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Validation of Photoplethysmography Using a
Mobile Phone Application for the Assessment of
Heart Rate Variability in the Context of Heart
Rate Variability–Biofeedback
Willeke van Dijk, MSc, Anja C. Huizink, PhD, Mirjam Oosterman, PhD,
Imke L.J. Lemmers-Jansen, PhD, and Wieke de Vente, PhD
ABSTRACT
Objective: Heart rate variability–biofeedback (HRV-BF) is an effective intervention to reduce stress and anxiety and requires accurate
measures of real-time HRV. HRV can be measured through photoplethysmography (PPG) using the camera of a mobile phone. No studies
have directly compared HRV-BF supported through PPG against classical electrocardiogram (ECG). The current study aimed to validate
PPG HRV measurements during HRV-BF against ECG.
Methods: Fifty-seven healthy participants (70% women) with a mean (standard deviation) age of 26.70 (9.86) years received HRV-BF in
the laboratory. Participants filled out questionnaires and performed five times a 5-minute diaphragmatic breathing exercise at different
paces (range, ~6.5 to ~4.5 breaths/min). Four HRV indices obtained through PPG, using the Happitech software development kit, and
ECG, using the validated NeXus apparatus, were calculated and compared: RMSSD, pNN50, LFpower, and HFpower. Resonance fre-
quency (i.e., optimal breathing pace) was also compared between methods.
Results: All intraclass correlation coefficient values of the five different breathing paces were “near perfect” (>0.90) for all HRV indices:
lnRMSSD, lnpNN50, lnLFpower, and lnHFpower. All Bland-Altman analyses (with just three incidental exceptions) showed good inter-
changeability of PPG- and ECG-derived HRV indices. No systematic evidence for proportional bias was found for any of the HRV indices.
In addition, correspondence in resonance frequency detection was good with 76.6% agreement between PPG and ECG.
Conclusions: PPG is a potentially reliable and valid method for the assessment of HRV. PPG is a promising replacement of ECG assess-
ment to measure resonance frequency during HRV-BF.
Key words: photoplethysmography, diaphragmatic breathing, heart rate variability, mobile app, validation, electrocardiography.
ECG = electrocardiography, HFms2 = high-frequency power in
milliseconds squared,HRV = heart rate variability,HRV-BF = heart
rate variability–biofeedback, ICC = intraclass correlation coeffi-
cient, LFms2 = low-frequency power in milliseconds squared,
PPG = photoplethysmography, RMSSD = square root of mean
squared differences of successive normal-to-normal intervals,
pNN50 = percentage of successive normal sinus beat to beat inter-
vals more than 50 milliseconds, SDK = Software Development Kit
INTRODUCTION

Heart rate variability–biofeedback (HRV-BF) is a promising
method to manage physiological stress and promote mental

health (1,2). The idea behind HRV-BF is that the practice of slow
diaphragmatic breathing while receiving feedback on beat-to-beat
heart rate (HR) can help to increase respiratory sinus arrhythmia
(RSA), which is the vagally mediated increase of HR during inha-
lation and decrease during exhalation. RSA is one of the contribu-
tors to heart rate variability (HRV), defined as the variations in
beat-to-beat HR measured by consecutive R-wave peaks (3).
HRV is a commonly used marker of mental and physiological
stress and is a relevant outcome for mental health research (4,5).
Higher HRV indicates increased adaptive capacity or resilience,
as it demonstrates sensitivity to the environment and the ability
to maintain homeostasis (6,7). In contrast, low HRV may imply
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an imbalance between the parasympathetic and sympathetic
nervous systems and has been associated with increased or chronic
stress and cardiovascular risks (8–10).

In addition to RSA, HRV is affected by the baroreflex, which is
a reflex that modulates blood pressure through slightly increasing
and decreasing HR. As explained by Lehrer et al. (2), the barore-
flex contributes to blood pressure homeostasis and is, like RSA,
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under parasympathetic control. Because of a time delay in the
baroreflex of ~5 seconds between sensing deviant blood pressure
in the arteries and a cardiac response, a periodic rhythm of increas-
ing and decreasing HR occurs lasting ~10 seconds. This rhythm
varies among individuals between ~4.5 and ~6.5 cycles/min (e.g.
(11)). Breathing at the same pace as the baroreflex system’s reso-
nance frequency, a biophysical characteristic of any “closed-loop
control system with feedback” (11), creates a large variation in
HR, which stimulates the baroreflex. This breathing at resonance
frequency in short is thought to increase baroreflex efficiency, which
in turn improves autonomic activity modulation (12). Accordingly,
breathing at resonance frequency is regarded as the optimal pace
to obtain beneficial health effects, and breathing exercises at reso-
nance frequency is therefore the core of HRV-BF interventions.

Before HRV-BF intervention, an individual’s resonance fre-
quency needs to be identified, which is mostly done through spec-
tral analysis of heart periods (i.e., the time in milliseconds between
subsequent heart beats, reflecting beat-to-beat HR; (12)). The
rhythmicity of the baroreflex between ~4.5 and ~6.5 cycles/min
converges largely with the low-frequency (LF) spectral power
band of heart periods of 0.04 to 0.15 Hz (~2.5–9 cycles/min;
(13)). Hence, to detect resonance frequency, an individual’s
breathing pace that results in the largest amplitude (peak) in the
LF band needs to be identified (12).

