Steroid responsive encephalopathy in cerebral amyloid angiopathy: a case report and review of evidence for immunosuppressive treatment
Kloppenborg, R.P.; Richard, E.; Sprengers, M.E.S.; Troost, D.; Eikelenboom, P.; Nederkoorn, P.J.

Published in:
Journal of neuroinflammation

DOI:
10.1186/1742-2094-7-18

Citation for published version (APA):
Steroid responsive encephalopathy in cerebral amyloid angiopathy: a case report and review of evidence for immunosuppressive treatment

Raoul P Kloppenborg1, Edo Richard1, Marieke ES Sprengers2, Dirk Troost3, Piet Eikelenboom1, Paul J Nederkoorn1*

Abstract
Cerebral amyloid angiopathy (CAA) is a common but often asymptomatic disease, characterized by deposition of amyloid in cerebral blood vessels. We describe the successful treatment of CAA encephalopathy with dexamethasone in a patient with CAA-related inflammation causing subacute progressive encephalopathy and seizures, which is an increasingly recognized subtype of CAA. The two pathological subtypes of CAA-related inflammation are described and a review of the literature is performed concerning immunosuppressive treatment of CAA-related inflammation with special attention to its pathological subtypes. Immunosuppressive therapy appears to be an appropriate treatment for CAA encephalopathy.

Background
Sporadic cerebral amyloid angiopathy (CAA) is a common but often asymptomatic neuropathological finding, characterized by the deposition of amyloid-β (Aβ) in small and medium-sized cerebral arteries, arterioles and sometimes capillaries of the meninges and brain parenchyma. Its prevalence is strongly associated with increasing age and has been reported to be as high as 57% percent in case series of asymptomatic patients over 60 years of age [1]. CAA is a common finding in patients with Alzheimer’s disease (AD); but many patients with CAA do not develop AD. CAA can lead to lobar haemorrhage in non-hypertensive patients [2]. Other, less often reported clinical manifestations are seizures, transient neurological deficits and dementia other than AD [3]. In addition, more rare presentations have been reported, including space occupying lesions and leukoencephalopathy on magnetic resonance imaging (MRI) [4-6]. The latter is an increasingly recognized syndrome encompassing subacute encephalopathy, headache, seizures or focal neurological symptoms. Upon brain biopsy, an inflammatory process is found in relation to the vascular deposits of Aβ. In contrast to other Aβ-depositing disorders such as AD, immunosuppressive treatment has been reported to ameliorate both clinical and radiological symptoms of CAA encephalopathy, although with variable success [7]. This variability could be explained by the existence of different underlying pathological subtypes. We describe a patient with CAA-leukoencephalopathy, who was treated successfully with dexamethasone. We also performed a literature review concerning the use of immunosuppressive treatment for CAA-related inflammation with special attention to its pathological subtypes.

Case presentation
A 74-year-old man with an unremarkable medical history noted a progressive gait disorder in the months prior to admission. His wife recalled increased sleepiness and loss of initiative. After having seizures the patient was admitted to our hospital. The patient was disoriented in time and did not perform complicated tasks, although this could partly be attributed to apathy. He could not remember the reason for his stay in the hospital. The remaining neurological examination revealed no abnormalities. MRI showed confluent bifrontal white matter lesions and minimal enhancement of the white matter in the right frontal lobe after administration of gadolinium (Figure 1A-D). Routine laboratory measurements were normal. Cerebral spinal fluid examination revealed an elevated protein level (1.78 g/l). No malignant cells were found in the spinal fluid. After diagnostic work-up had excluded a primary tumour elsewhere...
in the body, low grade astrocytoma or gliomatosis cerebri was considered and a stereotactic brain biopsy was performed. Histopathological analysis showed extensive Aβ immunopositivity around smaller and larger blood vessels (Figure 2A, B). No neurofibrillary tangles or amyloid plaques were found in the parenchyma. Reactive gliosis, strong upregulation of microglia and multiple macrophages around the blood vessels in both white and grey matter were present (Figure 2C, D). The findings were compatible with sporadic CAA. After the patient developed progressive apathy, loss of initiative, magnetic gait and hypertonia of the extremities, treatment with dexamethasone (2 × 4 mg/day) was started. There was a remarkable clinical improvement in the following days. The patient became alert, the hypertonia disappeared and he was able to walk with a wheeled walker. After 5 weeks, he was discharged from the hospital with a mild gait disorder. A 3 Tesla MRI three months after admission showed remarkable amelioration of the white matter abnormalities. Gradient echo sequences showed subcortical hypointensities, compatible with multiple microbleeds (figure 1). Dexamethasone treatment was tapered in the months after admission.
Discussion

The clinical picture of CAA-related inflammation includes encephalopathy, seizures and headaches. Extensive vaso-genic edema and/or leukoencephalopathy is visible on MRI, sometimes mimicking space-occupying lesions. Histological examination shows amyloid-laden vessels and the appearance of Aβ in close association with inflammatory cells, implicating Aβ as the potential trigger for the inflammatory response. It remains unclear why only a few CAA patients develop this response. A high percentage of such patients are homozygous for the ε4-allele of the apolipoprotein E gene (APOE ε4/ε4; 76.9% vs 5.1% in non-inflammatory CAA) [6], which is associated with activation of complement and microglia. Additionally, trials of anti-Aβ vaccination in patients with Alzheimer’s disease (AD) induced similar clinical, radiological and pathological inflammation as seen in CAA-related inflammation, suggesting an immune response to Aβ.

Unlike other Aβ-depositing disorders, CAA-associated inflammation appears to derive a beneficial effect from corticosteroid treatment. This effect could be dependent on the pathological subtype of CAA-related inflammation.

Two subtypes of CAA-associated inflammation have been described so far: (i) a non-vasculitic form called perivascular infiltration (PVI), which is characterized by perivascular infiltration of the parenchyma by multinucleated giant cells and (ii) a vasculitic form called transmural (non)-granulomatous angiitis (TGA), which is characterized by inflammation of the vessel wall with the occasional presence of granulomas. Both pathologic forms can co-occur, suggesting at least a partial overlap [8]. The clinical and radiological findings of both variants are remarkably similar. Our case showed reactive gliosis and multiple macrophages around blood vessels in grey and white matter, although no multinucleated cells were seen. This is consistent with reactive edema in encephalopathy and suggests PVI. Although often called CAA-angiitis, the terms CAA-vasculopathy or CAA-encephalopathy are preferred, since these terms do
<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>Age</th>
<th>Pathology</th>
<th>Radiology</th>
<th>Therapy</th>
<th>Clinical improvement</th>
<th>Radiological improvement</th>
<th>Follow-up</th>
<th>Clinical features</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ginsberg</td>
<td>1</td>
<td>73</td>
<td>TGA</td>
<td>Confluent</td>
<td>Dx, Pn</td>
<td>Yes</td>
<td>Yes</td>
<td>>1 year</td>
<td>Gait disturbance</td>
<td></td>
</tr>
<tr>
<td>Mandybur</td>
<td>1</td>
<td>62</td>
<td>TGA</td>
<td>Mass</td>
<td>CP, Pn</td>
<td>Yes</td>
<td>Yes</td>
<td>Death 8 months</td>
<td>Encephalopathy Focal neurology hallucinations</td>
<td>Remarkable pathological improvement lesions post-mortem compared to initial biopsy</td>
</tr>
<tr>
<td>Osumi</td>
<td>1</td>
<td>59</td>
<td>?</td>
<td>Mass</td>
<td>CS</td>
<td>No</td>
<td>?</td>
<td>Death 5 months</td>
<td>Focal neurology Headaches Seizures</td>
<td></td>
</tr>
<tr>
<td>Silbert</td>
<td>1</td>
<td>74</td>
<td>?</td>
<td>Confluent</td>
<td>Dx</td>
<td>No</td>
<td>No</td>
<td>Death 6 weeks</td>
<td>Headaches</td>
<td></td>
</tr>
<tr>
<td>Fountain</td>
<td>1</td>
<td>66</td>
<td>TGA</td>
<td>Confluent</td>
<td>CP, Dx, Pn</td>
<td>No</td>
<td>Partial</td>
<td>20 months</td>
<td>Encephalopathy Headaches Seizures</td>
<td></td>
</tr>
<tr>
<td>Fountain</td>
<td>1</td>
<td>69</td>
<td>TGA</td>
<td>Confluent</td>
<td>CP, Dx, Pn</td>
<td>Partial</td>
<td>Partial</td>
<td>Death 6 months</td>
<td>Encephalopathy Headaches Seizures</td>
<td>Relapse</td>
</tr>
<tr>
<td>Ortiz</td>
<td>1</td>
<td>68</td>
<td>PVI</td>
<td>Mass</td>
<td>Dx, Pn</td>
<td>Yes</td>
<td>Yes</td>
<td>?</td>
<td>Encephalopathy Gait disturbance Headaches</td>
<td></td>
</tr>
<tr>
<td>Masson</td>
<td>1</td>
<td>64</td>
<td>PVI</td>
<td>Confluent</td>
<td>CP, Pn</td>
<td>Yes</td>
<td>No</td>
<td>15 months</td>
<td>Encephalopathy Headaches</td>
<td></td>
</tr>
<tr>
<td>Fountain</td>
<td>1</td>
<td>71</td>
<td>PVI, TGA</td>
<td>Confluent</td>
<td>CP</td>
<td>Yes</td>
<td>Yes</td>
<td>Death 22 months</td>
<td>Encephalopathy Gait disturbance Headaches</td>
<td>Relapse after stop CP</td>
</tr>
<tr>
<td>Streichenberger</td>
<td>1</td>
<td>67</td>
<td>TGA</td>
<td>Mass/Confluent</td>
<td>CS</td>
<td>Yes</td>
<td>Yes</td>
<td>Death 1 month</td>
<td>Headaches Encephalopathy</td>
<td></td>
</tr>
<tr>
<td>Hoshi</td>
<td>1</td>
<td>65</td>
<td>- (after treatment)</td>
<td>Recurrent ICH</td>
<td>Pn</td>
<td>Yes</td>
<td>NA</td>
<td>6 months</td>
<td>Focal neurology</td>
<td></td>
</tr>
<tr>
<td>Schwab</td>
<td>1</td>
<td>74</td>
<td>PVI/TGA</td>
<td>Mass</td>
<td>Dx, 1m, Pn</td>
<td>Yes</td>
<td>?</td>
<td>12 months</td>
<td>Encephalopathy Headaches Seizures</td>
<td></td>
</tr>
<tr>
<td>Schwab</td>
<td>1</td>
<td>70</td>
<td>PVI/TGA</td>
<td>Mass</td>
<td>Pn, CP</td>
<td>Partial</td>
<td>Yes</td>
<td>18 months</td>
<td>Encephalopathy Headaches Seizures</td>
<td></td>
</tr>
<tr>
<td>Oh</td>
<td>1</td>
<td>80</td>
<td>PVI</td>
<td>Confluent</td>
<td>Dx, Pn</td>
<td>Yes</td>
<td>Yes</td>
<td>8 months</td>
<td>Encephalopathy Focal Neurology Seizures</td>
<td>1 patient with no therapy excluded</td>
</tr>
<tr>
<td>Oh</td>
<td>1</td>
<td>77</td>
<td>TGA</td>
<td>Confluent</td>
<td>Dx, Pn</td>
<td>Yes</td>
<td>Yes</td>
<td>6 weeks</td>
<td>Encephalopathy Focal Neurology Seizures</td>
<td>1 patient with no therapy excluded</td>
</tr>
<tr>
<td>Safriel</td>
<td>1</td>
<td>49</td>
<td>TGA</td>
<td>Mass</td>
<td>Dx, tap 6 weeks</td>
<td>Yes</td>
<td>Partial</td>
<td>9 months</td>
<td>Seizures</td>
<td></td>
</tr>
<tr>
<td>Scolding</td>
<td>7</td>
<td>69*</td>
<td>TGA</td>
<td>Confluent</td>
<td>Pn, Dx, CP</td>
<td>43%</td>
<td>?</td>
<td>58 months*</td>
<td>Encephalopathy Focal Neurology Seizures</td>
<td>2 patients excluded because of mass resection as therapy</td>
</tr>
<tr>
<td>Kinnecom</td>
<td>12</td>
<td>63.2 ± 10</td>
<td>PVI</td>
<td>Confluent</td>
<td>CS, CP</td>
<td>83%</td>
<td>83%</td>
<td>47 months*</td>
<td>Encephalopathy Headache Seizures</td>
<td>25% relapse, 33% died</td>
</tr>
<tr>
<td>McHugh</td>
<td>1</td>
<td>80</td>
<td>PVI, TGA</td>
<td>Confluent</td>
<td>Pn</td>
<td>Yes</td>
<td>Yes</td>
<td>24 months</td>
<td>Encephalopathy Focal Neurology Seizures</td>
<td></td>
</tr>
<tr>
<td>Machida</td>
<td>1</td>
<td>69</td>
<td>PVI</td>
<td>Confluent</td>
<td>Dx, Pn</td>
<td>Yes</td>
<td>Yes</td>
<td>12 months</td>
<td>Encephalopathy Focal neurology</td>
<td>Relapsing/remitting</td>
</tr>
</tbody>
</table>

*Note: TGA = Temporal Gyrus Atherosclerotic, PVI = Periventricular Infarction, CP = Cerebral Parenchymal, CS = Cerebral Softening, Dx = Dx, Pn = