Discovery of transient optical emission from the error box of the gamma-ray burst of February 28, 1997

DOI
10.1038/386686a0

Publication date
1997

Published in
Nature

Citation for published version (APA):
For almost a quarter of a century, the origin of γ-ray bursts—brief, energetic bursts of high-energy photons—has remained unknown. The detection of a counterpart at another wavelength has long been thought to be a key to understanding the nature of these bursts (see, for example, ref. 2), but intensive searches have not revealed such a counterpart. The distribution and properties of the bursts are explained naturally if they lie at cosmological distances (a few Gpc), but there is a countervailing view that they are relatively local objects, perhaps distributed in a very large halo around our galaxy. Here we report the detection of a transient and fading optical source in the error box associated with a burst GRB970228, less than 21 hours after the burst. The optical transient appears to be associated with a faint galaxy, suggesting that the burst occurred in that galaxy and thus that γ-ray bursts in general lie at cosmological distance.

GRB970228 was detected on board the Gamma-ray Burst Monitor on board the Italian–Dutch BeppoSAX satellite on 1997 February 28, UT 02h 58m 01s. The event lasted ~80 s and reached peak fluxes of ~4 × 10–6 ~6 × 10–6 ~10–7 erg cm–2 s–1 in the 40–60 keV, 40–100 keV and 1.5–7.8 keV ranges, respectively (note that the peak flux of 0.23 Crab quoted in ref. 9 is in error). It occurred in the field of view of one of the BeppoSAX Wide Field Cameras (WFCs). The spectrum of the event is characteristic of classical γ-ray bursts (GRBs)12. Its position (about halfway between α Tauri and γ Orionis) was determined with an accuracy of ~3 ′ (radius) at right ascension (RA) 05h 01m 57s, declination (dec.) +11° 46′. Application of the long-baseline timing technique to the GRB data obtained with the Ulysses spacecraft, and with the BeppoSAX and the Wind satellites, respectively, constrained this location to be within each of two parallel annuli, with half-widths of 31′ (3σ) and 30′ (3σ), respectively, which intersect the WFC error circle (Fig. 1).

Eight hours after the burst occurred, BeppoSAX was reoriented so that the GRB position could be observed with the LECS and MECS detectors13. A weak X-ray source was then found on RA 05h 01m 44s, dec. +11° 46′.7 (‘error radius 50′), near the edge of the WFC error circle (Fig. 1). The 2–10 keV (MECS) flux of this source was 2.4 × 10−12 erg cm–2 s–1. The LECS instrument measured a 0.1–10 keV source flux of 2.6 (±0.6) × 10−12 erg cm–2 s–1. The source spectrum was consistent with a power-law model with photon index 2.7, reduced at low energy by a column density N H of 5.6 × 1021 cm–2. During an observation with the same instruments on March 3, UT 17h 37m this flux had decreased by a factor of 20 (ref. 19). With ASCA the X-ray source was detected on 7 March at a 2–10 keV flux of (0.8 ± 0.2) × 10−13 erg cm–2 s–1.

On February 28, UT 23h 48m, 20.8 hours after the GRB occurred, before we had any knowledge of the X-ray transient, we obtained a V-band and an I-band image (exposure times 300 s each) of the WFC error box with the Prime Focus Camera of the 4.2-m William Herschel Telescope (WHT) on La Palma13. The 1.024 × 1.024 pixel CCD frames (pixel size 24 µm, corresponding to 0.421′) cover a 7.2′ × 7.2′ field, well matched to the size of the GRB error box. The limiting magnitudes of the images are V = 23.7, and I = 21.4. We obtained a second I-band image on March 8, UT 21h 12m with the same instrument on the WHT (exposure time 900 s), and a second V-band image on March 8, UT 20h 42m with the Isaac Newton Telescope (INT) on La Palma (exposure 2,500 s). Photometric calibration was obtained from images of standard star number 336 and Landolt14 field 104. The images were reduced using standard bias subtraction and flatfielding.

A comparison of the two image pairs immediately revealed one object with a large brightness variation: it is clearly detected in both the V- and I-band images taken on 28 February, but not in the second pair of images taken on 8 March (Fig. 2). From a comparison with positions of nearby stars that were obtained using the Digitized Sky Survey we find for its location RA 05h 01m 46.666, dec. +11° 46′ 53.9′ (equinox J2000); this position has an estimated (internal) accuracy of 0.2″. The object is located in the error box defined by the WFC position, the Ulysses/BeppoSAX/Wind annuli, and the transient X-ray source position (Fig. 1).