To provide feedback on HRVand detect resonance frequency,
HRV-BF is often offered through technologies that require an elab-
orate electrocardiogram (ECG) setup, measuring the electrical sig-
nal associated with each heartbeat. However, because of the sub-
stantial costs and lack of user-friendliness, this method hampers
the accessibility of HRV-BF by a broad public in daily life. Recent
technological advances have increased the accessibility of HRV-
BF as more and more mobile devices allow individuals to monitor
their health, HR, and HRV (see, for a review, Ref. (14)). These de-
vices usually measure cardiac activity using an infrared camera on
the wrist (smartwatch) or fingertip (apps using the camera of the
mobile phone). Measuring cardiac activity using an infrared cam-
era is called photoplethysmography (PPG) (15). Through PPG,
beat-to-beat blood volume changes in the microvasculature of pe-
ripheral tissues can be detected, which can be used to calculate HR
and HRV. A huge advantage of this technique is that it is cheap,
easy to apply, wireless, and portable.

Despite the clear advantages of applying HRV-BF using PPG-
derived HRV, there is concern about the ability of these wearable
devices to correctly determine clinical biomarkers such as HR
and HRV. Moreover, to date, none of the existing apps that claim
to measure HR and HRV have been marked yet with CE
(Conformité Européenne) classification, which indicates that the
product meets the safety, health, and environmental requirements
appointed by the European Union. Accurate and detailed measure-
ments of heart periods are essential to determine HRVand support
high-quality HRV-BF interventions. To date, several studies have
tested the validity of PPG-based HRV in comparison to the “gold
standard” ECG assessments during a variety of procedures (e.g.,
rest, walking, attentional load) and positions (e.g., standing,
seated, supine) and showed high degree of agreement between
the methods (e.g., (16–23)). However, no studies have compared
PPG and ECG specifically during slow diaphragmatic breath-
ing, which is the key technique that is taught during HRV-
biofeedback interventions.
Psychosomatic Medicine, V 85 • 568-576 569
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Therefore, in this study, we aimed to validate the use of PPG to
measure cardiac activity in healthy individuals by comparing PPG
assessments with simultaneously measured ECG. The current
study compares a novel Software Development Kit (SDK), devel-
oped by Happitech (Amsterdam, the Netherlands), for PPG mea-
surement through a smartphone camera, with simultaneous ECG
measurements. This SDK is the first CE-certified smartphone ap-
plication for HRVmeasurements through PPG. The SDK is imple-
mented in an application that supports women to quit smoking
through stress reduction, which is currently under investigation
(see van Dijk et al. (24) for the study protocol). If PPG seems to
be a valid method to measure HRV during slow, diaphragmatic
breathing, this can promote research into the effectiveness and im-
plementation of HRV-BF interventions offered through mobile
apps using PPG. If proven reliable and effective, PPG-based HRV-
BF interventions contribute to the availability of low-cost, accessible
stress-reducing interventions to the broad public.

In sum, the research question of this study was whether HRV
can be reliably and validly measured through PPG with use of a
smartphone camera during slow, diaphragmatic breathing. Reli-
ability was determined through comparison of HRV indices and
identification of resonance frequency between ECG- and PPG-
based heart periods. The ECG signal was processed using NeXus
apparatus (NeXus-4; Mind Media, Herten, the Netherlands), which
is also used for HRV-BF purposes, and the PPG signal was proc-
essed using a recently developed SDK by Happitech (25).

We expected that PPG-HRVand ECG-HRV indices would not
differ significantly from one another and therefore would strongly
correlate. Moreover, we expected that PPG- and ECG-based iden-
tification of resonance frequency would highly correspond within
individuals. The results of Kim et al. (26) that demonstrate signif-
icant increases in the LF peak from pre– to post–HRV-BF training
imply that experience in diaphragmatic breathing may facilitate
resonance frequency detection. Based on these findings, we ex-
pected to find a higher resonance frequency correspondence in
participants with, compared to without, experience in diaphrag-
matic breathing obtained through, for example, yoga. Because
subject characteristics such as age, sex, weight, and height have
been shown to influence HRV indices and resonance frequency
(11,27), we also investigated whether these variables affected cor-
respondence in resonance frequency.

METHODS

Participants and Recruitment
Participants were either acquaintances of the researchers or
Bachelor Psychology students, who signed up to participate to
earn research participation points. Sixty-six healthy Dutch speak-
ing participants (50% women) were recruited, aged between 18
and 60 years. Data of nine participants were removed from the
analyses. Data from five participants were unusable because of er-
roneous export of ECG data; from two participants, PPG data were
lost because of problemswith Internet connection; and from the re-
maining two participants, quality of PPG and ECG data was insuf-
ficient. The reason behind exclusion was that when data of either
PPG and/or ECG are missing, comparison between PPG and
ECG is no longer possible. The final sample consisted of 57 partic-
ipants (mean age = 26.7 years; n = 40 [70%] women). Excluded
participants from which background data could be retrieved did
September 2023

 Unauthorized reproduction of this article is prohibited.



