The Xanthopsins: a new family of eubacterial blue-light photoreceptors

Published in:
EMBO Journal

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The xanthopsins: a new family of eubacterial blue-light photoreceptors

Department of Microbiology, E.C.Slater Institute, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam, The Netherlands and ²Department of Biochemistry, Physiology and Microbiology, Laboratory of Protein Structure and Function, State University of Ghent, Ledeganckstraat 35, 9000 Ghent, Belgium

¹Present address: Department of Microbiology and Molecular Genetics, Health Science Center at Houston, University of Texas, 6431 Fannin, Houston, TX 77030, USA

³Corresponding author

Photoactive yellow protein (PYP) is a photoreceptor that has been isolated from three halophilic phototrophic purple bacteria. The PYP from Ectothiorhodospira halophilna BN9626 is the only member for which the sequence has been reported at the DNA level. Here we describe the cloning and sequencing of the genes encoding the PYPs from E.halophilna SL-1 (type strain) and Rhodospirillum salexigens. The latter protein contains, like the E.halophilna PYP, the chromophore trans p-coumaric acid, as we show here with high performance capillary zone electrophoresis. Additionally, we present evidence for the presence of a gene encoding a PYP homolog in Rhodobacter sphaeroides, the first genetically well-characterized bacterium in which this photoreceptor has been identified. An ORF downstream of the pyp gene from E.halophilna encodes an enzyme, which is proposed to be involved in the biosynthesis of the chromophore of PYP. The pyp gene from E.halophilna was used for heterologous overexpression in both Escherichia coli and R.sphaeroides, aimed at the development of a holoPYP overexpression system (an intact PYP, containing the p-coumaric acid chromophore and displaying the 446 nm absorbance band). In both organisms the protein could be detected immunologically, but its yellow color was not observed. Molecular genetic construction of a histidine-tagged version of PYP led to its 2500-fold overproduction in E.coli and simplified purification of the heterologously produced apoprotein. HoloPYP could be reconstituted by the addition of p-coumaric anhydride to the histidine-tagged apopPYP (PYP lacking its chromophore). We propose to call the family of photoactive yellow proteins the xanthopsins, in analogy with the rhodopsins.

Keywords: Ectothiorhodospira halophilna/photoactive yellow protein/Rhodobacter sphaeroides/Rhodospirillum salexigens/xanthopsins

Introduction

The photoactive yellow proteins (PYPs) constitute a new family of eubacterial photoreceptor proteins (Hoff et al., 1994b). Members have been isolated from the halophilic phototrophic purple eubacteria Ectothiorhodospira halophilna (Meyer, 1985), Rhodospirillum salexigens (Meyer et al., 1990) and Chromatium salexigens (Koh et al., 1996). PYP is the first eubacterial photoreceptor to be characterized in detail and has recently been shown to contain a unique chromophoric group: thiol ester linked p-coumaric acid (Baca et al., 1994; Hoff et al., 1994a). This is the first demonstration of a co-factor role for p-coumaric acid in eubacteria, previously only known from higher plants (Goodwin and Mercer, 1983). The pathway of biosynthesis of p-coumaric acid has been extensively studied in higher plants (Hahlbrock and Scheel, 1989), but no information is available on the conservation of this pathway in E.halophilna or other eubacteria. In higher plants, the two enzymes of central importance in the metabolic conversions relevant for p-coumaric acid are: phenylalanine ammonia lyase (PAL), which catalyses the reaction from either phenylalanine or tyrosine to p-coumaric acid, and p-coumaryl-CoA ligase (PCL), which activates p-coumaric acid through a covalent coupling to CoA, via a thiol ester bond (Hahlbrock and Scheel, 1989).

The PYP from E.halophilna is by far the best-studied member of this photoreceptor family. Its crystal structure has recently been redetermined at 1.4 Å resolution and shows that the protein has an α/β fold, resembling (eukaryotic) proteins involved in signal transduction (Borgstahl et al., 1995). Evidence has been obtained indicating that PYP functions as the photoreceptor for a new type of negative phototaxis response (Sprenger et al., 1993). Absorption of a blue photon (λmax = 446 nm) induces PYP to enter a cyclic chain of reactions (Meyer et al., 1987). This photocycle involves two intermediates and strongly resembles the photochemistry of the archaeabacterial sensory rhodopsins (Meyer et al., 1987; Hoff et al., 1994c).

Recently, the ORF encoding PYP from E.halophilna BN9626 was cloned and sequenced (Baca et al., 1995). Here we report the cloning and the complete sequence of the pyp genes from E.halophilna SL-1 (the type strain) and Rs.salexigens, which is the first gene cloned from this organism, through reverse genetics. Directly downstream of the pyp gene in E.halophilna we located a gene encoding a CoA ligase homolog, suggesting a plant-like conversion of p-coumaric acid to its CoA derivative before linkage to PYP lacking its chromophore (apoPYP).