1 Astronomical Institute "Anton Pannekoek", University of Amsterdam, and Center for High Energy Astrophysics, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands. Physics Department, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA. University Space Research Association.
2 NASA Marshall Space Flight Center, ES-84, Huntsville, Alabama 35812, USA. Netherlands Foundation for Research in Astronomy, Postbus 2, 7990 AA Dwergwold, The Netherlands. Isaac Newton Group, Apartado de Correos 321, 38780 Santa Cruz de La Palma, Tenerife, Canary Islands. Royal Greenwich Observatory, Madingley Road, Cambridge CB3 0HE, UK. Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK. Copenhagen University Observatory, Juliane Maries Vej 30, 2100 Copenhagen, Denmark. Danish Space Research Institute, Juliane Maries Vej 30, 2100 Copenhagen, Denmark.
4 Physics Department, University College Dublin, Belfield, Stillorgan Road, Dublin, Ireland.
Using aperture photometry software we determined the magnitudes of the variable as follows:\(^2\); \(V = 21.3 \pm 0.1, I = 20.6 \pm 0.1\) on 28 February and \(V > 23.6, I > 22.2\) on 8 March. The shape of the source in both the 28 February \(V\)- and \(I\)-band images is consistent with that of the point-spread function, as determined for 15 stars in the same images.

Close to the optical transient is a star, located 2.85′′ away at RA 5 h 01 min 46.47 s, dec. +11° 46′ 54.0″, with \(V = 23.1, I = 20.5\). A spectrum of this star, taken on March 1, 0 UT 0 h with the ESO 3.6-m telescope using the EFOSC1 spectrograph and the R1000 grating (resolution of 14 Å per pixel), covering the 5,600–11,000 Å region, reveals the presence of SiO bands, which indicate it is an M-type star. With foreground absorption \(A_v = 0.4 \pm 0.3\) mag (ref. 23), (substantially smaller than the value inferred from the low-energy cut off in the LECS spectrum), its colour index, \(V - I = 2.6\), corresponds to an M2 star\(^4\). It is most likely to be an M dwarf at a distance of \(\sim 1\) kpc (an early M-type giant would be located at a distance of \(\sim 0.4\) Mpc, which we consider much less likely).

Further images were obtained with the Nordic Optical Telescope (NOT, La Palma) on 4 March, with the INT on 9 March, and with the ESO New Technology Telescope (NTT) on 13 March (see Table 1 for a summary). The transient was not detected in these images, which puts a lower limit on its average decay rate (in 4 days) of 0.7 mag per day. The NTT image shows that at the location of the variable object there is an extended object, probably a galaxy\(^5,6\) (Fig. 3); this object is also seen in the INT B- and R-band images. From differential astrometry relative to the nearby M star for both the \(V\)-and \(I\)-band images, we find that the centres of the optical transient and the galaxy have a relative distance \((0.22 \pm 0.12)′′\) (1σ; quadratic addition of the errors in the two relative positions). The relative position of the optical transient did not change by more than 0.2″ between the 28 February \(V\)- and \(I\)-band images. From the NTT image and the 9 March INT image we measured\(^7\) the galaxy’s magnitude to be \(R = 23.8 \pm 0.2\) and \(24.0 \pm 0.2\), respectively, consistent with the value \(R = 24.0\) reported by Metzger \textit{et al.}\(^8\), and \(B = 25.4 \pm 0.4\) (Table 1).

Known types of optical transient events (novae, supernovae, dwarf novae, flare stars) are unlikely to account for the optical transient for a variety of reasons, such as the amplitude and short timescale of its variability, its colour index, or its inferred distance.

The GRB source is located relatively close to the ecliptic, at latitude –11°, and this raises the possibility that the optical transient is an asteroid. However, on 1 March asteroids in the direction of the GRB have proper motions of at least 0.1° per day (T. Gehrels, personal communication), which would have led to easily detectable motion (>2.5") during the 600-s total exposure time of our two separate images. On the basis of its proper motion during 28/02/97 WHT

\[28/03/97\] INT

20:48:07

20:52:07

M dwarf

M dwarf

\[22:48:07\] OT

22:52:07

M dwarf

M dwarf

\[22:48:07\] OT

Fig. 2 V-band images of a 1.5′ × 1.5′ region of the sky containing the position of the optical transient. The left image was obtained with the WHT on 1997 28 February, 20 UT 23h 48 min, the right image with the INT on 8 March, 20 UT 20h 42 min. The optical transient is indicated by ‘OT’. The M dwarf, separated from the optical transient by 2.9′, is also indicated.
of the optical transient. The hypotheses are: H_0, the optical transient is in the centre of a galaxy, H_g, the optical transient is in a galaxy but not at its centre; and H_{tg}, the optical transient is not in a galaxy.

