense. This means that one
tries to minimize

L a[g] :=
Z ¥

0
[g00(s)2 + a2g0(s)2] ds, (5.2.2)

over all functions g in a given function space. Notice that a parameter a > 0
is needed for the trade-off between the possibly con�icting requirements that
both slope and curvature remain small.

We thus want to de�ne a discount curve p(0,t) which is smooth and is market-
consistent in the sense that it matches quoted market prices of certain �xed
income instruments by satisfying ( 5.2.1). The European insurance regulator
also requires that forward rates converge to an a priori given value f¥ when
the maturity goes to in�nity. In the formulation of Smith and Wilson ( 2000)
this is implemented by de�ning, instead of p(0,t) = g(t),

p(0,t) = ( 1 + g(t))e� f¥ t . (5.2.3)

We thus look for a suf�ciently smooth function g which minimizes L a[g] under
the constraint that g(0) = 0 while satisfying

mi = å
j2J

ci j (1 + g(uj ))e� f¥ uj , (5.2.4)



106 term structure extrapolation and asymptotic forward rates

for a given nI � nJ matrix C of cash�ows and an nI � 1 vector m of market
prices. We will always assume that the rows of C are linearly independent
vectors, so there are no super�uous instruments in our set.

The solution to this problem can be written in terms of certain basis functions
W(t, uj ) which depend on time t and the maturities uj . We will derive some
properties of the functions W in the next section, before proving that they
provide a solution to the constrained optimization problem de�ned above.

5.3 a class of interpolating functions

The functions SW introduced by Smith and Wilson ( 2000) are scaled versions
of functions W that we will �nd more convenient to work with: SW(t, u) =
e� f¥ (t+ u)W(t, u) in which

W(t, u) = a min (t, u) � 1/ 2e� ajt � uj + 1/ 2e� a(t+ u) , (5.3.1)

for (t, u) 2 R+ � R+ and with a > 0 a given constant. These functionsW can
be characterized as follows. The proof (and other proofs in the sequel which
do not follow directly after a proposition) can be found in Section 5.9.

Proposition 5.3.1. For a givena > 0 consider the ordinary differential equation

¶2
t w(t, u) = a2w(t, u) � a3 min (t, u), (5.3.2)

for (t, u) 2 R+ � R+ . For every u> 0 the function W(t, u) is the only twice
continuously differentiable solution to this equation which is zero for t= 0 and has a
�nite limit for t ! ¥ .

We notice that W(t, u) = W(u, t) and (5.3.2) shows that the function t !
W(t, u) is twice differentiable in the point t = u but not three times differ-
entiable. The functions W are called exponential tension splinesand they were
introduced in 1966by Schweikert (1966). Their properties have been shown to
have certain advantages which are useful for modeling yield curves and for
other applications, see for example Lim and Xiao ( 2002) , Andersen (2007) and
Andersen and Piterbarg (2010).

In EIOPA documentation about the Smith-Wilson interpolation method, see
EIOPA (2010), it is mentioned that the function W(t, u) is related to the covari-
ance function of an integrated Ornstein-Uhlenbeck process. However, a paper
by Andersson and Lindholm ( 2013) shows that W does not exactly correspond
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to that covariance function unless some further restrictive assumptions are im-
posed1. In the following propositions, we use their probabilistic interpretation
of the functions W, to derive some properties that we will need in later proofs.
We also show how functions related to W characterize the best linear predictor
for the yield on a bank account and the discount factor in a Hull-White short
rate model.

Proposition 5.3.2. Let Zt be a standard Brownian Motion and Lt be an Ornstein-
Uhlenbeck process Lt =

Rt
0 e� a(t � s)dVs with V a standard Brownian Motion indepen-

dent of Z anda > 0 a given constant. Then W can be characterized as the covariance
function between two Gaussian processes: W(t, u) = a cov(Zt + Lt , Zu � Lu).

Proposition 5.3.3. If I t is an integrated Ornstein-Uhlenbeck process, so It =
Rt

0 Ludu

with L t =
Rt

0 e� a(t � s)dVs, then

E [ It j Iu1, Iu2, ...Iun ] = å
j

ej (t) Iuj ,

where the vectore(t) = H̄ � 1b(t) can be de�ned in terms of the matrix̄Hi j :=
H (ui , uj ) and the vectorb j (t) = H (t, uj ) if we choose

H (t, u) = W(t, u) � (1 � e� at )(1 � e� au) ,

provided the matrixH̄ is invertible.

This shows how H can be used to de�ne the best linear predictorfor the yield
1
t ln Bt of a bank account in a Hull-White model 2, since in that model ln Bt

corresponds to an integrated Ornstein-Uhlenbeck process with mean rever-
sion parameter a if we take B0 = 0. The best linear predictor of a stochastic
process X t in terms of Xu1, . . . ,Xun by de�nition equals å n

i= 1 ŵi Xui if the coef-
�cients (ŵ1, ..,ŵn) solve

min
(w1,..,wn)

E [(X t �
n

å
j= 1

wj Xuj )
2] . (5.3.3)

From the proposition we �nd as a direct corollary that

E [ln Bt j ln Bu1, ln Bu2, ..., ln Bun ]

= E [ln Bt ] +
n

å
j= 1

 
n

å
i= 1

( H̄ � 1) i j H (t, ui )

!

( ln Buj � E [ln Buj ]).

1 See Lagerås and Lindholm (2016) for a related discussion.
2 See Hull and White ( 1990).
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The conditional expectation on the left hand side is de�ned to be the best
predictor and since it is equal to the projection on the right hand side, which
is linear in ln Buj , the best linear predictor is actually the best predictor in this
case.

The following corollary shows that the best linear predictor of the stochastic
discount factor B� 1

t also has a representation in terms of the function H and
thus in terms of the exponential tension spline W.

Corollary 5.3.4. In a Hull-White model with mean reversion parametera, the best
linear predictor of the stochastic discount factor B� 1

t in terms of B� 1
u1

, . . . ,B� 1
un

is given
by

n

å
i= 1

 
n

å
j= 1

( H̃ � 1) i j Ĥ (t, uj )

!

B� 1
ui

, (5.3.4)

provided that the matrixH̃i j = Ĥ (ui , uj ), 1 � i , j � n , de�ned by

ln Ĥ (t, u) = E
h
ln B� 1

t

i
+ E

h
ln B� 1

u

i
+

1
2

a� 3�
H (t, t) + H (u, u) + 2H (t, u)

�
,

is invertible.

Proposition 5.3.2 characterizes W as a covariance between two different pro-
cesses. It is possible to characterize it as an (auto)covariance process of a single
Gaussian process as well on any �nite interval [0,T], as the following result
shows.