Previously, we have reported the presence of a single cross-reacting protein in a large number of eubacteria, with a highly specific polyclonal antibody against PYP (Hoff et al., 1994b). Here we report, using heterologous PCR techniques, the identification of a new PYP homolog in the genetically well-characterized Rhodobacter sphaeroides. This finding opens the way to molecular genetic
studies of the function of PYP. The *E.halophila* pyp gene was heterologously overexpressed in *Escherichia coli* and *R.sphaeroides*, yielding (mainly) apoPYP. The purification of a histidine affinity-tagged derivative of PYP from *E.halophila*, overproduced in *E.coli*, yielded a 2500-fold overproduction of apoPYP. Intact PYP, containing the 465 nm absorbance band (HoloPYP) could be reconstituted by the addition of *p*-coumaric anhydride to the recombinant apoPYP as described for apoPYP (Imamoto et al., 1995). These results will facilitate detailed biophysical studies on a protein with a unique set of characteristics: it is water soluble, photoactive and its structure is known at 1.4 Å resolution.
Results

The pyp genes from E. halophila and R. salexigens

The DNA sequence of a 1.8 kb PvuII–PstI fragment was determined (Figure 1A) and is shown in Figure 1B. The amino acid sequence of *E. halophila* PYP predicted on the basis of this sequence information is identical to the one determined by amino acid sequencing (Van Beeumen *et al.*, 1993), except for position 56 which is a GlN instead of a Glu, as also observed in the DNA sequence of the pyp gene from *E. halophila* BN9626 (Baca *et al.*, 1995). A potential AT-rich (41 mol% GC) promoter region can be identified upstream of the ORF encoding PYP (positions 60–103, Figure 1B), which may be essential for the formation of an open complex for initiation of transcription. Also, a potential ribosome binding site (RBS) is located directly upstream of the PYP ORF. Directly downstream of the PYP ORF an inverted repeat is located (positions 557–587, Figure 1B).

The pyp gene from *R. salexigens* is the first gene cloned from this bacterium. It was localized on a 1.4 kb PvuI–SalI chromosomal fragment. Sequence analysis of this fragment (Figure 2B) showed that it contains the entire ORF encoding PYP; the predicted amino acid sequence contains 125 amino acids and completely matches the amino acid sequence of this protein (Koh *et al.*, 1996). Upstream of the ORF, a potential AT-rich (35 mol% GC) promoter region (positions 638–680, Figure 2B) and ribosome binding site can be recognized, while directly downstream of the ORF an inverted repeat is present (positions 1134–1164, Figure 2B).

Identification of a PYP homolog in R. sphaeroides

Chromosomal DNA from *R. sphaeroides* 2.4.1. was used as template in a PCR with two primers homologous to conserved pyp sequences to yield a 0.3 kb product. The validity of the PCR product was confirmed by Southern hybridization experiments with *R. sphaeroides* chromosomal DNA under stringent conditions, using the PCR fragment as a probe. This revealed strong and specific hybridization signals (data not shown). The DNA sequence of the product showed that the encoding protein sequence was homologous to PYP from *E. halophila, R. salexigens* and *Chromatium salexigens* (Figure 3).

Comparison of PYP sequences

The complete amino acid sequences of the PYPs from *E. halophila, R. salexigens* and *C. salexigens* (Koh *et al.*,...
1996) are homologous, with 66% of the amino acids identical in all three sequences. This result enabled us to obtain the partial sequence of a PYP homolog from \textit{R.sphaeroides} (see above). A partial alignment of these four sequences is shown in Figure 3. All proteins contain the Cys residue that in the \textit{E.halophila} protein has been shown to bind covalently to the chromophore (Van Beeumen \textit{et al.}, 1993). From the 1.4 Å crystal structure of PYP it can be concluded that Tyr42, Glu46, Arg52 and to a lesser degree Thr50 and Tyr98, in the \textit{E.halophil}a PYP, are important for the protein–chromophore interactions that lead to the deprotonation of the \textit{p}-coumaric acid molecule and result in the tuning of the absorbance of this cofactor to 446 nm (Baca \textit{et al.}, 1995; Borgstahl \textit{et al.}, 1995; Kim \textit{et al.}, 1995). These residues are all conserved in the PYPs from \textit{E.halophila}, \textit{Rs.salexigens} and \textit{C.salexigens} (Figure 3), in line with the similarities between these proteins with respect to their absorbance spectrum and photochemical properties (Meyer, 1985; Meyer \textit{et al.}, 1990). In the sequence of the \textit{R.sphaeroides} PYP homolog these six residues, of central importance for the binding of the chromophore, are also conserved, with the exception of Thr 50 (Figure 3). Furthermore, a strong conservation is observed in the sequence VIGKNNF, which forms a type II tight turn between the α4-helix and the β3-strand of PYP (Borgstahl \textit{et al.}, 1995).

Analysis of pyp flanking regions

The 1.8 and 1.4 kb chromosomal fragments from \textit{E.halophila} and \textit{Rs.salexigens} respectively, were examined for the presence of ORFs. In addition to the PYP ORFs presented above, this analysis indicates the presence of a large partial ORF (391 residues) downstream of the \textit{pyp} gene from \textit{E.halophila} (Figure 1B). This ORF was not found in the chromosomal fragment from \textit{Rs.salexigens}. In line with this, comparison of the 1.8 and 1.4 kb chromosomal fragments from \textit{E.halophila} and \textit{Rs.salexigens} showed that the sequence similarity in these fragments is confined to the ORFs encoding PYP.