ORIGINAL ARTICLE

D
ow

nloaded from
 http://journals.lw

w
.com

/psychosom
aticm

edicine by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbs

IH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
1y0abggQ

Z
X

dgG
j2M

w
lZ

LeI=
 on 11/28/2023
not differ in age (mean [standard deviation], or M [SD] = 23.0
[4.73] years) from included participants (M [SD] = 25.9 [9.33]
years), t(61) = 0.79, p = .43). Also, the distribution of sex was
not different between the excluded and included groups (χ2 (1,
N = 63) = .45, p = .43). Thirty participants reported having previ-
ous experience with diaphragmatic breathing practices.

Trial Design
This study has a cross-sectional design. HRV measurements ob-
tained through PPG using a smartphone camera were compared
with simultaneously obtained HRV data by ECG using a NeXus
apparatus. Power analyses using G*Power (28) revealed that a
sample size of at least N = 52 is required to be able to detect small
differences, defined according to common practice in biomedical
research (Cohen, 1988 (29); Hopkins, 2009 (30); Cohen d
within-group effect size = 0.4 with α = .05 and 1 − β = 0.80), be-
tween PPG- and ECG-derived HRV indices. Participants were
tested during two different waves: wave 1 in November 2020
(n = 10) and wave 2 in December 2021 until February 2022
(n = 56). HRV indices measured through PPG and ECG were ob-
tained during five different paced breathing exercises. Demo-
graphics and background information were measured using ques-
tionnaires that were administered before the breathing exercises.
To validate the test procedure of slow diaphragmatic breathing
exercises, positive and negative moods were measured before
and after the breathing exercises using rating scales. Because
slow-breathing exercises are known to induce immediate relaxa-
tion (e.g., (31–33)), observing reduction of tension and anxiety,
as measured in the negative mood scale, and reduction of alertness
and excitement, as measured in the positive mood scale, would in-
dicate proper execution of the slow-breathing technique.

Written informed consent was obtained from all participants.
All personal data were stored and protected according to the
general data protection regulation guidelines. Participants were
assigned identification numbers that were used throughout the
study. Ethics approval was obtained from the “Vaste Commissie
Wetenschap en Ethiek of the Vrije Universiteit van Amsterdam”
(reference number VCWE-2019-161). Data are available upon re-
quest via the corresponding author.

Procedure
At the beginning of the 1-hour lasting experiment, participants
were seated and informed about the study procedure. They were
instructed by a research assistant to place three ECG electrodes
themselves (one on each side right below the collarbone and one
below the left rib cage), as a close contact with the participants
was avoided, because of COVID-19 safety guidelines. The elec-
trodes were then connected to the NeXus device, which was con-
nected with the NeXus laptop via Bluetooth, and participants were
asked to open the first exercise of the SDK application on the
smartphone. Hereafter, participants filled out a questionnaire in
the smartphone application, including demographic and back-
ground questions and questions about their mood. After com-
pletion, participants were notified that, during the following
30minutes, they would remain seated and perform breathing exer-
cises at six different paces for 5 minutes each, guided by a
breath-pacer on the laptop screen placed in front of them. Because
the first breathing pace was not part of the Lehrer protocol to detect
resonance frequency (12), data from this breathing exercise are not
Psychosomatic Medicine, V 85 • 568-576 570
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reported in the present study. The five breathing exercises used for
the present study consisted of the following paces (in breaths per
minute): a) ~6.5 (inhalation 4 seconds, exhalation 5 seconds), b)
6.0 (inhalation 4 seconds, exhalation 6 seconds), c) ~5.5 (inhala-
tion 4 seconds, exhalation 7 seconds), d) 5.0 (inhalation 4 seconds,
exhalation 8 seconds), and e) ~4.5 (inhalation 5 seconds, exhala-
tion 8 seconds).

The breath-pacer was depicted by a wave with an ascending
line indicating inhalation and a descending line indicating exhala-
tion. Participants were instructed to inhale through the nose and
exhale through the mouth during the breathing exercises. They
were encouraged to hold one hand on their belly to ensure dia-
phragmatic breathing; to sit upright, with both feet on the ground;
and to relax their neck and shoulders during the breathing exer-
cises. Throughout the procedure, the participants were discretely
observed by one of the researchers to make sure the instructions
were followed. After each breathing exercise, participants were
asked to fill out questions in the app about their experience during
the exercise and whether they felt nauseous or dizzy. Also, the re-
search assistant asked how participants felt to ensure they were
feeling comfortable throughout the session. Before they continued
to the next exercise, participants were given the opportunity to
pause and take something to drink for a maximum of 5 minutes
to make sure their breathing would return to their normal pace.

After finishing all six breathing exercises, participants were
again asked about their mood in the app. Subsequently, they were
instructed how to disconnect the ECG electrodes and were thanked
for their participation.

Instruments and Measures

PPG Recording
HRV data through PPG were obtained using the SDK developed
by Happitech. This SDK uses the sensor of the rear camera of an
enabled smartphone (iPhone 8 or Huawei P30 Lite), which as-
sesses HRV data indices via the index or middle finger of the par-
ticipant. Small changes in light intensity due to the amount of ox-
ygen in the blood in the participant’s tissue are detected, which is
called pulse oximetry. These changes result in a waveform from
which HRV measures can be calculated. The PPG measurement
in the app was automatically initiated when participants correctly
placed their finger on the camera.