Proposition 5.3.5. For a given T> 0 and a > 0 let (zn)n2N be the countably
in�nite number of solutions to the equation

z3 tan(zaT) � (1 + z2)
3
2 tanh((1 + z2)

3
2 aT) � 2z2 = 1, (5.3.5)

and de�ne

f n(t) =
y n(t)

q RT
0 y 2

n(u)du
,

and

y n(t) = zn
sin(atzn)
cos(aTzn)

+
q

1 + z2
n

sinh(at
p

1 + z2
n)

cosh(aT
p

1 + z2
n)

.
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Then the Gaussian process

X t =
1

p
a

¥

å
n= 0

f n(t)en

zn
p

1 + z2
n

,

with (en)n2N independent standard Gaussian stochastic variables, has the function
W as covariance function on its domain[0,T], soE(X t Xu) = W(t, u) for all u and
t in [0,T].

This result may seem rather super�uous at �rst but we can use it to show
that the matrix with entries Wi j = W(ui , uj ) is invertible for any sequence of
maturities 0 � u1 < u2 < ... < unJ . This is in fact a result that is tacitly
assumed in the Smith-Wilson interpolation procedure.

To prove this, let a be any vector in Rn. Then aTWa equals the variance of the
processå j aj Xuj which is easily seen to be strictly positive when kak 6= 0. This
shows that the matrix W is invertible for any �nite value of nJ and any �nite
set of distinct values uj with j 2 J := f 1, 2, ..,nJ g.

5.4 the constrained optimization problem

Now that some elementary properties of the functions W have been estab-
lished, we show how these functions can be used to solve the constrained
optimization problem that was proposed to �nd a discount curve based on
interpolation and extrapolation of market data.

We de�ne the following subset of the space L2(R+ ) of square-integrable func-
tions on the positive reals:

E = f g 2 L2(R+ ) : lim
t! ¥

g(t) = 0g,

and a subset of the space of two times differentiable functions on the same
domain

F a = f g 2 C2(R+ ) : g(0) = a, g00(0) = 0, g02 E, g002 Eg,

for any a 2 R. The spaceF0 turns out to be the appropriate space to �nd
functions g which de�ne a discount curve p̄(0,t) = ( 1 + g(t)) exp(� f¥ t) that
�ts given market data, has an asymptotic 3 forward rate f¥ , and is as smooth
as possible in the sense that it minimizes the weighted integrals over �rst and
second order derivatives as de�ned by L a[g] in (5.2.2).

3 The European insurance supervisor EIOPA uses the term ultimate forward rate. We call it an
asymptotic forward ratebecause in our case its value will usually not be reached for any �nite
maturity.
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Problem 5.4.1. (Smoothest discount curve for a given asymptotic forward
rate)
Find

min
g2F 0

L a[g] (5.4.1)

subject to

å
j2J

ci j g(uj ) = mi , for all i 2 I , (5.4.2)

with ci j = ci j e
� f¥ uj andmi = mi � å j2J ci j , to ease the notation of (5.2.4).

The solution to this problem has been given by Smith and Wilson ( 2000). We
use a slightly different notation and give a different proof (in Section 5.9) since
this will allow us to prove certain extensions in later sections of this chapter.

Theorem 5.4.2. If a solution to Problem5.4.1 exists it must take the form

g(t) = å
i2I

zi å
j2J

c̄i j W(t, uj ) , (5.4.3)

with (zi ) i2I a vector of weights and the functions W as de�ned in (5.3.1).

This result shows that the method proposed by Smith and Wilson has the
interpretation of the best possible interpolation under a criterion based on
the operator L a, since the functions SW that they propose are simply scaled
versions of the exponential tension splines W. We prefer to work with the
functions W since they can be de�ned without referring to the asymptotic
forward rate f¥ , a property that we will need in later sections.

The weights (zi ) i2I in (5.4.3) can be calculated using

ml = å
k2J

clkg(uk) = å
k2J

å
j2J

å
i2I

c̄lkW(uk, uj )ci j zi .

If we de�ne matrices W , C and a vector Z as follows:

Wkj = W(uk, uj ), C̄i j = c̄i j , Z i = zi ,

then this equation reads m = C̄WC̄TZ so we �nd the parameters using 4

Z = ( C̄WC̄T) � 1m,

4 The inverse of C̄WC̄T exists by our requirement that the rows of C, and thus of C̄, are lin-
early independent. Indeed, since W is non-singular and symmetric we can write W = LL LT

for a lower triangular matrix L and a diagonal matrix L with strictly positive diagonal ele-
ments: L ii > 0. A vector x satisfying C̄WC̄Tx = 0 would then imply that 0 = xTC̄WC̄Tx =
yTL y = å i y2

i L ii for y = LTC̄Tx 6= 0 which is impossible since both LT and C̄T have linearly
independent columns.
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and �nally, using ( 5.4.3),

p(0,t) = ( 1 + å
j2J

hjW(t, uj ) )e� f¥ t , (5.4.4)

with h = C̄TZ = C̄T(C̄WC̄T) � 1m. Note that for square and invertible matrices
C̄, such as the case where only distinct zero coupon bond prices are given, this
reduces to h = W � 1C̄� 1m.

We will show numerical examples for this interpolation method using histor-
ical swap date in a later section. But �rst we formulate a different version of
the optimization problem, where we no longer impose to which �xed value
the forward rates must converge.

5.5 the unconstrained optimization problem

The Smith-Wilson procedure de�nes a method to obtain an extrapolated dis-
count curve based on given market data. The asymptotic forward rate f¥ is
given a priori so it is an input parameter for the methodology. Smoothness,
as measured by the functional L a, is used as a criterion for the interpola-
tion between maturities for which data are available. But the requirement of
a given asymptotic forward rate means that the discount curve may become
less smooth around the last maturity for which liquid market data are avail-
able. It would be more consistent to take the asymptotic forward rate as a free
parameter, which is chosenin such a way that we get the smoothest possible
discount curve for all relevant maturities. Mathematically this means that we
propose to optimize the functional L a for a given value of a over all possible
functions g in a certain class but also over all possible values of f¥ . This will
not just give a smoother end result for the discount curve, but also provides
an objective estimation method for the asymptotic forward rate in terms of
market quotes for bond and swap data.

Problem 5.5.1. (Smoothest discount curve with converging forward rates)
Find the minimizer for f¥ in

min
f¥

min
g2H ( f¥ )

L a[g] (5.5.1)

in which

H ( f¥ ) = f g 2 C2(R+ ) j g 2 F 0, å
j2J

ci j g(uj ) = mi , for all i 2 I g ,

with the ci j andmi as de�ned in (5.4.2).
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It turns out that the asymptotic forward rate can be characterized explicitly as
the solution of a matrix equation. We de�ne the matrices

Wi j = W(ui , uj ), D f
ij = e� f uj 1i= j , Ui j = uj1i= j ,

and e a vector full of ones in RnJ .

