Modelling with cellular automata: problem solving environments and multidimensional applications
Naumov, L.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
## Contents

1 Introduction  
1.1 The Third Paradigm .................................................. 1  
1.2 Problem Solving Environments for Simulations .................... 3  
1.3 Cellular Automata for Simulations .................................. 7  
1.4 Thesis Outline .......................................................... 10

2 Problem Solving Environment for Cellular Automata Based Simulations  
2.1 Features and Requirements ............................................ 11  
2.2 Survey of Existing Cellular Automata Based Problem Solving Environments ................................................................. 14  
2.3 Cellular Automata Based Problem-Solving Environment Case Study: The CAME&L Project .................................................. 18  
2.3.1 Cellular Automata Based Computational Experiment Decomposition ................................................................. 19  
2.3.2 Software Design ....................................................... 20  
2.3.3 Features ................................................................. 22  
2.4 Conclusions ............................................................... 27

3 Exploring Evolving 1D Structures and 2D Universal Data Indexing  
3.1 Classification of Structures Generated by 1D Binary Cellular Automata from a Single Seed ................................................. 29  
3.1.1 Specification of the Transition Function .......................... 30  
3.1.2 Initial Conditions ..................................................... 31  
3.1.3 Comparison of Grids’ States as a Basis of Classifications .... 31  
3.1.4 Invariance with Respect to the Operation “Equality” ........... 33  
3.1.5 Invariance with Respect to the Operations “Equality” and “Inverse” ................................................................. 36  
3.1.6 Invariance with Respect to the Operations “Equality” and “Mirror Reflection” ............................................................. 38  
3.1.7 Invariance with Respect to the Operations “Equality”, “Inverse”, and “Mirror Reflection” .............................................. 39  
3.1.8 Invariance with Respect to the Operations “Equality” and “Inverse-Mirror Reflection” .................................................. 40  
3.1.9 Classification with a Single-Cell Offset ............................ 40  
3.1.10 Classification with Errors ............................................ 41