Upstream of the \textit{pyp} gene from \textit{E.halophila} SL-1 an ORF is located that shows significant homology to the \textit{E.coli} \textit{dada} gene, encoding the small subunit of the membrane bound iron–sulfur flavoenzyme \textit{d}-amino acid dehydrogenase (Olsiewski \textit{et al.}, 1980), as was found in \textit{E.halophila} BN9626 (Baca \textit{et al.}, 1994). The partial ORF downstream of the \textit{pyp} gene from \textit{E.halophila} was further analyzed by searching for sequence similarities with proteins in the SwissProt database. The most similar proteins were found to be a number of CoA ligases from various organisms with ~24% sequence identity and 48% similarity over a stretch of 400 amino acids (Table II). Furthermore, this putative \textit{pcl} gene (see Figure 1A) shows, like the \textit{pyp} gene, a high GC-bias in the wobble position of its codons, which is indicative of its functionality. In \textit{Rs.salexigens} the ORF encoding a CoA liga homolog has not been found downstream from the \textit{pyp} gene. This may suggest a larger intergenic region between \textit{pyp} and the putative \textit{pcl} in this latter organism. This is supported by a Southern blot, showing hybridization of \textit{Rs.salexigens} chromosomal digests with the putative \textit{E.halophila pcl} (M.K.Philips-Jones, unpublished observations).

Identification of the chromophore of \textit{Rs.salexigens} PYP

The chromophore of \textit{Rs.salexigens} PYP was identified as \textit{p}-coumaric acid in the purified protein with high-
Xanthopsins: genes and overexpression

To overexpress PYP from E. halophila, a 0.45 kb AvaII fragment from pYAMA958 containing the pyp ORF, was inserted into the overexpression plasmid pT713 (Studier et al., 1990) to yield pTY13. After transformation of pTY13 to E. coli BL21, 50- to 100-fold overproduction of PYP was observed using Western blots and rocket immuno-electrophoresis (RIEP). However, absorbance spectra of the cytoplasmic fraction of these cells did not show an absorbance band at 446 nm, while this band was expected to be clearly visible on the basis of the concentration of PYP determined by RIEP (data not shown). This indicates that E. coli BL21/pTY13 mainly produces apoPYP, i.e., PYP without the chromophore.

In an attempt to obtain an overexpression system for holoPYP, the plasmid pAKT3 (see Table I), containing the same 0.45 kb insert with the pyp gene from E. halophila, was conjugated to R. sphaeroides DD13. Since this organism is phototrophic, like E. halophila, and therefore produces a large array of pigments, it may also synthesize p-coumaric acid. The DD13 strain was mutated with respect to synthesis of the photosynthetic apoproteins (Jones et al., 1992), reducing the absorbance of the associated pigments, thereby facilitating the observation of the expected absorbance band at 446 nm, caused by holoPYP. RIEP experiments showed that the transconjugant R. sphaeroides DD13/pART3 also produces PYP at levels 100-fold higher than E. halophila (data not shown). Approximately 50% of the PYP produced was associated with the membrane fraction from these cells. However, also in this case the expected absorbance band at 446 nm for holoPYP was lacking (data not shown).

A chimeric version of the pyp gene from E. halophila was cloned in E. coli, which allows one to isolate PYP by the presence of a histidine affinity tag in the gene product and to confirm the lack of the chromophore in PYP produced in E. coli. Surprisingly, E. coli M15/pHisA (see Table I) overproduces PYP at levels of 50 mg/l culture per OD660 unit, as determined by RIEP (Figure 5A), which is ~2500-fold higher than E. halophila and ~50-fold higher than in the case of the two overexpression systems described above. Cell-free extracts from E. coli M15/pHisA were used in Ni-affinity chromatography. This method yielded ~75% pure protein in a single step (Figure 5B). Incubation of the isolated histidine-tagged PYP with enterokinase yielded a product with a molecular weight indistinguishable from native E. halophila apoPYP (Figure 5B). The absorbance spectrum of the isolated histidine-tagged PYP shows that the typical absorbance band in the visible region of the spectrum is completely lacking (Figure 5C). This indicates that the protein produced in this E. coli strain is histidine-tagged apoPYP (HAP).