Theorem 5.5.2. For an nI � nJ cash�ow matrix C and price vectorm 2 RnI the
optimized asymptotic forward rate f= f¥ of Problem5.5.1 solves

(m � CD f e)T(CD f WD f CT) � 1CD f U

�
�

e+ WD f CT(CD f WD f CT) � 1(m � CD f e)
�

= 0 .

If the cash�ow matrixC is invertible this simpli�es to

å
j2J

å
k2J

(ujp je
f uj ) [W � 1]jk (p kef uk � 1) = 0 .

with p = C� 1m.

This equation can be solved rather easily using numerical algorithms since
only the matrix D f contains the parameter to vary over. Calculating the op-
timized asymptotic forward rate therefore typically takes only a fraction of a
second.

5.6 an alternative method

The Smith-Wilson interpolation method is a transparent method which is easy
to implement since it can be directly applied to bond and swap data. But it has
some important disadvantages. The parameter a, which in�uences the speed
of convergence to the asymptotic forward rate, needs to be de�ned a priori and
for some values of a the resulting zero coupon bond prices may become nega-
tive. It is also possible that the discount function t ! p(0,t) is not decreasing
for certain values of t, which corresponds to the possibility of a negative for-
ward rate. Moreover, there is the question of smoothness of forward rates. The
Hull-White model that we mentioned earlier is a relatively simple and popular
Markovian model for stochastic interest rates, which allows a perfect �t to a
given initial term structure. In that model, one assumes that short rates follow
a diffusion process driven by a Brownian Motion process with mean reversion
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at a certain speedk > 0 towards a time-varying level q(t). The function q can
be used to give a perfect calibration for any initial term structure p(0,t) by
using the corresponding initial forward curve f (0,t) and its derivative with
respect to maturity:

q(t) =
1
k

¶
¶t

f (0,t) + f (0,t) +
s2

2k2 (1 � e� 2kt ) .

If our initial term structure is modeled using the Smith-Wilson method, then

q(t) depends on ¶
¶t f (0,t) = � ¶2

¶t2 ( ln p(0,t)) which involves a combination of
second order derivatives of the functions W(t, uj ). As shown in proposition
5.3.1, these second order derivative functions are continuous but not differen-
tiable which leads to a lack of smoothness in Hull-White calibration results in
any of the maturity points uj .

To overcome some of these problems, we now propose two alternative ex-
trapolation methods. Where the Smith-Wilson approach takes the �rst and
second order derivatives of the (transformed) discount curve as a criterion for
smoothness, we will instead focus on the smoothness of the forward curve
or the yield curve itself. More precisely, we will minimize the weighted in-
tegrals over �rst and second order derivatives of the forward or yield curve
under the conditions that forward rates converge and that the market prices
of a set of given �xed income instruments is �tted perfectly. Since p(0,t) =
exp(�

Rt
0 f (0,s)ds) = exp(� ty(0,t)) this will also guarantee that p, and hence

all coupon bond prices, will always be strictly positive. If we apply the crite-
rion to the yield curve the order of differentiability of the discount curve does
not change but if we apply the criterion to the forward curve, it will lead to a
discount curve with a higher order of differentiability.

We formalize the new optimization problem as follows.

Problem 5.6.1. (Smoothest forward or yield curve with converging forward
rates)
Find

min
g2H f

L a[g], min
g2H y

L a[g], (5.6.1)

in which

H f =
�

g 2 C2(R+ )
�
�
� g 2 F a, å

nJ
j= 1 ci j e�

Ruj
0 g(s) ds = mi , for i 2 I

�
,

H y =
n

g 2 C2(R+ )
�
�
� g 2 F a, å

nJ
j= 1 ci j e� uj g(uj ) = mi , for i 2 I

o
.
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Figure 5.6.1: Scaled functions � W(t, u)/ (au) and W(t, u) for a = a = 1/ 10 and
� W(� t, u)/ (au) and W(� t, u) for a = a = 1/ 2. W in red (bottom) and
W in blue (top).

Note that g(0) = a for functions g in H f or H y so the initial short rate r0 :=
f (0, 0) equals a given constant a. This implies that we assume that the short
rate is given. If this is not the case, we may determine its value by including
it in the optimization procedure. We will show later in this section how to do
this.

This problem can be solved explicitly in terms of the earlier de�ned functions
W and a different class of interpolating and extrapolating functions:

W(t, u) = 1 � e� at cosh(au) � 1
1/ 2a2u2

+ 1t � u

 
cosh(a(u � t)) � 1 � 1/ 2a2(u � t)2

1/ 2a2u2

!

. (5.6.2)

These functions can be written as af�ne combinations of integrals of Smith-
Wilson functions and are therefore smoother than the Smith-Wilson functions
themselves, see Figure5.6.1.
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Theorem 5.6.2. If solutions for Problem5.6.1 exist, they must be of the form

g f (t) = g(0) + å
i2I

z f
i å

j2J
p f

j ci j u2
j W(t, uj ) ,

gy(t) = g(0) + å
i2I

zy
i å

j2J
p y

j ci j ujW(t, uj ) ,
(5.6.3)

with the functionsW as de�ned in (5.6.2) and where the(z f
i ) i2I and (p f

j ) j2J solve,
for all i 2 I ,

mi = å
j2J

ci j p
f
j , (5.6.4)

and, for k2 J ,

� ( ln p f
k )/ uk = g(0) + å

i2I
z f

i å
j2J

p f
j ci j u

2
j

1
uk

Z uk

0
W(s, uj )ds, (5.6.5)

while the(zy
i ) i2I and (p y

j ) j2J should solve, for all i2 I ,

mi = å
j2J

ci j p
y
j (5.6.6)

and, for k2 J ,

� ( ln p y
k)/ uk = g(0) + å

i2I
zy

i å
j2J

p y
j ci j ujW(uk, uj ). (5.6.7)

For every u > 0 we have that W(0,u) = 0 and lim t! ¥ W(t, u) = 1 and the
functions t ! W(t, u) become linear for very small positive values of t in
the sense that ¶2

1W(0,u) = 0 . Moreover, if a and a go to in�nity, the scaled
interpolating functions t ! W(t, u)/ (au) and t ! W(t, u) will converge to
1 for t > u. In the limit, the interpolating functions g(t), gy(t) and g f (t) are
thus all constant after the last maturity point un which is considered in the
interpolation 5.