We assume that there is a single optical transient detected in the field of view of angular area A and that n non-overlapping galaxies are detected in the field. The transient is at distance $r \pm \sigma_r$ from the nearest galaxy, where the error includes the uncertainty in the positions of the centroids of both the galaxy and the transient. The probability density at r under H_0 is $P(r \mid H_0) = (2\pi\sigma_r^{-2})^{-1} \exp\left[-\left(r^2/2\sigma_r^2\right)\right]$. The probability density under H_g depends on the size, shape and inclination of the galaxy and the specifics of the model for the distribution of sources in the galaxy. For simplicity, we assume the probability density to be gaussian with width σ_g. Then $P(r \mid H_g) = (2\pi\sigma_g^{-2})^{-1} \exp\left[-\left(r^2/2\sigma_g^2\right)\right]$. The probability density under H_{tg} is uniform over the field of view, so $P(r \mid H_{tg}) = A^{-1}$. The posterior probability of each hypothesis H is $P(H \mid r) = P(H)P(r \mid H)/P(r)$, where $P(H)$ is the prior probability and the normalization constant k is obtained by the requirement that $P(H \mid r) + P(H_g \mid r) + P(H_{tg} \mid r) = 1$.

For the NTT observation we find seven galaxies in $A = (44)''^2$ field, that is, $n = 13$ per arcmin2, $r = 0.22''$, $\sigma_g = 0.12''$. A reasonable estimate for the galaxy width is $\sigma_g = 1''$. With these values the probability densities at r are $P(r \mid H_0) = 0.294$, $P(r \mid H_g) = 0.022$ and $P(r \mid H_{tg}) = 0.0005$, all in units of arcsec$^{-2}$. Assuming equal priors $P(H_0) = P(H_g) = P(H_{tg}) = 1/3$, the posterior probabilities are $P(H_0 \mid r) = 0.928$, $P(H_g \mid r) = 0.070$ and $P(H_{tg} \mid r) = 0.0016$. The posterior probability for H_0 depends sensitively on the assumed σ_g. However, the posterior probability, $P(H_0 \mid r)$, that the transient is not associated with a galaxy is in the range 0.09–0.18%, for any assumptions about the size of faint galaxies. Within the range of assumed values for σ, between 0.08'' and 0.2'', the values of $P(H_0 \mid r)$ increase by less than a factor of 3.

The above analysis suggests that the optical transient is related to the faint galaxy, which provides support for the cosmological distance scale for GRBs.

A rough estimate of the expected redshift, z, of the galaxy may be made by assuming that its absolute magnitude is in the range -21 to -16, which covers the bulk of normal galaxies. For an assumed Hubble constant of 60 km s$^{-1}$ Mpc$^{-1}$, this corresponds to z in the range 0.2–2.

The close proximity of the optical transient to the centre of the faint galaxy, and the presence of relatively bright quasars in the 8arcmin2 error box of GRB781119 ($V = 20$) and, in the 3rd (radius) error box of GRB960720 ($R = 18.8$) raise the possibility that GRBs occur preferentially, or exclusively, in or near galactic nuclei.

Searches for an optical counterpart to a GRB have been continued attempted for the past 20 years. Recent reviews and descriptions of serendipitous, rapid follow-up, and delayed searches for optical counterparts of GRBs show that these previous searches were generally made a week or longer after the GRB, or they were not as deep ($V < 20$) as the images presented here. The most sensitive rapid follow-up observations so far had delay times (δt) and limiting magnitudes (m) as follows: $\delta t = 1.85$ d, $m < 23$ (ref. 45), and $\delta t = 4.0$ d, $m < 22$ (ref. 38).

It was not until the launch of BeppoSAX in 1996 that accurate (several arcmin) locations for GRBs became available within hours of detection, hence facilitating rapid follow-up observations at large ground-based optical telescopes for those bursts which happened to be in the field of the WFC. The continued operation of BeppoSAX and the approval of the High Energy Transient Explorer-2 (HETE-2) mission bode well for great progress in the rapid follow-up observations of GRBs. Also, near-real-time, fully automated optical systems linked to the BATSE-MAGIC system are now in the finishing stages.

We expect that X-ray and optical transients associated with GRBs will again be seen (though perhaps not in all cases) in the near future. This could be a turning point in GRB astronomy. Detailed studies (light curves and spectra) of such transients can be expected within a year, and we are optimistic that the distance scale as well as the mechanism behind the electromagnetic GRBs are now within reach. Note added in proof: After this paper was submitted, an HST observation was made of the optical transient (K. Sahu et al., IAU Circ. No. 6606). This observation confirms that the transient is associated with an extended emission region, but seems to exclude that the transient is located at the centre of that region.