To demonstrate the usefulness of HAP for further biophysical studies on PYP, we reconstituted HAP with p-coumaric anhydride into holoPYP. The following observations showed that reconstitution of holoprotein was achieved: (i) spectral analysis showed an absorption band at 446 nm, which increased (to saturation) with a stepwise addition of the p-coumaric anhydride; (ii) analysis of absorbance spectra in time showed an increase at 446 nm and a decrease at 350 nm, in line with an increase of holoPYP concentration and a decrease of the anhydride concentration; (iii) purified reconstituted holoPYP showed an absorbance spectrum like that of purified native PYP (Figure 5C); (iv) reconstituted holoPYP can be reversibly bleached after absorption of light (data not shown). The
Table 1. Strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Strains and plasmids</th>
<th>Description</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.coli BL21</td>
<td>hsdS. gal. (λcI857/ind1. Sam7, nin5. lac UV5-T7 gen 1)</td>
<td>Studier and Moffat (1986)</td>
</tr>
<tr>
<td>E.coli TG1</td>
<td>supE, 56 (lac-proAB), hsdS, F'[traD36, proAB', lacP, lacZAM15]</td>
<td>Simon et al. (1983)</td>
</tr>
<tr>
<td>E.coli S17-1</td>
<td>RP4-2(Tc-Mu)(Km-Tn7), thi, pro, hsdR, hsdM+, recA, TpR, SmR</td>
<td>Raymond and Sistrom (1969)</td>
</tr>
<tr>
<td>E.halophila SL1</td>
<td>type strain</td>
<td>Van Niel (1944)</td>
</tr>
<tr>
<td>R.sphaeroides 2.4.1</td>
<td>type strain</td>
<td>Jones et al. (1992)</td>
</tr>
<tr>
<td>Rs.salexigens WS 68</td>
<td>type strain</td>
<td></td>
</tr>
<tr>
<td>Plasmid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCHB500</td>
<td>pRK415 and pSH3 derivative, TcR</td>
<td>Benning and Sommerville (1992)</td>
</tr>
<tr>
<td>pART3</td>
<td>0.45 kb E.halophila Avall fragment cloned into pCHB500</td>
<td>this study</td>
</tr>
<tr>
<td>pQE30</td>
<td>RBSII, 6×His tag, ColE1 ori, ampR</td>
<td>Qiagen</td>
</tr>
<tr>
<td>pHisp</td>
<td>0.42 kb E.halophila PCR product cloned into pQE30</td>
<td>Gibco BRL</td>
</tr>
<tr>
<td>pT713</td>
<td>expression vector, T7 promoter, AmpR</td>
<td>this study</td>
</tr>
<tr>
<td>pTY13</td>
<td>0.45 kb E.halophila Avall fragment cloned into pT713</td>
<td>this study</td>
</tr>
<tr>
<td>M13mp18/19</td>
<td>M13mp1 derived phages, lacI</td>
<td>Messing and Vieira (1982)</td>
</tr>
<tr>
<td>pYAMA18</td>
<td>2.4 kb E.halophila PstI fragment cloned into M13mp18</td>
<td>this study</td>
</tr>
<tr>
<td>pYAMA958</td>
<td>1.8 kb E.halophila PstI fragment cloned into M13mp18</td>
<td>this study</td>
</tr>
<tr>
<td>pS16</td>
<td>1.4 kb Rs.salexigens PvuII–SalI fragment cloned into M13mp19</td>
<td>this study</td>
</tr>
</tbody>
</table>

masses of the histidine-tagged hol- and apoPYP were determined by ESMS to be respectively, 16.0081 and 15.8625 kDa. These values correspond well to the calculated molecular weights of 16.0081 and 15.8611.

Discussion

We report here the DNA sequence of two genes encoding proteins known to be yellow and photoreactive. The sequence of pyp from *E.halophila* SL1 (type strain) is identical to the sequence reported for the pyp gene from *E.halophila* BN9626 (Baca et al., 1994). In the flanking regions six differences between the two sequences were found, which in five cases did not lead to changes in amino acid residues (see Figure 1B); this indicates the close similarity but distinctness of these two strains. Interestingly, all silent mutations are from T in the *E.halophila* BN9626 strain to G or C in the *E.halophila* SL-1 strain. This may be explained by a slight difference in the overall GC-content between the two strains, which have been isolated from different environments; the BN9626 strain was isolated from the Wadi Natrun, Lake Abu Gabara near Bir Hooker, Egypt (Imhoff et al., 1978) and the type strain SL-1 from Summer Lake, OR, USA (Raymond and Sistrom, 1969). The GC-content of the cloned DNA fragments from *E.halophila* SL1 and *Rs.salexigens* was calculated to be 67.3 and 65.8% respectively, which matches well with the overall GC-content from these organisms, being 68.4% (Raymond and Sistrom, 1969) and 64 ± 2% (Drews, 1981) respectively. The lack of a signal peptide sequence upstream from the two pyp genes is in line with the intracellular localization of PYP in *E.halophila*, as determined with immuno-gold labeling experiments (Hoff et al., 1994b). Furthermore, the isoelectric points of the PYPs from *E.halophila* and *Rs.salexigens* are predicted to be 4.63 and 4.23 respectively. For *E.halophila* PYP, this parameter was experimentally determined to be 4.3 (McRee et al., 1986).

The sequence data for these two PYPs were used to design primers for the amplification of a fragment from chromosomal DNA by heterologous PCR, leading to the identification of a PYP homolog in *R.sphaeroides*. The PCR product obtained was used as a probe to clone the *R.sphaeroides* pyp gene. This gene encodes a protein of 124 residues, which cross-reacts with a polyclonal antiserum raised against *E.halophila* PYP (data not shown). The amino acid sequence of the *R.sphaeroides* PYP homolog is ~46% identical to the sequence of the PYPs from *E.halophila*, *Rs.salexigens* and *C. salexigens*, indicating that this PYP belongs to a different subgroup of the yellow proteins (R.Kort and S.M.Hoffer, unpublished observations). Since *R.sphaeroides* is genetically accessible, this opens up possibilities for genetic studies concerning the function of PYP. The identification of this PYP homolog raises the question whether the *R.sphaeroides* protein also binds a p-coumaric acid chromophore. The conservation of Cys69, Tyr42, Glu64, Arg52 and Tyr98 in the *R.sphaeroides* sequence suggests that this may indeed be so. This leads to the prediction that *R.sphaeroides*, in addition to its well-studied positive phototactic and chemotactic responses (for a review see Armitage, 1992), displays additional phototaxis response(s), based on PYP (see Sprenger et al., 1993). This prediction is currently being tested.