5 Before EIOPA introduced the ultimate forward rate methodology some central banks, such
as the Dutch Central Bank, used an extrapolation method where the forward rate for the last
liquid maturity was taken to be the value for all forward rates beyond that maturity.
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We can use this to derive expressions for the asymptotic forward rate under
both methods. Since lim t! ¥ W(t, u) = 1 and lim t! ¥ W(t, u) = au for all u > 0,
this follows from ( 5.6.3):

f f
¥ = lim

t! ¥
g f (t) = g(0) + å

i2I
z f

i å
j2J

p f
j ci j u

2
j , (5.6.8)

f y
¥ = lim

t! ¥
gy(t) = g(0) + å

i2I
zy

i å
j2J

p y
j ci j au2

j . (5.6.9)

We will now show that we can write these two estimated asymptotic forward
rates in terms of a linear combination of yields at different maturities. Let

yk = y(uk) = � ln p(0,uk)/ uk,

denote the yield for maturity uk when 1 � k � n. We de�ne u0 := 0 in order
to write y0 = f (0, 0) = y(u0) for the short rate.

Corollary 5.6.3. The optimized asymptotic forward rates can be written as a linear
combination of the yields:

f¥ =
n

å
k= 0

vkyk.

The weightsf vk, k = 1 . . .ng equal vk = å n
j= 1[G� 1]jk and v0 = 1 � å n

k= 1 vk, where

the matricesG = G f andG = Gy for the forward and yield curve based methods are:

G f
kj =

1
uk

Z uk

0
W(s, uj )ds, Gy

kj =
1

auj
W(uk, uj ) .

If the matrix with cash�ows Ci j is invertible, we can observe the yields directly
since p = C� 1m and yk = � ( ln p k)/ uk. In that case f f

¥ and f y
¥ can be calcu-

lated as a linear combination of directly observable quantities in the markets,
with weights that are �xed and can be determined beforehand for a given set
of maturities (ui ) i2I .

If the short rate is not given a priori it can be chosen as a free parameter in
the optimization problems. An explicit formula for this value of the short rate
which gives the smoothest curve for small maturities can be derived when the
cash�ow matrix is invertible.



5.7 estimates of asymptotic forward rates 117

Corollary 5.6.4. If n I = nJ = n, (ci j ) i2I , j2J is an invertible matrix and the
initial short rate is not known, then the previous formula holds if we substitute for the
unknown short rate the optimized value

y0 =

n

å
j= 1

1
uj

n

å
k= 1

G� 1
jk

y(uj ) + y(uk)
2

n

å
j= 1

1
uj

n

å
k= 1

G� 1
jk

,

whereG equalsG f or Gy as de�ned above.

Figure 5.7.1: Inter- and extrapolation of Datastream swap data up to maturity 20 on
March 29, 2013. Blue lines show yield curves, red lines forward curves.
Dashed lines correspond to the EIOPA forward rate limit of 4.2% while
solid curves are based on forward rates with a limit that is not speci�ed
a priori.
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5.7 estimates of asymptotic forward rates

In this section we present the results of an empirical study of the extrapolation
methods that we introduced earlier. Input data consisted of historical EURI-
BOR swap rates on all trading days in the last ten years that were obtained
from Datastream. All rates were middle rates and quotes were given with an
accuracy that varied from 0.50 basis point (in the beginning of the dataset) up
to 0.01 basis point (for the most recent data). Data for swaps with maturities
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 40 and 50 years were downloaded and we
always used all swap rates up to and including maturity 20 but sometimes
included maturity 30 as well and sometimes included all rates, as will be indi-
cated below.

An example of inter- and extrapolated yield and forward curves is shown in
Figure 5.7.1 which shows results for the market data of March 29, 2013. We
used all swap data up to and including maturity 20 years and took a = 1/ 10,
the value used in the original proposal of EIOPA.

The solid lines represent the smoothest extension of the discount curve (top),
yield curve (bottom left) and forward curve (bottom right) as measured by our
operator L , whereas the dashed lines correspond to extrapolation to the ulti-
mate forward rate of 4.2% speci�ed by EIOPA. We see that the restriction that
the forward rate must converge to that asymptotic value causes the forward
curve to show a kink around maturity 20, i.e. at the last maturity for which
market data was included in the construction of the curves. The solid lines in
the three �gures show that in all the three methods proposed in this chapter,
where such a restriction is no longer imposed, the kink disappears. As a result
we �nd asymptotic values for forward rates that are much lower than 4.2%.
Moreover, the asymptotic values and the ensuing term structures seem to be
very consistent across the three methods.

Figure 5.7.2 can be used to examine this consistency between the three pro-
posed methods, as well as the in�uence of the maturities that are included to
construct the curves. It shows monthly updates for the estimated asymptotic
forward rate f¥ generated by the methods which smooth the discount curve
(top graph), the yield curve (middle graph) and the forward curve (bottom
graph). Estimates are displayed for the cases where instruments are interpo-
lated up to 20 years (red line), 30 years (blue line) and 50 years (purple line).
The three graphs show that the �rst two methods provide estimates which are
more stable over time than the last method. Indeed, the third method only
gives good results when the last swap with maturity 50 is included; if this
not the case then the estimates are too volatile to be of practical use. We also
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Figure 5.7.2: Inter- and extrapolation based on Datastream swap data up to maturity
T = 20, 30, 50 when applying our objective functional L to the discount
curve (top �gure), yield curve (middle �gure) and forward curve (bottom
curve).
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Figure 5.7.3: The same quantities are shown as in the previous �gure but now on a
daily basis. The forward curve method in the bottom graph gave very
volatile results after 2009when the last included maturity was taken to
be 20 or 30, so these results have been omitted.
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note that before the �nancial crisis of 2008, asymptotic rates were close to the
assumed value of 4.2% but they have dropped substantially since.

After 2012the �rst two methods show values which do not differ much when
market data beyond maturity 20 are included. Between 2009 and 2012 there
is a more marked effect but the difference between results up to and beyond
maturity 30 are smaller than 25basis points at all times for the second method,
which is based on yield curve smoothening. We conclude that extrapolation
methods which implement an explicit trade-off between �rst and second order
derivatives of the yield curve give stable estimates when data up to maturity
20 are used. But inclusion of the data for maturity 30 seems preferable since
this does not lead to more volatile estimates, and swap rates of maturities up
to 30 or up to 50 years give roughly the same estimates.

The effects discussed above are even more pronounced in Figure 5.7.3, in
which the same estimates of the asymptotic forward rate are plotted but now
for a daily update frequency. For the last method only results for maturity 50
are shown since the estimates are too volatile when earlier maturities are taken
as the last liquid point. This suggests that extrapolation of yields is possible
beyond maturity 20 but that market-implied forward rates are not smooth
enough to allow extrapolation if information from the far end of the curve is
not used. We notice again that if extrapolation is applied to the discount curve
or the yield curve then the choice of the last used maturity only mildly affects
the asymptotic estimates that are found after 2011. This supports the use of
such extrapolation methods to estimate long-term yields.

