Modelling with cellular automata: problem solving environments and multidimensional applications

Naumov, L.A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction .. 1
 1.1 The Third Paradigm .. 1
 1.2 Problem Solving Environments for Simulations 3
 1.3 Cellular Automata for Simulations 7
 1.4 Thesis Outline .. 10

2 Problem Solving Environment for Cellular Automata Based Simulations ... 11
 2.1 Features and Requirements 11
 2.2 Survey of Existing Cellular Automata Based Problem Solving Environments ... 14
 2.3 Cellular Automata Based Problem-Solving Environment Case Study: The CAME & L Project 18
 2.3.1 Cellular Automata Based Computational Experiment Decomposition ... 19
 2.3.2 Software Design ... 20
 2.3.3 Features ... 22
 2.4 Conclusions ... 27

3 Exploring Evolving 1D Structures and 2D Universal Data Indexing ... 29
 3.1 Classification of Structures Generated by 1D Binary Cellular Automata from a Single Seed 29
 3.1.1 Specification of the Transition Function 30
 3.1.2 Initial Conditions ... 31
 3.1.3 Comparison of Grids’ States as a Basis of Classifications 31
 3.1.4 Invariance with Respect to the Operation “Equality” 33
 3.1.5 Invariance with Respect to the Operations “Equality” and “Inverse” ... 36
 3.1.6 Invariance with Respect to the Operations “Equality” and “Mirror Reflection” 38
 3.1.7 Invariance with Respect to the Operations “Equality”, “Inverse”, and “Mirror Reflection” 39
 3.1.8 Invariance with Respect to the Operations “Equality” and “Inverse-Mirror Reflection” 40
 3.1.9 Classification with a Single-Cell Offset 40
 3.1.10 Classification with Errors 41