ECG Recording
To acquire HRV data through ECG, we used the NeXus Hardware
and BioTrace+ software (BioTrace+ for NeXus-4, version 2013;
MindMedia, Herten, the Netherlands). The NeXus is an integrated
system for HRV-BF and psychophysiological research, provid-
ing ECG data for both time and frequency domains, using self-
adhesive electrodes. The researcher manually started the NeXus
measurement when PPG measurement was initiated so that PPG
and ECG data were collected simultaneously.

Background Characteristics
The following background characteristics were measured through
self-report using a questionnaire: age, sex, highest obtained educa-
tional level (middle-level vocational training, higher vocational
training, academic education, other), weight (in kilograms), and
height (in centimeters). Background variables were dichotomized
September 2023
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into “high” and “low” groups using the nearest round value to the
median: age of 25 years, weight of 65 kg, and height of 175 cm. In
addition, a question concerning experience with diaphragmatic
breathing through for example yoga or singing education was in-
cluded (yes or no).

Mood
Mood was measured using 13 items derived from the Positive and
Negative Affect Schedule (34), which measures positive and neg-
ative affectivity. To test the relaxing and calming effect that is ex-
pected to be induced by HRV-BF and/or slow breathing (35,36),
we selected items that were characterized by positive and negative
affect and by elevated levels of arousal (10 items for positive affect
and 10 items for negative affect). Participants were instructed to in-
dicate the extent to which the mood state correctly described their
current feelings. Because HRV-BF may affect positive and nega-
tive valenced arousal to a different extent, we chose to calculate
separate scores for positive and negative affect. The positive affect
subscale consisted of the following six items: “excited,” “alert,”
“determined,” “active,” “attentive,” and “enthusiastic,” with high
scores indicating higher arousal and stronger positive affect. The
negative affect subscale included the following seven items:
“afraid,” “upset,” “distressed,” “nervous,” “jittery,” “irritable,”
and “scared,”with high scores indicating higher arousal and stron-
ger negative affect. Internal consistency of both subscales was
high, with Cronbach α values of .85 and .77 for positive and neg-
ative affectivity, respectively. To increase potential variability,
items in the present study were scored on an 11-point Likert scale,
ranging from “not at all” (0) to “very much” (10), rather than on
5-point Likert scales, as used in the original Positive and Negative
Affect Schedule.

HRV Indices
Using both PPG and ECG instruments, we assessed two time-
domain HRV indices: a) the square root of mean squared differ-
ences of successive normal-to-normal (N-N) intervals (RMSSD)
and b) the proportion derived by dividing the NN50 by the total
number of NN intervals (pNN50), and two frequency-domain in-
dices: LFpower and HFpower. All four indices can be assessed
within a 5-minute period (Task Force of the European Society of
Cardiology and the North American Society of Pacing and Elec-
trophysiology, 1996).

RMSSD
RMSSD is the beat-to-beat variance in HR in milliseconds (27). It
is the principal measure within the time domain, used to estimate
vagally mediated changes in HRV (37). Higher values indicate
larger HRV.

pNN50
pNN50 represents the percentage of consecutive beat-to-beat (RR)
intervals that vary by more than 50 ms (pNN50). It indicates the
contribution of the parasympathetic nervous system to cardiac reg-
ulation (27). In people with normal sinus rhythm, a larger value of
pNN50 indicates higher HRV.

LFpower
Low-frequency power was defined as the absolute power in the
low-frequency band (0.04–0.15 Hz) in ms2 (LFms2) (27). LFpower
reflects fluctuations in interbeat intervals (IBIs) ranging from ~7 to
Psychosomatic Medicine, V 85 • 568-576 571
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25 seconds. The breathing frequencies that are involved in HRV-
BF, which vary between 9 and 13 s/cycle, fall within this range.

HFpower
High-frequency power was defined as the absolute power in the
high-frequency band (0.15–0.4 Hz) in ms2 (HFms2) (27). HFpower
reflects fluctuations in IBIs ranging from 2.5 to ~7 seconds.

Resonance Frequency
Resonance frequency was defined as the breathing pace character-
ized by the highest power in the LF band, relative to the power in
the total frequency spectrum (limited to 0.02–0.5 Hz, given the
measurement duration). Because the main goal of HRV-BF is to
train individuals to breathe at their resonance frequency, the
breathing pace with the highest LF peak was identified and com-
pared between PPG and ECG. Three variables were created. First,
LF peak pace-PPG and LF peak pace-ECG reflected the breathing
paces (range, 1–5) resulting in the highest LF peak percentage ac-
cording to PPG or ECG assessment, respectively. In addition, a di-
chotomous variable was created reflecting congruence (1) versus
incongruence (0) of resonance frequency between PPG and ECG
assessment. As an individual’s resonance frequency usually varies
on a continuous scale between ~6.5 to ~4.5 breaths/min (11,38),
LF peak percentages of two neighboring breathing paces are likely
to be nearly identical. Hence, resonance frequency was considered
congruent between PPG and ECG if identical breathing paces or
directly neighboring breathing paces (e.g., pace 1 and 2) were
identified as resonance frequency.
Extraction of PPG and ECG Signals