5.8 conclusions

We have investigated inter- and extrapolation techniques that can be used to
create discount curves from observed market data under different assump-
tions on asymptotic forward rates. We have shown that Smith-Wilson extrap-
olation, which requires the a priori speci�cation of the asymptotic forward
value, can be extended in such a way that the value of this limit is implied by
market data. Moreover, we show how the smoothness criterion of the original
problem can also be applied to the forward or yield curve instead of the dis-
count curve. This leads to a market-consistent asymptotic forward rate which
can be written as a weighted combination of yields at earlier maturities, with
weights that can be calculated beforehand. This provides an intuitive char-
acterization of asymptotic forward rates in terms of well understood market
information.
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On days where reliable market information is available for high maturities
these quotes can be easily incorporated into the extrapolation method, while
at times of reduced liquidity for the highest maturities the same method can
be used with a restricted set of maturities. We �nd that since 2012the use of
market data up to maturities 20, 30 or 50 gives similar results when extrapo-
lation is based on yield curves. Before 2012 it seems best to use all available
maturities up to 50 since the inclusion of later maturities does not lead to an
increase in the volatility of the estimates. This suggests that the market infor-
mation at higher maturities is reliable enough to be of use in the estimation
process.

In this chapter we always assumed that market prices must be �tted exactly.
If one allows some mispricing of market instruments in return for smoother
curves, a different optimization problem must be solved. One could keep the
same optimization functional L a, but one would have to impose, for example,
that the weighted sum of pricing errors does not exceed a certain threshold
value. Taking that value equal to zero will give back our old solutions but
by varying it we can implement a tradeoff between smoothness and pricing
accuracy. Such problems have been studied for the case where there are no
constraints on the asymptotic behavior of forward rates and when forward
rates are observed directly (see for example Andersen and Piterbarg (2010)).
Finding the solution under our additional requirements seems a challenging
open problem.

5.9 proofs

Proof of Proposition5.3.1.
Assume that W(t, u) solves this differential equation and satis�es the condi-
tions stated for a certain u > 0. We consider the differential equations for
t > u and t < u separately. In both cases we have a linear equation which is
easily seen to haveau and at as possible solutions respectively while the homo-
geneous equation is solved by linear combinations of eat and e� at . Therefore

t < u : W(t, u) = at + c1eat + c2e� at ,

t > u : W(t, u) = au + c3eat + c4e� at .

A �nite limit for t ! ¥ is only possible if c3 = 0, and the solution being zero
at t = 0 implies that c1 = � c2 so we can actually reduce the solution to

t < u : W(t, u) = at + c1(eat � e� at ),

t > u : W(t, u) = au + c4e� at .
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Matching value and derivative at t = u gives c1eau = ( c1 + c4)e� au and a(1 +
c1eau + c1e� au) = � ac4e� au. This gives c1 = 1/ 2e� au and c4 = 1/ 2(eau � e� au)
which proves the result.

Proof of Proposition5.3.2.
By independence a cov(Zt + Lt , Zu � Lu) = a cov(Zt , Zu) � a cov(Lt , Lu) so the
result follows immediately from

cov(Lt , Lu) =
Z min (t,u)

0
e� a(t � s)e� a(u� s)ds = 1/ 2ae� a(t+ u) (e2a min (t,u) � 1)

= 1/ 2ae� a(max(t,u)� min (t,u)) � 1/ 2ae� a(t+ u)

= 1/ 2ae� ajt � uj � 1/ 2ae� a(t+ u) .

Proof of Proposition5.3.3.
SinceI is Gaussian with mean zero, the conditional expectation E [ It j Iu1, ..., Iun ]
equals å j ej (t) Iuj with e(t) = S� 1b(t) for Si j = E Iui Iuj and bj (t) = E It Iuj . But

since dL = dV � aLdt = dV � adI, we have It = a� 1(Vt � Lt ) = a� 1
Rt

0 (1 �
e� a(t � s) )dVs so we �nd

E It Iu = a� 2
Z min (t,u)

0
(1 � e� a(t � s) )(1 � e� a(u� s) )ds

= a� 2[ min (t, u) + cov(Lt , Lu) � (e� at + e� au)
Z min (t,u)

0
easds ]

= a� 3[a min (t, u) + 1/ 2e� ajt � uj � 1/ 2e� a(t+ u)

+ ( e� at + e� au)(1 � ea min (t,u) )]

= a� 3[a min (t, u) � 1/ 2e� ajt � uj + 1/ 2e� a(t+ u)

+ ( � e� a(t+ u) + e� at + e� au � 1) ]

= a� 3(W(t, u) � (1 � e� at )(1 � e� au)) .

This gives the result by de�ning Hi j = a3Si j .

Proof of Corollary5.3.4.
Differentiating Eq. ( 5.3.3) with X t = B� 1

t with respect to wi we obtain, for
1 � i � n,

0 = � E [2(B� 1
t �

n

å
j= 1

ŵj B
� 1
uj

)B� 1
ui

] .
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Rearranging terms yields
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. (5.9.1)

The random variables ln Bui = Iui , 1 � i � n, have a multivariate Gaussian
law with a moment generating function that can be expressed in terms of
its mean and covariance matrix. Using the results obtained in the proof of
proposition 5.3.3 we �nd that, for all 1 � i , j � n,

ln E
h
B� 1

ui
B� 1

uj

i
= ln E

h
e
� ln Bui � ln Buj

i
= ln E

h
e
� Iui � Iuj

i

= � E [Iui ] � E
h
Iuj

i
+

1
2

Var( Iui ) +
1
2

Var( Iuj ) + Cov( Iui , Iuj )

= � E [Iui ] � E
h
Iuj

i
+

1
2a3

�
H (ui , ui ) + H (uj , uj ) + 2H (ui , uj )

�
.

Hence Eq. (5.9.1) can be written as H̄ŵ = Ĥ (t, u) and from the assumed in-
vertibility of H̄ we conclude that ŵi = å j2J ( H̄ � 1) i j Ĥ (t, uj ).

Proof of Proposition5.3.5.
We �rst solve the eigenvalue problem lf (t) =

RT
0 W(t, u)f (u)du by writing

lf (t) =
Z t

0
f (u)[au � 1/ 2e� a(t � u) + 1/ 2e� a(t+ u) ]du

+
Z T

t
f (u)[at � 1/ 2ea(t � u) + 1/ 2e� a(t+ u) ]du

=
Z t

0
f (u)[au � e� at sinh(au)]du +

Z T

t
f (u)[at � e� au sinh(at)]du,

so in particular f (0) = 0 and

lf (T) =
Z T

0
f (u)[au � e� aT sinh(au)]du.

Differentiating gives

lf 0(t) = a
Z t

0
f (u)e� at sinh(au)du + a

Z T

t
f (u)[ 1 � e� au cosh(at) ]du,
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and in particular

lf 0(T) = ae� aT
Z T

0
f (u) sinh(au)du.