Directly downstream of the pyp gene from *E.halophila* an ORF is located that shows the highest sequence similarity to a range of CoA ligases (Table II), including *p-coumaryl-CoA* ligases. The putative *E.halophila* CoA ligase contains the motif TSGSTGTP (Figure 1B), which is conserved in all members of the AMP-binding protein family, of which the *cymaroyl-CoA* ligases form a distinct subfamily (Fulda et al., 1994). This motif resembles the known loop-forming adenine-binding motif (Saraste et al., 1990). In plants, *cymaroyl-CoA* ligase is of central importance in the metabolism of *p-coumaric* acid (Hahlbrock and Scheel, 1989). This suggests that in *E.halophila*, *p-coumaric* acid is likewise activated by the formation of a thiol ester bond with CoA. The importance of this
esterification was demonstrated by the fact that in vitro reconstitution of holoPYP was observed with the thio-
phenyl ester of p-coumaric acid and not with p-coumaric
acid (Imamoto et al., 1995). A further indication for a
functional coupling of the pyp and pcl gene products is
the presence of an inverted repeat between these two
coding regions and the absence of a recognizable promotor
sequence, directly upstream of the pcl gene (see Figure
1B). This indicates that transcription of the pcl gene
occurs by readthrough of this inverted repeat from the
promoter directly upstream of the pyp gene.

The biosynthesis of p-coumaric acid, which in plants
can be performed in one step by phenylalanine ammonia
lyase (Hahlbrock and Scheel, 1989), may consist of three
consecutive steps in prokaryotes (compare the amino
acid fermentation scheme of the anaerobic bacterium
Clostridium sporogenes; Bader et al., 1982). If so, an
aromatic aminotransferase, a 2-keto-acid reductase and a
dehydrotase respectively, would be involved. In the first
reaction, pyruvate may be the amino acceptor, as shown
for many aminotransferases. The reformation of pyruvate
would then be carried out by alanine dehydrogenase.
Interestingly, the dada gene upstream of the pyp gene
(Figure 1A), encodes an alanine dehydrogenase.

Based on the observations described above, one can
conclude that the organization of the genes encoding the
PYP sensory system is completely different from that of
the only other well-studied class of bacterial photorecep-
tors: the archaeabacterial sensory rhodopsins. For sensory
rhodopsin I (SR-I) it has recently been shown that trans-
scription of the sopI gene (encoding the SR-I apoprotein)
is transcriptionally coupled to an ORF immediately
upstream of the sopI gene; this upstream ORF (the htrI
gene) encodes the signal transducer interacting with SR-I
(Yao and Spudich, 1992; Ferrando-May et al., 1993; Spudich, 1994).

In the soluble protein fraction of Rs. salexigens cells,
we could detect the PYP chromophore p-coumaric acid
(8 pmol/mg soluble protein). This finding made a protocol
available for straightforward screening of intact cells for
the presence of this chromophore. This may be of great
importance, since the nature of the chromophore in recep-
tors for a large number of blue-light responses, observed
in microorganisms as well as in plants, has not yet been
elucidated (Senger, 1987). The amount of chromophore
identified in Rs. salexigens is equivalent to 0.1 µg PYP
per mg soluble cell protein, similar to the cellular content
of PYP in E. halophilia (Meyer et al., 1985).

We propose to designate the family of PYPs ‘xanthop-
sins’, which is derived from the Greek words ξανθος-

Fig. 5. Overproduction, purification and in vitro reconstitution of histidine-tagged PYP. (A) RIEP analysis of PYP production in E.coli M15/pHisH after induction with IPTG. Wells 1 and 2 contain solutions of purified PYP from E.halophilia with known concentrations; the following wells contain cell material from E.coli M15/pHisH (lane 5), histidine-tagged PYP isolated from this extract by Ni affinity chromatography (lane 4), the same preparation after 5 h (lane 2) and 24 h (lane 3) of incubation with enterokinase, and PYP purified from E.halophilia (lane 1). (C) Absorbance spectrum of the histidine-tagged PYP (HAP) isolated from E.coli M15/pHisH and the spectrum of HAP after reconstitution with the p-coumaric anhydride and subsequent purification.
Protein family resemble the polyclonal negative phototaxis of an enzyme encoding the discovery of a large number of prokaryotic microorganisms (Hoff et al., 1994b).

The results reported here define the xanthopsins as a protein family of photosensors with strong sequence conservation and a highly conserved chromophore binding site. In addition, we have identified a gene that most likely encodes an enzyme involved in p-coumaric acid activation and that therefore is essential for in vivo holoPYP synthesis. The heterologously produced apoPYP was used as substrate for in vitro holoPYP reconstitution, which is essential for further physiological studies on intact and directionally mutagenized PYP and for hybrid forms of PYP, containing chromophore analogs (A.R. Kroon and H.P.M. Fennema, unpublished observations). In addition, the discovery of a PYP homolog in *R. sphaeroides* renders this new photoreceptor family genetically accessible.