Main Calculation Flow for PPG and ECG Signals
For PPG, raw input (i.e., pixels) was extracted from the camera
(frame rate = 30 fps). The data were processed by the following
steps: pixel selection, interpolation (30Hz > 180Hz), and filtration
using the Butterworth filter (pass band = [0.5–4] Hz; see Figure
S1, Supplemental Digital Content, http://links.lww.com/
PSYMED/A954). Then, R-peak detection of the filtered data
was performed using trained neural networks (25), from which
IBI information was extracted. For the calculation of IBIs from
ECG data, a standard peak detection algorithm from MATLAB
was used together with manual correction of erroneous calculated
ECG peak position and marking and of signal segments of low
quality due to artifacts (e.g., finger movement). Manual correction
and marking were conducted using an application with a graphical
user interface. The 5-minute intervals of both PPG and ECG data
were exactly superposed (see Figure S2, Supplemental Digital
Content, http://links.lww.com/PSYMED/A954). For data clean-
ing, erroneous/extreme IBIs due to incorrect identification of R
peaks were excluded, after which an IBI correction algorithm
was carried out, similar to data preprocessing as described by
Widjaja et al. (39). Subsequently, frequency and time HRV indices
were calculated based on cleaned and corrected IBIs according to
standard formulas (40). For frequency analysis of HRV, the fast
Fourier transformation spectrum was calculated using a Welch
periodogram method (length of segment 5 minutes and 50% over-
lapping). Frequency bands were defined following the Task Force
(Task Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology, 1996).
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Statistical Analysis
Statistical analyses were performed using IBM SPSS version 27.
First, data were inspected for errors and outliers were checked by
means of histograms. Erroneous data were removed, but outliers
were kept in the data, following the guidelines described by Bland
and Altman (41). The levels of agreement between RMSSD,
pNN50, LFms2, and HFms2 from PPG and ECG were assessed
using Bland-Altman analysis for each breathing exercise sepa-
rately, and constant errors (CEs) were calculated. Similar to
Charlot et al. (42), we decided a priori that acceptable limits of
agreement for interchangeability between ECG and PPG corre-
sponded to 150% of the reference SD values of ECG-derived
RMSSD, LFpower, and HFpower, as provided by the Task Force
(1996). Reliability of the PPG measurements was established by
comparing themwith the ECGmeasurements, using intraclass cor-
relation coefficients (ICCs), separately for each HRV index, per
both breathing pace (intrabreathing pace reliability) and overall
breathing paces (interbreathing pace reliability). ICC values from
0 to 0.30were classified as small, values from 0.31 to 0.49 as mod-
erate, values from 0.50 to 0.69 as large, ICCs from 0.70 to 0.89 as
very large, and values from 0.90 to 1.00 as near perfect (43). A sig-
nificance level of p < .05 was used.

Correspondence between resonance frequency was determined
using the ICC and through determining absolute agreement. To as-
sess whether resonance frequency correspondence was dependent
on the participants experience in diaphragmatic breathing, age,
weight, and height, we performed χ2 tests and reported the relative
risk (“chance”) to obtain resonance frequency among participants
with and without diaphragmatic breathing experience, between
women and men, and between groups “higher” and “lower” on
age, weight, and height.

RESULTS

Initial Analyses
Information on the mood scales was missing for three participants,
yielding data of a total of 54 participants on the mood scales.
Visual inspection revealed that all variables’ frequency distribu-
tions were approximately normal.
TABLE 1. Correspondence of PPG and ECG Measurements Per Pa

Breathing Pace N

RMSSD pNN50

M (SD) ICC M (SD)

1: 4–5 PPG
ECG

53 59.53 (28.88)
54.33 (28.01)

0.97*** 33.14 (19.11)
29.74 (19.72)

2: 4–6 PPG
ECG

57 58.50 (25.73)
54.73 (22.33)

0.98*** 32.52 (18.58)
29.62 (18.96)

3: 4–7 PPG
ECG

55 56.89 (23.05)
53.18 (23.03)

0.98*** 32.64 (19.38)
29.60 (19.75)

4: 4–8 PPG
ECG

54 56.31 (22.45)
52.52 (22.29)

0.97*** 31.82 (18.19)
28.79 (18.08)

5: 5–8 PPG
ECG

55 52.99 (18.09)
48.64 (18.90)

0.97*** 29.79 (16.97)
26.25 (17.16)

PPG = photoplethysmography; ECG = electrocardiogram; RMSSD = root mean square of s
intervals more than 50 milliseconds; LFms2 = low-frequency power in milliseconds square
deviation); ICC = intraclass correlation coefficient.

*** On ln-transformed variables, p < .001.
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In accordance with the supposed relaxing and calming effect of
slow diaphragmatic breathing, positive and negative valenced
arousal decreased over the course of the experiment, giving some
support for the validity of the test procedure (positive mood scale:
M [SD]: pretest = 6.58 (1.42), posttest = 5.87 (1.49), t(53) = 4.32,
p < .001; negative mood scale: M [SD]: pretest = 1.78 (1.27), post-
test = 1.13 (0.94), t(53) = 5.25, p < .001).

