Modelling with cellular automata: problem solving environments and multidimensional applications
Naumov, L.

Citation for published version (APA):
Contents

1 Introduction 1
 1.1 The Third Paradigm 1
 1.2 Problem Solving Environments for Simulations 3
 1.3 Cellular Automata for Simulations 7
 1.4 Thesis Outline 10

2 Problem Solving Environment for Cellular Automata Based Simulations 11
 2.1 Features and Requirements 11
 2.2 Survey of Existing Cellular Automata Based Problem Solving Environments ... 14
 2.3 Cellular Automata Based Problem-Solving Environment Case Study: The CAME&L Project 18
 2.3.1 Cellular Automata Based Computational Experiment Decomposition .. 19
 2.3.2 Software Design 20
 2.3.3 Features 22
 2.4 Conclusions 27

3 Exploring Evolving 1D Structures and 2D Universal Data Indexing 29
 3.1 Classification of Structures Generated by 1D Binary Cellular Automata from a Single Seed 29
 3.1.1 Specification of the Transition Function 30
 3.1.2 Initial Conditions 31
 3.1.3 Comparison of Grids’ States as a Basis of Classifications .. 31
 3.1.4 Invariance with Respect to the Operation “Equality” 33
 3.1.5 Invariance with Respect to the Operations “Equality” and “Inverse” ... 36
 3.1.6 Invariance with Respect to the Operations “Equality” and “Mirror Reflection” 38
 3.1.7 Invariance with Respect to the Operations “Equality”, “Inverse”, and “Mirror Reflection” 39
 3.1.8 Invariance with Respect to the Operations “Equality” and “Inverse-Mirror Reflection” 40
 3.1.9 Classification with a Single-Cell Offset 40
 3.1.10 Classification with Errors 41