Differentiating twice gives

lf 00(t) = af (t)e� at sinh(at) � af (t)(1 � e� at cosh(at))

� a2
Z t

0
f (u)e� at sinh(au)du

+ a2
Z T

t
f (u)[ � e� au sinh(at) ]du

= � a2
Z t

0
f (u)e� at sinh(au)du + a2

Z T

t
f (u)[ � e� au sinh(at) ]du

= a2( lf (t) � a
Z t

0
uf (u)du � at

Z T

t
f (u)du )

which shows that f 00(0) = a2lf (0) = 0 and

lf 00(T) = a2( lf (T) � a
Z T

0
uf (u)du )

= � a2
Z T

0
f (u)e� aT sinh(au)du = � alf 0(T),

so f 00(T) = � af 0(T). Differentiating once more we �nd

lf 000(t) � la 2f 0(t) = � a3
Z T

t
f (u)du,

lf 0000(t) � la 2f 00(t) = a3f (t),

and f 000(T) = a2f 0(T). Substitution of f (t) = exp(mt) in the last equation
gives l (m2)2 � la 2m2 � a3 = 0 so m2 = 1/ 2a(a �

p
a2 + 4a/ l ). De�ne z2 =

1/ 2(
p

1 + 4/ (al ) � 1) then m2 = � z2a2 or m2 = ( 1 + z2)a2 and az2(1 + z2) =
1/ l . Solutions must therefore take the form

f (t) = c1 sin(tza) + c2 cos(tza) + c3 sinh(ta
p

1 + z2) + c4 cosh(ta
p

1 + z2) .

Since f (0) = f 00(0) = 0 we must have c2 = c4 = 0. The boundary condition
f 000(T) � a2f 0(T) = 0 shows that

0 = c1(� z3a3 � a2az) cos(Tza)

+ c3((1 + z2)3/ 2a3 � a2a
p

1 + z2) cosh(T
p

1 + z2a),

0 = � c1z(z2 + 1) cos(Tza) + c3z2
p

1 + z2 cosh(T
p

1 + z2a),

0 = � c1

p
1 + z2 cos(Tza) + c3zcosh(T

p
1 + z2a) .
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This shows that f (t) must be of the form

f (t)/ c = z
sin(tza)
cos(Tza)

+
p

1 + z2 sinh(ta
p

1 + z2)

cosh(Ta
p

1 + z2)
,

for some c which is not zero. The last boundary condition f 00(T) = � af 0(T)
then gives the equation for the zn. We see that there are countably in�nite
many solutions since for all k 2 N there is at least one solution on the interval
](k � 1/ 2)p / (aT), (k + 1/ 2)p / (aT)[. This is because the left hand side of (5.3.5)
is continuous in z on that interval and goes to � ¥ for z # (k � 1/ 2)p / (aT) and
to + ¥ for z " (k + 1/ 2)p / (aT). The f n are orthogonal on [0,T] since

l n

Z T

0
f n(s)f m(s)ds=

Z T

0

Z T

0
W(s, u)f n(u)duf m(s)ds

= l m

Z T

0
f n(u)f m(u)du,

and l m 6= l n. This makes f n(t) an orthonormal set of functions and our
de�nition of X then gives

E(X t Xu) =
1
a

¥

å
n= 0

f n(t)f n(u)
z2

n(1 + z2
n)

=
¥

å
n= 0

l nf n(t)f n(u),

so for all m 2 N we �nd
Z T

0
[W(t, u) � E(X t Xu)]f m(u)du = l mf m(t) � l mf m(t) = 0.

Since the(f m)m2N form an orthonormal basis of L2[0,T] by Mercer's theorem,
this proves the result.

Proof of Theorem5.4.2.
We introduce Lagrange multipliers a3zi to get the unconstrained optimization
problem

L̃ a[g] =
Z ¥

0
[g00(s)2 + a2g0(s)2]ds + a3 å

i2I
zi (mi � å

j2J
c̄i j g(uj )) .

Local minima must satisfy for every h in F0:

0 = 1/ 2
¶
¶e

L̃ a[g + eh]
�
�
�
e= 0

=
Z ¥

0
[g00(s)h00(s) + a2g0(s)h0(s)]ds � 1/ 2a3 å

i2I
å
j2J

zi c̄i j h(uj )

=
Z ¥

0
h0(s) [ � g000(s) + a2g0(s) � 1/ 2a3 å

i2I
zi å

j2J
c̄i j 1s� uj ] ds,
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where we have performed a partial integration on the function h0(t)g00(t) and
used that h, g 2 F 0 which implies that h(0) = 0 and that g00(t) vanishes for
t = 0 and t ! ¥ . This must hold for all h 2 F 0 so we can thus conclude that
for all s > 0

� g000(s) + a2g0(s) � 1/ 2a3 å
i2I

zi å
j2J

c̄i j 1s� uj = 0. (5.9.2)

This ODE has the solution (for real constants ai )

g0(t) = a1eat + a2e� at + 1/ 4a2
Z t

0
(ea(s� t) � e� a(s� t) ) å

j2J
ej1s� uj ds,

where we have lightened notation by writing ej = å i2I zi c̄i j . The last term
equals

1/ 4a2 å
j2J

ej

Z min (t,uj )

0
(ea(s� t) � e� a(s� t) )ds

= 1/ 4a å
j2J

ej (ea(min (t,uj )� t) + e� a(min (t,uj )� t) )

= 1/ 2a å
j2J

ej (1t< uj + cosh(a(t � uj ))1t> uj ) .

Integrating g0(t) and using that g(0) = 0 thus shows that the optimal solution
must have the form

g(t) = a3 sinh(at) + a4(1 � e� at )

+ 1/ 2 å
j2J

ej (a min (t, uj ) + sinh(a(t � uj ))1t> uj ) ,

for certain real constants a3 and a4. For t ! ¥ the value of g(t) will in-
volve a term eat times (1/ 2a3 + 1/ 4 å j2J eje

� auj ) so we must choose a3 =
� 1/ 2 å j2J eje

� auj to make this term vanish. We then get

g(t) = a4(1 � e� at ) + å
j2J

ej (a min (t, uj ) + 1/ 2ea(t � uj ) (1t> uj � 1)

� 1/ 2e� a(t � uj )1t> uj + 1/ 2e� a(t+ uj ) )

= a4(1 � e� at ) + å
j2J

ej (a min (t, uj ) � 1/ 2e� ajt � uj j + 1/ 2e� a(t+ uj ) )

= a4(1 � e� at ) + å
j2J

å
i2I

zi c̄i j W(t, uj ) .
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From proposition 5.3.1 it follows that g00(0) = � a2a4. Due to the requirement
g00(0) = 0 we thus have a4 = 0, the result follows.