Validation of PPG
Because of problems with either the PPG or ECG signal, 11 sepa-
rate observations, consisting of data of a particular breathing pace
from 10 participants, were excluded from the analyses. The means
and SDs of RMSSD, pNN50, LFms2, and HFms2 of both the PPG
and ECG measurements, and ICCs are displayed in Table 1.
Full-validity statistics are shown in Tables S2–S5, Supplemental
Digital Content, http://links.lww.com/PSYMED/A954. Because
the distributions of RMSSD, pNN50, LFpower, and HFpower
were slightly skewed to the right, the data were first ln-transformed
before ICCs were calculated, for which the normality assumption
holds. ICC values of the different breathing paces were “near per-
fect” (>0.90) for lnRMSSD, lnpNN50, lnLFms2, and lnHFms2.
Bland-Altman plots per breathing pace per HRV index are pre-
sented in Figures 1A–D. Because the difference scores (of the
nontransformed data) were normally distributed, a prerequisite
for conducting Bland-Altman analyses (see, for example, Ref.
(44)), further Bland-Altman analyses were conducted using non-
transformed data. The CE and SEE values were consistent across
breathing exercises for RMSSD and pNN50, with PPG-derived
RMSSD and pNN50 consistently being slightly higher (i.e., about
3.5–5.5 milliseconds for RMSSD and 3% for pNN50) than
ECG-derived RMSSD and pNN50, respectively (see Tables S2
and S3 [Supplemental Digital Content, http://links.lww.com/
PSYMED/A954] and Figures 1A, B). The CE and SEE values
for LFms2 were small and nonsignificant, suggesting absence of
systematic overestimation or underestimation of PPG (see Table S5
[Supplemental Digital Content, http://links.lww.com/PSYMED/
A954] and Figure 1C). TheCE andSEEvalues forHFms2were small
to moderate and consistent over breathing paces, with PPG slightly
overestimating HFms2 (i.e., 3.5–7 ms2; Table S5 and Figure 1D).
rameter at Different Breathing Rates

LFms2 HFms2

ICC M (SD) ICC M (SD) ICC

0.99*** 265.41 (144.17)
255.46 (141.88)

0.99*** 22.14 (18.60)
17.39 (15.59)

0.92 ***

0.96*** 305.19 (153.92)
292.39 (150.30)

0.97*** 25.94 (17.51)
19.36 (16.14)

0.86***

0.98*** 338.23 (175.68)
331.81 (163.18)

0.98*** 27.68 (16.26)
23.83 (17.50)

0.95***

0.97*** 386.42 (197.17)
393.58 (214.40)

0.98*** 33.28 (18.27)
26.47 (15.89)

0.93***

0.95*** 409.77 (213.88)
428.97 (232.79)

0.99*** 30.37 (19.14)
24.76 (16.28)

0.92***

uccessive RR difference; pNN50 = percentage of successive normal sinus beat-to-beat
d; HFms2 = high-frequency power in milliseconds squared; M (SD) = mean (standard
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FIGURE 1. Bland-Altman plots comparing PPG with ECG measurements of (A) RMSSD, (B) pNN50, (C) LFms2, and (D) HFms2 per
breathing pace (1–5). The solid black lines display the mean bias (constant error), the dotted black lines indicate the upper and lower limits
of agreement, and the gray lines in the RMSSD plot indicate the acceptable limits of agreement based on the Task Force (1996). Of note,
the acceptable limits of agreement were not plotted for LFms2 and HFms2, as they were far outside the range of the data points. PPG =
photoplethysmography; ECG = electrocardiography; RMSSD = square root of mean squared differences of successive normal-to-
normal intervals; pNN50 = percentage of successive normal sinus beat-to-beat intervals more than 50 milliseconds; LFms2 =
low-frequency power in milliseconds squared; HFms2 = high-frequency power in milliseconds squared.
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The quality of the agreement RMSSD, LFms2, andHFms2was good,
as the limits of agreement remainedwithin the a priori defined accept-
able values (see Figure 1A for RMSSD). Because the reference in
SDs for LFms2 and HFms2 presented in the Task Force article (1996)
was substantially larger (SD = 416 and SD = 203, respectively) than
the SDs that were found in this study, the acceptable limits of agree-
ment ranged outside the scope of the observations in this study and
were therefore not plotted in Figure 1. For all four HRVindices, in ac-
cordance with Bland-Altman guidelines, nearly all plots (70%)
showed that at least 95%of the observations (i.e., 54–55 observations)
lie within 1.96 SD of the mean difference. Five plots (25%) from dif-
ferent indices had 93% of the observations within the range of 1.96
SD, and of only one plot (breathing pace 4 of HFms2), 91% of
the observations are within the limits of agreement.

No indications for proportional bias (i.e., a constant difference
between the measurements) were found for RMSSD or pNN50, as
Psychosomatic Medicine, V 85 • 568-576 573
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all trends were small and not statistically significant. There were
three exceptions. For LFms2, only for breathing pace 3 (i.e., inha-
lation 4 seconds and exhalation 7 seconds), statistically significant
differences between PPG and ECG for higher LFms2 values were
found. For HFms2, statistically significant trends, small to moder-
ate in size, for breathing paces 1 and 4 were found, showing larger
differences between PPG and ECG measures for higher HFms2

values. These significant trends suggest proportional bias for these
three breathing paces.