Materials and methods

Bacterial strains and plasmids

The strains and plasmids used in this study are listed in Table I. *E. halophila* SL-1, the type strain, was obtained from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSM), Braunschweig. strain number 244.

Cell culturing

E. halophila SL-1 (Raymond and Cistrom, 1969) and *R. sphaeroides* WS68 (Drews, 1981) were cultured phototrophically as described (Meyer, 1985 and 1990 respectively), unless specified otherwise. *R. sphaeroides* strain 2.4.1 (van Niel, 1944) was grown aerobically in Luria Bertani broth.

DNA manipulation

Chromosomal DNA was isolated according to standard procedures (Sambrook et al., 1989) from *E. halophila*, *R. sphaeroides* and *R. sphaeroides*. All additional molecular genetic techniques were performed as described in Sambrook et al. (1989).

Southern hybridization

Southern blots of chromosomal DNA from both *E. halophila* and *R. sphaeroides* were probed using a 94 bp PCR product consisting of an internal fragment from the *E. halophila* pyp gene (see below). The probe was labeled with the Klenow enzyme by random priming using the DIG DNA labeling kit and detected with Nitroblue tetrazolium salt, as described by the manufacturer (Boehringer, Mannheim). Southern blots of chromosomal DNA from *E. halophila* and *R. sphaeroides* were hybridized at 65°C and washed at 65°C with 0.1× SSC buffer containing 0.1% SDS. The blots containing chromosomal DNA from *Rs. salexigens* were hybridized at 50°C and washed at 50°C with 0.5× SSC buffer containing 0.1% SDS.

Cloning of the *E. halophila* pyp gene

*Pst*I-digested *E. halophila* chromosomal DNA was used as template in a PCR-reaction with degenerated oligonucleotides YS-1 and YS-2 with the sequences AARAAAYTYTYYAARGA and GTCAATGTMARTCRAA respectively, as based on the PYP amino acid sequence (Van Beemen et al., 1993). PCR was performed with the enzyme Taq polymerase (HT Biotechnology, Cambridge, UK) for 30 cycles with 1 min denaturation at 94°C, 1 min annealing at 20°C and 1 min elongation at 70°C. Based on the sequence of the PCR product a new probe was constructed, completely homologous to the pyp gene in *E. halophila*. This probe was used to isolate a positive clone (pYAMA18) by screening a mini library of 2.4 kb *Pst*I chromosomal fragments from *E. halophila* in phage M13mp18. A 950 bp *PvuII* fragment from pYAMA18, containing the pyp ORF, was subcloned in M13mp18 to give pYAMA958.

Cloning of the *Rs. salexigens* pyp gene

The probe used to clone the pyp gene from *E. halophila* was used in heterologous Southern hybridization experiments with *Rs. salexigens* chromosomal digests. A mini library, containing sized *PvuII*–*SalI* fragments in phage M13 was screened by hybridization with the same probe, leading to the identification of two positive clones. A 1.4 kb fragment containing the pyp gene was made blunt by Klenow treatment and reinserted into the Smal linearized phage M13mp19, yielding pS16.

Sequencing

Both strands of the 1.8 kb *E. halophila* *PvuII*–*PstI* fragment and the *Rs. salexigens* 1.4 kb *PvuII*–*SalI* fragment were sequenced using universal and gene-specific oligonucleotides; the sequence strategies are indicated in Figures 1A and 2A. Sequence information was obtained by the dyeoxy chain termination method (Sanger et al., 1977), using [*γ*32P]dATP and a modified T7 DNA polymerase sequencing kit (Sequenase; US Biochemical Corporation, Cleveland, OH), as well as through the use of fluorescently labeled dyeoxy nucleotides and a thermostable Taq polymerase with the Dyedexo terminator cycle sequencing kit (Applied Biosystems, Foster City).

Identification of the *R. sphaeroides* pyp gene

Chromosomal DNA from *R. sphaeroides* 2.4.1 was used as template in a PCR using 10 cycles of annealing for 1 min at 25°C and 25 cycles at 35°C. Denaturation and elongation were performed in all 35 cycles for 1 min at 95°C and 72°C respectively. Primers were based on known pyp sequences and restriction sites BamHI and HindIII (underlined) were introduced to enable directional cloning: GCGGATCCTGCTTGCGC-GCAATCCAGCTGAC (NTPYPI) and GCGCAAGGCTTATAGGC-GCTTTAGCAAAGACC (CTTPYPI). The PCR product obtained was isolated from agarose gel and inserted into phages M13mp18/V. Both strands of the PCR product were sequenced. Hybridization of the PCR product with *R. sphaeroides* chromosomal DNA was performed as described (Engler-Blum et al., 1993).