Proof of Theorem5.5.2.
From equation (5.4.4) and the remarks below it we know that g(t) = å j hjW(t, uj )
with h = C̄T(C̄WC̄T) � 1m̄. We now remark that for any g 2 F 0 � H ( f¥ ) we
have that

L a[g] =
Z ¥

0
(g00(s)2 + a2g0(s)2)ds

=
�
g0(s)g00(s)

� s= ¥
s= 0 �

Z ¥

0
g0(s)g000(s)ds+ a2

Z ¥

0
g0(s)2ds

=
Z ¥

0
g0(s) ( � g000(s) + a2g0(s) )ds. (5.9.3)

But optimality conditions for g in the proof of Theorem 5.4.2, see (5.9.2), imply
that � g000(s)2 + a2g0(s) = 1/ 2a3 å j hj1s� uj and g(0) = 0 so

L a[g] = 1/ 2a3 å
j

hj

Z uj

0
g0(s)ds = 1/ 2a3 å

j
hj (g(uj ) � g(0))

= 1/ 2a3 å
j

hj å
k

hkW jk = 1/ 2a3 � m̄T(C̄WC̄T) � 1C̄WC̄T(C̄WC̄T) � 1m̄

= 1/ 2a3 � m̄T(C̄WC̄T) � 1m̄.

We denote C̄WC̄T by A to lighten notation. Setting the derivative with respect
to the asymptotic forward rate f equal to zero gives

0 =
¶

¶f
(m̄TA � 1m̄) = m̄T(2A � 1 ¶m̄

¶f
� A � 1 ¶A

¶f
A � 1m̄ ).

Since ¶m̄
¶f = ¶

¶f (m � CD f e) = � CD f Ue = � C̄Ue and

¶A
¶f

=
¶

¶f
(CD f WD f CT) = 2CD f UW (D f )TCT = 2C̄UW C̄T,

we must have that

0 = � 2m̄TA � 1C̄U (e+ W C̄TA � 1m̄ ) ,

which gives the �rst result after substitution of C̄ = CD f and m̄ = m � CD f e
to write everything in terms of the original cash�ow matrix C and price vector
m. If C is invertible, we can write p = C� 1m and reduce the equation to the
form (D � f p � e)TW � 1U (D � f p ) = 0 which gives the second result.
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Proof of Theorem5.6.2.
Suppose that g f = ĝ is the solution to Problem 5.6.1 for the forward curve,
then ĝ must be a local optimum of the following functional with Lagrangian
parameters zi for the constraints:

eL a[g] = 1/ 2

Z ¥

0
g00(s)2 + a2(g0(s)) 2ds+ 2a2 å

i2I
zi

 

� mi + å
j2J

ci j e
�

Ruj
0 g(s)ds

!

,

under the additional requirements g00(0) = lim t! ¥ g00(t) = 0 and for a given
g(0) but free limit lim t! ¥ g(t). This implies that for every h satisfying h00(0) =
lim
t! ¥

h00(t) = h(0) = 0, the perturbed solution g := ĝ + #h must satisfy 0 =

( d
d#

eL a[ĝ + #h])#= 0. De�ne p j = exp(�
Ruj

0 ĝ(s)ds), then

0 =
Z ¥

0

h
ĝ00(s)h00(s) + a2ĝ0(s)h0(s)

i
ds� 2a2 å

i2I
å
j2J

zi ci j p j

Z uj

0
h(v)dv

= [ h0(s)g00(s)]s= ¥
s= 0 +

Z ¥

0
h0(s)

h
� ĝ000(s) + a2ĝ0(s)

i
ds

� 2a2 å
i2I

å
j2J

zi ci j p j

� �
h(t) t

� uj
0 �

Z s= uj

s= 0
h0(s) s ds

�

=
Z ¥

0
h0(s)

"

� ĝ000(s) + a2ĝ0(s) � 2a2 å
i2I

zi å
j2J

ci j p j (uj � s)1s� uj

#

ds.

In the last step we used that ujh(uj ) = uj
Ruj

0 h0(s)ds since h(0) = 0. Variation
over h gives

� ĝ000(s) + a2ĝ0(s) = 2a2 å
j2J

ef
j (uj � s)1s� uj (5.9.4)

where ef
j = p j å i zici j . The solution to this differential equation can be written

in terms of the functions W(�, u) which are three times differentiable in all
points and satisfy for all u > 0

¶2
1W(0,u) = lim

t! ¥
¶2

1W(t, u) = 0, lim
t! ¥

W(t, u) = 1, W(0,u) = 0,

while

� ¶3
1W(t, u) + a2¶1W(t, u) = 2a2/ u2(u � t)1t � u, (5.9.5)

as may be shown by direct differentiation. The solution to the ODE ( 5.9.4)
must thus be of the form

g(s) = a0 + a1e� at + a2eat + å
j2J

h f
j W(s, uj ),
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with h f
j = u2

j ef
j = u2

j p j å i zici j and for certain constants a0, a1 and a2 in R.

The constraint that g00(0) = lim
t! ¥

g00(t) = 0 gives a1 = a2 = 0 and we have

a0 = g(0). Substituting the expression for g in the de�nition of (p j ) j2J then
gives the result (5.6.4)-(5.6.5) for the forward curve.

For the problem of �nding the best yield curve g = gy, we want to minimize

eL a[g] = 1/ 2

Z ¥

0
[g00(s)2 + a2g0(s)2]ds� a3 å

i2I
zi (mi � å

j2J
ci j e

� uj g(uj ) ),

under the constraints g00(0) = lim t! ¥ g00(t) = 0 and for a given g(0) but
unspeci�ed limit lim t! ¥ g(t). We set 0 = ( d

de
eL a[g + eh])e= 0 with h00(0) =

lim t! ¥ h00(t) = h(0) = 0:

0 =
Z ¥

0
[g00(s)h00(s) + a2g0(s)h0(s)]ds� a3 å

i
zi å

j
ujci j e

� uj g(uj )h(uj )

=
Z ¥

0
h0(s) [ � g000(s) + a2g0(s) � a3 å

i
zi å

j
ujci j e

� uj g(uj )1f s� uj g ] ds,

so

0 = � g000(s) + a2g0(s) � a3 å
j

ey
j uj1f s� uj g ,

with ey
j = p j å i zici j and p j = e� uj g(uj ) . We know from our reasoning after

equation (5.9.2) that the solution of this ODE, for a given value of g(0) and
under the constraints that g00(0) = lim t! ¥ g00(t) = 0, equals

g(s) = g(0) + å
j

hy
j W(s, uj ) = g(0) + å

j
ujp j å

i
zici j W(s, uj ) ,

with hy
j = uje

y
j . Therefore, if we can �nd (p j ) j2J and (zi ) i2I such that

� ( ln p k)/ uk = g(0) + å
i

å
j

zici j ujp jW(uk, uj )

mi = å
j

ci j p j ,

then all optimality conditions are ful�lled.
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Proof of Corollary5.6.3.

De�ne as before h f
j = å i z f

i ci j p
f
j u2

j and hy
j = å i zy

i ci j p
y
j uj . Then we have by

(5.6.4)-(5.6.9) that

yk = g(0) + å
j

h f
j G f

kj f f
¥ = g(0) + å

j
h f

j

yk = g(0) + å
j

hy
j Wy

kj f y
¥ = g(0) + å

j
hy

j (auj )

= g(0) + å
j

(hy
j auj )Gy

kj

so

f f
¥ = g(0) + å

j
å
k

[G f ]� 1
jk (yk � g(0)) ,

and

f y
¥ = g(0) + å

j
å
k

[Gy]� 1
jk (yk � g(0)) ,

which gives the result after rearranging terms.

Proof of Corollary5.6.4.
We �rst note that for any g in H f or H y and any b 2 R we have by (5.9.3) that

L b[g] =
Z ¥

0
g0(s)( � g000(s) + b2g0(s))ds. (5.9.6)

For g(s) = g f (s) we found g(s) = g(0) + å j h f
j W(s, uj ) and in the proof of

Corollary 5.6.3 we established h f
j = å k[G f ]� 1

jk (yk � g(0)) so because of (5.9.4)
and (5.9.5) this gives

L a[g] = 2a2 å
j

h f
j u� 2

j

Z uj

0
g0(s)(uj � s)ds

= 2a2 å
j

h f
j u� 2

j

Z uj

0
(g(s) � g(0))ds

= 2a2 å
j

h f
j u� 1

j (y j � g(0))

= 2a2 å
j

u� 1
j å

k

[G f ]� 1
jk (yk � g(0))( y j � g(0)) .
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Setting the derivative with respect to the free parameter g(0) equal to zero
and rewriting then establishes the result for the forward curve optimization.

For the result of the yield curve optimization we have g(s) = gy(s) = g(0) +
å j hy

j W(s, uj ) and hy
j = 1

auj
å k[Gy]� 1

jk (yk � g(0)) . Then (5.9.6) gives

L a[g] =
Z ¥

0
g0(s)a3 å

j
hy

j 1f s� uj g ds

= a3 å
j

hy
j (g(uj ) � g(0)) = a3 å

j
hy

j (y j � g(0))

= a3 å
j

1
auj

å
k

[Gy]� 1
jk (yk � g(0))( y j � g(0)) ,

so we �nd the same result but with a different matrix G.



S A M E N VAT T I N G ( S U M M A RY I N D U T C H )

Levensverzekeraars en pensioenfondsen bieden �nanciële producten aan waar-
van de waarde afhangt van sterfte- en renteontwikkelingen op de lange termijn.
Deze lange-termijn risico's vormen het onderwerp van dit proefschrift. In
deel I wordt het effect van langlevenrisico op investeringsbeslissingen van
rationele individuen bestudeerd. Deel II behandelt modellen die kunnen bij-
dragen aan een betere beschrijving van de dynamiek van de lange-termijn
rente.

Hoofdstuk2

In hoofdstuk 2 wordt de optimale consumptie en investeringsstrategie van
een rationele investeerder gekarakteriseerd in een markt waarin onverwachte
veranderingen in sterfte-risico verhandelbaar zijn middels een survival bond.
We tonen aan dat, onder geschikte voorwaarden, een unieke optimale strategie
bestaat wanneer de rente en de sterfte-intensiteit gemodelleerd worden door
middel van een Cox-Ingersoll-Ross proces. Dit proces is niet-negatief en be-
schrijft een stochastische �uctuatie rondom een deterministisch tijdsafhankelijk
gemiddelde. Semi-analytische uitdrukkingen voor de optimale consumptie-
en investeringsstrategie worden afgeleid. Condities die de existentie van een
dergelijke optimale strategie garanderen, worden uitgedrukt in termen van de
parameters van het model.

Hoofdstuk3

In hoofdstuk 3 behandelen we de convergentie van de forward rente in Heath-
Jarrow-Morton (HJM) modellen, wanneer de expiratiedatum naar oneindig
gaat. Ten eerste vergelijken we bestaande resultaten uit de literatuur met be-
trekking tot bijna zekere convergentie en convergentie in kans naar een vaste
lange-termijn rente. Ten tweede formuleren we nodige en voldoende voor-
waarden voor de HJM model parameters die garanderen dat het forward rente
proces als semimartingaal uniform convergeert in gemiddelde.
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Hoofdstuk4

In hoofdstuk 4 bestuderen we de implicaties van de Dybvig-Ingersoll-Ross
stelling voor factor modellen voor de termijnstructuur. Deze stelling houdt
in dat de lange-termijn rente niet kan dalen als functie van de tijd. Dit laat
echter onverlet dat de lange-termijn rente een stochastisch verloop kan heb-
ben. Reeds in El Karoui et al. (1998) is opgemerkt dat het eenvoudig is om
een arbitrage-vrij HJM model te formuleren waarbij de lange-termijn rente
stijgt en stochastisch is. Hoofdstuk 4 beantwoordt een open vraag in dit arti-
kel, namelijk of een dergelijk model ook bestaat binnen de klasse van factor
modellen voor de termijnstructuur. De modellen in deze klasse hebben een
duidelijke interpretatie, omdat ze te schrijven zijn als een inproduct van een
vector-waardige stochastische factor met een set parametrisaties van de ren-
tetermijnstructuur. We laten zien dat de constructie van een dergelijk model
mogelijk is, mits het model ten minste drie toestandsvariabelen heeft, en we
geven een expliciet voorbeeld.

Hoofdstuk5

Prijzen van obligaties en swaps zijn in de markt beschikbaar voor een beperkt
aantal looptijden. Omdat verplichtingen van verzekeraars en pensioenfondsen
typisch verbonden zijn aan de levens van polishouders, strekken de looptijden
van deze verplichtingen zich veelal uit voorbij die van de langstlopende liqui-
de instrumenten in de markt. Bij het waarderen van zulke verplichtingen is ex-
trapolatie daarom onvermijdelijk. In hoofdstuk 5 wordt een nieuwe extrapola-
tiemethode voorgesteld die gebaseerd is op een interpretatie van Smith-Wilson
extrapolatie als de oplossing van een variationeel optimalisatie probleem. In
tegenstelling tot de Smith-Wilson procedure, waarin de lange-termijn rente
(de ultimate forward rate) bekend wordt verondersteld, maken we het niveau
van de lange-termijn rente onderdeel van het optimalisatieprobleem. Het re-
sultaat is een extrapolatiemethode die de meest gladde voortzetting geeft van
de in de markt geobserveerde termijnstructuur, waarbij de limiet van de geëx-
trapoleerde curve een schatting geeft voor de ultimate forward rate.
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