Resonance Frequency
Data of 10 participants weremissing on one or two breathing paces
(total 11 observations); hence, their resonance frequency could not
be reliably determined. Therefore, convergence of resonance fre-
quency was based on 47 participants. The distribution of resonance
frequency as determined through PPG and ECG is shown in Table 2.
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The ICC (absolute agreement, single measure, not allowing for
a difference of one between resonance frequencies) showed mod-
erate correspondence in LF peak breathing pace detection between
PPG and ECG (ICC = 0.54). PPG and ECG resonance frequency,
allowing for a difference of one between breathing paces demon-
strating the highest LF peak, corresponded in 36 of 47 participants
(76.6%).

Potential Moderators of Resonance Frequency
Of the participants with diaphragmatic breathing experience, 18 of
24 (75.0%) demonstrated corresponding resonance frequency,
similar to the percentage found among participants without dia-
phragmatic breathing experience (18 of 23 [78.0%]).

For the sample of 47 participants, the relative risk (“chance”) to
obtain resonance frequency correspondence was 0.96 (95% confi-
dence interval [CI] = 0.70–1.31) among participants with dia-
phragmatic breathing experience compared with those without ex-
perience, 0.97 (95% CI = 0.69–1.36) among men compared with
women, and 1.01 (95% CI = 0.73–1.39) among participants
“low” versus “high” on age, 1.23 (95% CI = 0.88–1.72) among
participants “lower” versus “higher” on weight, and 1.20 (95%
CI = 0.87–1.66) among participants “lower” versus “higher” on
height. χ2 Tests showed no significant differences in resonance
frequency on the variables (see Table S1, Supplemental Digital
Content, http://links.lww.com/PSYMED/A954).

Reliability of PPG and ECG
Interbreathing pace reliability (i.e., over all breathing paces) was
very large for both PPG- and ECG-derived HRV time-domain
measures and large for the frequency-domain measures. ICCs
were as follows: lnRMSSD-PPG = 0.90, lnRMSSD-ECG = 0.92,
lnpNN50-PPG = 0.89, pNN50-ECG = 0.91, lnLFms2-PPG = 0.76,
LFms2-ECG = 0.78, lnHFms2-PPG = 0.70, and lnHFms2-
ECG = 0.75.

DISCUSSION
In the current study, we aimed to validate PPGHRVmeasurements
against classical ECG during HRV-BF by comparing HRV indices
RMSSD, pNN50, LFpower, HFpower, and resonance frequency
between the two methods. Overall, we found that the time-
domain and frequency-domain HRV indices can be reliably mea-
sured through PPG during the slow-breathing exercises that are
used in HRV-BF. Second, for all four HRV indices, large ICCs be-
tween PPG and ECG were found, with large effect sizes. Third,
TABLE 2. Frequency of Highest LF Peak Detection Per Breathing P

Breathing Pace

PPG

n (%) n (%) Experience
n (%

No Exper

1: 4–5 5 (10.6) 1 (4.2) 4 (17.

2: 4–6 6 (12.8) 1 (4.2) 5 (21.

3: 4–7 10 (21.3) 7 (29.2) 3 (13.

4: 4–8 5 (10.6) 2 (8.3) 3 (13.

5: 5–8 21 (44.7) 13 (54.2) 8 (34.

Total n 47 24 23

LF = low frequency; PPG = photoplethysmography; ECG = electrocardiogram.
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Bland-Altman analyses showed good interchangeability of PPG
and ECG for RMSSD, LFpower, and HFpower, as indicated by
the limits of agreement of all breathing paces falling within the ac-
ceptable range for ECG-derived HRV indices, based on the crite-
rion defined by Charlot et al. (42), using the normative data for
these HRV indices presented by the Task Force of the European
Society of Cardiology and the North American Society of Pacing
and Electrophysiology (1996). It should be noted that this criterion
can be considered rather stringent, and, for example, using norma-
tive data from the study of Navarro-Lomas et al. (45), a study with
a relatively large and more similar sample with respect to the age
range, results in >95% of observations in all breathing paces fall-
ing within the acceptable limits of agreement. Fourth, no system-
atic pattern was found in the breathing paces for which the Task
force criterion was not met. Fifth, systematic differences between
PPG and ECG measurements of HRV indices were small to very
small, further supporting the reliability of the PPG measurements.
Finally, no indications were found for proportional bias for any of
the HRV indices, although an incidental significant small trend
was found for the frequency domain measures in one or two
breathing paces. These points show that the Happitech SDK can
reliably measure RMSSD, pNN50, LFpower, and HFpower dur-
ing slow diaphragmatic breathing. With regard to determining res-
onance frequency, a key procedure in HRV-BF, correspondence
between PPG and ECG measurements was good to very good. In-
dividual characteristics, such as experience with diaphragmatic
breathing, age, height, weight, or sex, did not affect the PPG-
ECG–derived resonance frequency agreement. In sum, our find-
ings provide strong support for PPG as a valid method to measure
HRVand to guide HRV-BF breathing exercises.

