Modelling with cellular automata: problem solving environments and multidimensional applications

Naumov, L.A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 1
 1.1 The Third Paradigm 1
 1.2 Problem Solving Environments for Simulations 3
 1.3 Cellular Automata for Simulations 7
 1.4 Thesis Outline 10

2 Problem Solving Environment for Cellular Automata Based Simulations 11
 2.1 Features and Requirements 11
 2.2 Survey of Existing Cellular Automata Based Problem Solving Environ-
 ments 14
 2.3 Cellular Automata Based Problem-Solving Environment Case Study:
 The CAMEL Project 18
 2.3.1 Cellular Automata Based Computational Experiment Decom-
 position 19
 2.3.2 Software Design 20
 2.3.3 Features 22
 2.4 Conclusions 27

3 Exploring Evolving 1D Structures and 2D Universal Data Indexing 29
 3.1 Classification of Structures Generated by 1D Binary Cellular Automata
 from a Single Seed 29
 3.1.1 Specification of the Transition Function 30
 3.1.2 Initial Conditions 31
 3.1.3 Comparison of Grids’ States as a Basis of Classifications 31
 3.1.4 Invariance with Respect to the Operation “Equality” 33
 3.1.5 Invariance with Respect to the Operations “Equality” and “In-
 verse” 36
 3.1.6 Invariance with Respect to the Operations “Equality” and “Mirror
 Reflection” 38
 3.1.7 Invariance with Respect to the Operations “Equality”, “Inverse”,
 and “Mirror Reflection” 39
 3.1.8 Invariance with Respect to the Operations “Equality” and
 “Inverse-Mirror Reflection” 40
 3.1.9 Classification with a Single-Cell Offset 40
 3.1.10 Classification with Errors 41
3.1.11 Discussion ... 42
3.2 Generalized Coordinates for Cellular Automata Grids 43
 3.2.1 Basic Concepts .. 44
 3.2.2 Spiral Generalized Coordinates 47
 3.2.3 Composite Generalized Coordinates for the Grid of Triangles . 56
3.3 Discussion .. 60

4 Modelling 3D Tumour Growth 63
 4.1 Introduction .. 63
 4.2 Biology of Tumour Growth 64
 4.2.1 Microscopic Subphenomena 65
 4.2.2 Mesoscopic Subphenomena 71
 4.2.3 Macroscopic Subphenomena 77
 4.3 Overview of Existing Models 79
 4.4 Several Models of Tumour Growth
 4.4.1 General Considerations 92
 4.4.2 Algorithm 1. Basic 93
 4.4.3 Algorithm 2. Optimized 96
 4.4.4 Experiments .. 98
 4.4.5 The Influence of Mitoses Rate on Growth Dynamics 102
 4.5 Conclusions .. 105

5 Summary, Discussion and Conclusions 107

A Sample Classes of Structures Generated by 1D Binary Cellular Automata from a Single Seed ...
 A.1 Nontrivial E-classes ... 111
 A.2 EIMO-classes ... 112

Related Publications ... 115

References .. 117

Summary .. 129
 In English ... 129
 In Russian (Реферат) ... 131
 In Dutch (Samenvatting) ... 133

Acknowledgements ... 135