Identification of the chromophore of *Rs. salexigens* PYP

A colorless *Rs. salexigens* culture, grown aerobically in the dark in Hutner modified medium as described (Hoff et al., 1994b), was diluted twice in the same medium and incubated anaerobically at 42°C in a completely filled 500 ml screw-cap bottle under illumination with 60 W

Table II. Homology of the putative coenzyme A ligase from *E. halophila* with coenzyme A ligases from other organisms

<table>
<thead>
<tr>
<th>Enzyme (number of amino acids)</th>
<th>Organism</th>
<th>Identity (%)</th>
<th>Similarity (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoA ligase homolog (391)</td>
<td>E. halophila</td>
<td>100</td>
<td>100</td>
<td>this paper</td>
</tr>
<tr>
<td>Acetate-CoA ligase (660)</td>
<td>A. eutrophus</td>
<td>25.1</td>
<td>49.5</td>
<td>Priefert and Steinbuechel (1992)</td>
</tr>
<tr>
<td>Acetate-CoA ligase (672)</td>
<td>M. soehngenii</td>
<td>20.6</td>
<td>47.5</td>
<td>Eggen et al. (1991)</td>
</tr>
<tr>
<td>Long-chain-fatty-acid-CoA ligase (558)</td>
<td>E. coli</td>
<td>26.3</td>
<td>51.5</td>
<td>Black et al. (1992)</td>
</tr>
<tr>
<td>Long-chain-fatty-acid-CoA ligase (700)</td>
<td>yeast</td>
<td>22.8</td>
<td>45.5</td>
<td>Duronio et al. (1992)</td>
</tr>
<tr>
<td>Coumaryl-CoA ligase (545)</td>
<td>potato</td>
<td>22.4</td>
<td>45.5</td>
<td>Becker-Andre et al. (1991)</td>
</tr>
<tr>
<td>Coumaryl-CoA ligase (563)</td>
<td>rice</td>
<td>25.3</td>
<td>49.2</td>
<td>Zhao et al. (1990)</td>
</tr>
</tbody>
</table>

Identity and similarity values are based on full length alignments made with the Genetics Computer Group package program BESTFIT using a gap weight of 3.0 and a length weight of 0.1.
tungsten light bulbs, yielding a red culture after 96 h. The soluble cell fraction of 500 ml of aerobically and anaerobically grown cultures was prepared as described (Hoff et al., 1994b). Proteins were precipitated with 10% (v/v) trichloro-acetic acid and washed once with demineralized water. Pellets were resuspended in 5 ml demineralized water and incubated overnight at pH 12 (leading to a complete solubilization of the proteins) to hydrolyze thiol ester bonds, followed by acidification to pH 2.0 with hydrochloric acid and acetate to neutralize the chromophore for optimal extraction. Before extraction, protein concentrations were determined with the Bio-Rad protein assay, as described by the manufacturer. Chromophore extractions were performed by mixing thoroughly with 15 ml ethyl acetate, followed by 5 min of centrifugation at 120 g. The organic phase was washed twice with 5 ml demineralized water and dried by air. To substantiate the result of our analysis, the same chromatophore extraction procedure was carried out using the purified R.sphereoides PYP (Meyer et al., 1990). Air-dried samples were dissolved in distilled water and injected in a 50 μm fused silica capillary TSP050375 (Composite Metal Services LTD) with an injection time of 0.2 min and injection pressure of 40 mbar. The sample was analyzed in 60 mM Tris/30 mM valeric acid pH 8.2, through a capillary with an effective length of 55 cm, at 25 kV and ~12 μA. On-column detection was performed at 284 nm (determined as the wavelength at which trans p-cumaric acid maximally absorbs in the Tris/valeric acid buffer), with a UVIS 200 detector (Linear, Freemont). As a reference trans p-cumaric acid (Sigma, St Louis, MO) was used. To confirm this identification, p-cumaric acid was also subjected to electrophoresis in 25 mM borax buffer, pH 9.0 at 25 kV and ~35 μA. The amount of detected trans p-cumaric acid was calculated from the peak area using the software Caesar for Windows (version 4.02, 1990, Prince Technologies). As a reference, 11.0 μl of trans p-cumaric acid (Sigma) was injected in the concentration range from 2.5 to 75 μM, showing a linear relation to the detected peak areas.

Construction of overexpression plasmids and overproduction strains

A 0.45 kb AvaI fragment from pYAMA958, containing the pyp ORF from *E. halophilus*, was ligated into the Smal-linearized overexpression plasmid pT713 (Studier et al., 1990) to yield pT713, which was transformed to *E. coli* BL21. Overexpression in pT713 is based on the strong viral T7 promoter φ10. The gene coding for the viral RNA polymerase is located on the chromosome of *E. coli* BL21, downstream of an inducible lac promoter (Studier et al., 1990). A conjunctive broad host range overexpression system was constructed by ligating the 0.45 kb AvaI fragment, described above, into the PstI polylinker site of pCHB500. pCHB500 is a broad host range vector, containing two promoters directly upstream of the polylinker site: the *E. coli* φ80 promoter and the Pφ3 promoter that supports anaerobic expression of the lac gene from *K. pneumoniae* (Benneg and Sommerville, 1992). The resulting plasmid pART3 was transformed into the conjunctive strain E.coli S17 and then transferred to R.sphereoides DD13 (Jones et al., 1992) by conjugation on LB agar plates. For 4.5 h. Transconjugants were selected on LB plates containing tetracyclin (10 μg/ml), streptomycin (5 μg/ml) and kanamycin (20 μg/ml). The transconjugants were subsequently grown in liquid medium under semi-anaerobic conditions, allowing pigment synthesis.