Despite the strong relative agreement and small differences, we
found that PPG-derived time-domain HRV indices were systemat-
ically slightly higher than ECG-derived time-domainHRVindices,
indicating a small overestimation of PPG measures. An overesti-
mation by PPG is consistent with the literature using various tasks
(e.g., cycling) and participant positions, such as sitting or lying
down (e.g., (17,42,46)). However, overestimation of time-domain
HRV measures by PPG seems more substantial with more sympa-
thetic activation due to physical movement or exercise (e.g., (42))
and less of a threat to the reliability ofHRVindices when conducting
breathing exercises for HRV-BF interventions. Even though accu-
racy of beat detection using PPG, which is important for RMSSD
and pNN50 assessment, is not perfect, results imply that it is suffi-
cient for HRVassessment during slow breathing.
ace of PPG and ECG Assessment, by Breathing Experience

ECG

)
ience n (%) n (%) Experience

n (%)
No Experience

4) 5 (10.6) 1 (4.2) 4 (17.4)

7) 9 (19.2) 2 (8.3) 7 (30.4)

0) 5 (10.6) 5 (20.8) 0 (0.0)

0) 8 (17.0) 4 (16.7) 4 (17.4)

8) 20 (42.6) 12 (50.0) 8 (34.8)

47 24 23
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The absence of substantial proportional bias is in accordance
with previous findings reported by Esco et al. (16), who assessed
agreement of PPG- and ECG-derived RMSSD during supine,
seated, and standing positions and found no proportional differ-
ences between the two methods for any of the positions. Hence,
our data further support that being seated is an adequate position
to measure PPG-based HRV.

As predicted, we found that resonance frequency had a good
level of agreement between PPG-and ECG-derived identification.
These findings imply that PPG is a valid method to identify reso-
nance frequency, although there seems to be room for improve-
ment. Excellent, rather than good, agreement would better serve
the need for accurate identification of resonance frequency, which
is key to performing HRV-BF breathing exercises. It should be
noted that, in the HRV-BF treatment protocol, identification of res-
onance frequency is performed at least twice to improve reliability
(12). Repeating the resonance frequency identification procedure
allows participants to get acquainted with the procedure, which
may be expected to facilitate identification, as diaphragmatic
breathing is conducted more properly. Results of the study of
Kim et al. (47) showed that the LF peak increases with more train-
ing, which may improve discrimination of the breathing paces as-
sociated with the highest LFpower for both PPG and ECG. The
fact that we did not find better PPG-ECG agreement of resonance
frequency identification in individuals with experience in dia-
phragmatic breathing, due to other activities such as singing les-
sons, may not be at odds with this idea. The results may either im-
ply that experience in diaphragmatic breathing influences resonance
frequency detection through PPG and ECG similarly, or that previ-
ous experience is irrelevant in the determination of agreement in res-
onance frequency. Further research is imperative to draw conclu-
sions on the influence that previous experience in diaphragmatic
breathing, or in slow breathing as taught in HRV-biofeedback train-
ing, has on the agreement in resonance frequency detection between
PPG and ECG.

This study has several noteworthy strengths. It is the first study
to investigate the correspondence in resonance frequency detec-
tion between PPG and ECG. Moreover, we included a sample of
women and men with varying ages and varying on previous expe-
rience with diaphragmatic breathing that was large enough to
assess individual differences in resonance frequency agreement
between PPG and ECG. This varied sample adds to the generaliz-
ability of the findings to the general population. A limitation of the
current study is that the procedure to assess resonance frequency
may have negatively affected the agreement between ECG- and
PPG-derived HRVmeasures. Especially the two slowest breathing
paces, which are hard to perform for many people, may have influ-
enced signal quality of PPG and ECG, resulting in an underestima-
tion of PPG-ECG agreement among these participants, lowering
the estimates of the total sample. Consequently, PPG-ECG agree-
ment for the two lowest breathing paces may seem to be higher
among participants for whom one of these two breathing paces is
the resonance frequency.

Future studies need to assess correspondence between PPG-
and HRV-derived HRV measures among samples with clinical
levels of stress, anxiety, or depression, as differences in cardiovas-
cular function associated with these complaints may affect the con-
vergence between PPG and ECG. In addition, it is useful to further
investigate the correspondence between PPG- and HRV-derived
Psychosomatic Medicine, V 85 • 568-576 575
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HRV measures, once participants’ resonance frequency has been
identified. Because, during HRV-BF intervention, participants per-
form their breathing exercises in resonance frequency, determining
correspondence between PPG- and ECG-derived HRV indices
along the actual intervention would provide further information
about PPG’s potential to guide HRV-BF breathing exercises. More-
over, it would be valuable to assess whether training improves
PPG-ECG correspondence of resonance frequency detection, and
if so, which amount of training is required to accurately determine
one’s resonance frequency. If this information would become avail-
able, a training phase could be offered before the actual HRV-BF in-
tervention so that theHRV-BF resonance frequency detection proce-
dure can be improved.

The current study has implications for clinical practice. We
suggest that additional research should be conducted on the PPG-
ECG agreement of HRV indices in clinical samples before PPG-
derived HRV indices are used as an alternative for ECG-derived
HRV indices for HRV-BF interventions among individuals with
burnout, depression, or anxiety disorders.

In conclusion, using PPG-derived HRV indices, as calculated
using the Happitech SDK, is a potentially reliable and valid
method for the assessment of HRV during slow, paced breathing.
Furthermore, our study is the first to show that PPG can adequately
replace ECG assessment to measure resonance frequency during
HRV-BF. Future research should investigate how HRV-BF can
be offered by using mobile PPG assessments in more naturalistic
and clinical settings, which can potentially increase the widespread
availability for such a valuable intervention.
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funded by ZonMW (project number 543003104) awarded to A.C.H.
The authors report no conflicts of interest.
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