Received 25 March; accepted 29 March 1997.

directly processes relevant to the early Universe, because of the extreme energies involved. One is therefore forced to investigate laboratory systems with analogous phase transitions. Much of the behaviour of superfluid 3He is analogous to that predicted within the standard model of the electroweak interaction 1. Superfluids and liquid crystals have already been used to investigate cosmicstring production 11,12, here we describe experiments on 3He that demonstrate the creation of excitation momentum (which we call momentogenesis) by quantized vortices in the superfluid. The underlying physics of this process is similar to that associated with the creation of baryons within cosmic strings, and our results provide quantitative support for this type of baryogenesis.

To explain the creation of matter in the early Universe we begin by recalling the relationship $E^2 = m_0^2c^4 + p^2c^2$ between energy E and momentum p for relativistic particles with rest mass m_0 (c is the velocity of light). Dirac realized that the square root of this equation, $E = \pm \sqrt{(m_0^2c^4 + p^2c^2)}$, produced particles with both positive and negative energy. This led to his famous picture of the vacuum state (the state with no real particles) as one in which all the negative energy states are full and all the positive energy states are empty. A real particle is then created as shown in Fig. 1a by excitation of a particle from the ‘Dirac sea’ of negative-energy states to a positive-energy state. But such processes create matter and antimatter in equal amounts, as the appearance of a hole in the negative energy state is interpreted as the simultaneous creation of an antiparticle.

The net creation of matter in the form of baryons such as protons and neutrons requires processes which can create antiparticles in the absence of simultaneous creation of baryons. In the ‘standard model’ the baryon number is classically conserved but can be violated by quantum-mechanical effects known generally as ‘chiral anomalies’. The process leading to matter creation is called ‘spectral flow’ and can be pictured as a process in which particles flow from negative energies to positive energies under the influence of an external force. In this way real observable positive-energy particles can appear without simultaneous creation of antiparticles. Figure 1b illustrates a simple example of spectral flow occurring for massless particles with electric charge q (in units of the charge of the electron, e) moving in a magnetic field. The application of an electric field E leads to the production of particles from the vacuum at the rate

$$\frac{dN}{dt} = \frac{\gamma^2 E^2}{4\pi}$$

per unit volume, where j is the particle current fourvector; factors of (e/\hbar) have been absorbed in the definition of the electric and magnetic fields. This is an anomaly equation for the production of particles from the vacuum of the type found by Adler 4 and by Bell and Jackiw 5 in the context of neutral pion decay. We see that for particle creation it is necessary to have an asymmetric branch of the dispersion relation $E(p)$ which crosses the axis from negative to positive energy. We call such a branch a zero mode branch; a spectrum of this type was first found for vortex core excitations in a superconductor 6.

Similar zero mode branches exist on a cosmic electroweak string (also known as a Z-string), which is a structure of the Higgs field that may have been produced during the electroweak phase transition. The Higgs field gives the particles mass outside the string core. This field vanishes on the string axis and the fermions (quarks and leptons) occurring in the core of the string behave like massless one-dimensional particles. Spectral flow on a Z-string leading to production of baryons from the vacuum with conservation of electric charge is illustrated in Fig. 1c. Motion of the string across a background electromagnetic field 7 or the de-linking of two linked loops 10,17 provides a mechanism for cosmological baryogenesis 18 and could lead to the presence of antimatter in cosmic rays 19.

We should point out that baryon-number violation is only one

\[\frac{D \mathbf{v}}{Dt} = \mathbf{E} \times \mathbf{B} \]

\[\text{(1)} \]

\[j = \frac{\gamma^2 E^2}{4\pi} \]

\[\text{per unit volume, where } j \text{ is the particle current fourvector; factors of } (e/\hbar) \text{ have been absorbed in the definition of the electric and magnetic fields. This is an anomaly equation for the production of particles from the vacuum of the type found by Adler }^4 \text{ and by Bell and Jackiw }^5 \text{ in the context of neutral pion decay. We see that for particle creation it is necessary to have an asymmetric branch of the dispersion relation } E(p) \text{ which crosses the axis from negative to positive energy. We call such a branch a zero mode branch; a spectrum of this type was first found for vortex core excitations in a superconductor}^6. \]

Similar zero mode branches exist on a cosmic electroweak string (also known as a Z-string), which is a structure of the Higgs field that may have been produced during the electroweak phase transition. The Higgs field gives the particles mass outside the string core. This field vanishes on the string axis and the fermions (quarks and leptons) occurring in the core of the string behave like massless one-dimensional particles. Spectral flow on a Z-string leading to production of baryons from the vacuum with conservation of electric charge is illustrated in Fig. 1c. Motion of the string across a background electromagnetic field 7 or the de-linking of two linked loops 10,17 provides a mechanism for cosmological baryogenesis 18 and could lead to the presence of antimatter in cosmic rays 19. We should point out that baryon-number violation is only one

\[\frac{D \mathbf{v}}{Dt} = \mathbf{E} \times \mathbf{B} \]

\[\text{(1)} \]