A third overexpression system involved the heterologous overproduction of an affinity-tagged version of PYP from *E. halophilus* in *E. coli*. The expression vector was constructed by directional insertion of a PCR product into the expression plasmid pQE30 (Qiagen, Hilden). The PCR product was obtained using pYAMA18 as template in a reaction with the forward GCGATTAATGGCAATATGATGGT (GCGTTCCG (NTTP2), containing the BamHI site (underlined) and CTPP1P (see above). Use of NTPP2 results in the presence of an enterokinesin site in the recombinant protein, allowing proteolytic removal of the affinity tag. This tag is formed by six His residues, encoded by pQE30 (Qiagen). The PCR was performed using an annealing temperature of 64°C for 30 s and extension at 70°C for 30 s in 30 cycles. The resulting PCR product was digested with BamHI and HindIII, ligated into pQE30 (Qiagen) to yield pHisP and transformed to *E. coli* M15. The colonies resistant against ampicillin (100 μg/ml) and kanamycin (25 μg/ml), were shown to contain the construct by colony PCR, using the two primers described above.

SDS–PAGE, Western blotting and RIPE

SDS–PAGE was performed in a Bio-Rad mini slab gel apparatus (Bio-Rad, Hercules, CA) according to Laemmli (1970) as modified by Schägger and Jagow (1987) for improvement of resolution in the 5-20 kDa range. Gels were stained with Coomassie brilliant blue G250. Western blotting and immunodecoration were performed as described previously (Towbin et al., 1979; Hoff et al., 1994b). RIPE was carried out as described (Hoff et al., 1994b).

Heterologous expression of PYP

E. coli BL21pT713 and *E. coli* M15*pHisp were induced to express the heterologous gene by the addition of 1 mM IPTG to well-aerated cultures of exponentially growing cells at an OD₆₀₀ of 1. Cells were grown at 37°C in well-shaken Erlenmeyers, or in a well-aerated 10 l fermentor (New Brunswick Scientific, New Brunswick). Production of PYP in *R. sphereoides* was induced by growing the organism semi-anaerobically in two-thirds filled, slowly shaking Erlenmeyers, using Luria Bertani broth with appropriate antibiotics. The resulting *E. coli* and *R. sphereoides* cells were sonified three times for 1 min while cooled on ice, and centrifuged at 200 000 g for 3 h at 4°C to obtain a clear supernatant containing the overexpressed product. Absorbance spectra of these fractions were measured with an Amino DW2000 spectrophotometer (SLM Instruments). In addition, these fractions were used for SDS–PAGE, Western blotting and RIPE analysis, as described above.

Isolation and cleavage by enterokinase of histidine-tagged PYP

Ultrafiltration supernatants from *E. coli* M15*pHisp, induced with IPTG, were incubated with Ni-NTA resin for 1 h at 4°C, as described by the manufacturer (Qiagen). The resin was packed in a column and eluted, either by an imidazole gradient or by a pH gradient, as described by the manufacturer. The protein elution pattern was analyzed by measuring the absorbance of the eluting fractions at 280 nm. Cleavage of histidine-tagged apoPYP was performed at 37°C for 5-24 h using an enterokinase/PYP ratio of 1:50 (w/w).

Reconstitution of holoPYP

Reconstitution of the heterologously produced apoPYP was achieved by the addition of the p-cumaric anhydride, dissolved in dimethyl formamide (DMF), as described for the reconstitution of the apoPYP, obtained from *E. halophilus* (Imamoto et al., 1995). The p-cumaric anhydride was synthesized as described (Imamoto et al., 1995).

Mass spectrometry

The integrity of histidine-tagged apoPYP and reconstituted histidine-tagged holoPYP was verified by electrospray mass spectrometry (ESMS). Typically, 20 pmol of protein was dissolved in 10 ml CH₃CN:water:formic acid (1:0.9:0.1: v/v) and injected into the electrospray source of a VG Bio-Q mass spectrometer (VG Organic, Altrincham, UK) at a flow rate of 6 ml/min, delivered by a Harvard Syringe Pump 11 (Harvard, South Natick, MA). Nine-second scans, covering the 650–1550 amu range, were accumulated during 2.5 min. The spectra were collected and processed using the masslynx software provided with the instrument.

Acknowledgements

The authors are very grateful to R.Kok and J.van Thor for their advice on the use of molecular genetic techniques and to J.van Dijk and W.Spijker for cloning of *R. sphereoides* pyp gene. We thank X.Xu and H.Vonk for performing the capillary electrophoresis experiments and H.P.M. Fennema for synthesis of the p-cumaric anhydride. We would like to thank B.Poolman for his help with the initial PCR experiments. We are very thankful to T.E. Meyer for supplying information concerning oligonucleotides YS-1 and YS-2 and the purified *R. sphereoides* PYP. W.D. Hoff was supported by the Netherlands Organization for Scientific Research (NWO) via the Foundation for Biological Research (BION). J. Van Beeumen is indebted to the National Fund for Joint Basic Research for financial support (Contract 32001891).

References

Note added in proof
Recent results cast doubt on our strain assignment in *E. halophila.*