Stress, emotional learning and AMPA receptors: from behavior to molecule

Zhou, M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
References


Hippocampus 11, 8-17.


Bartos, J.A., Ulrich, J.D., Li, H., Beazely, M.A., Chen, Y., Macdonald, J.F.,
long-term potentiation in the hippocampus. Nature 361, 31-39.


Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus. J Neurophysiol 97, 5-14.


de Oliveira Alvares, L., Engelke, D.S., Diehl, F., Scheffer-Teixeira, R.,


Diamond, D.M., Bennett, M.C., Fleshner, M., and Rose, G.M. (1992). Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus 2,


Natl Acad Sci U S A 102, 19204-19207.
Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737-1740.


McReynolds, J.R., Donowho, K., Abdi, A., McGaugh, J.L., Roozendaal, B.,


receptors and actions. Am Rev Respir Dis 141, S2-10.


167


Parsons, R.G., Gafford, G.M., and Helmstetter, F.J. (2006). Translational control via the mammalian target of rapamycin pathway is critical for the
Perez, J.L., Khatri, L., Chang, C., Srivastava, S., Osten, P., and Ziff, E.B.
(2001). PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 21, 5417-5428.
enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc Natl Acad Sci U S A 94, 14048-14053.

171


agonist and antagonist administration into the basolateral but not central amygdala modulates memory storage. Neurobiol Learn Mem 67, 176-179.
retention in one-day-old chicks trained in a weak passive avoidance learning paradigm. Brain Res 647, 106-112.


potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J Neurosci 28, 7820-7827.


and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6, 2950-2967.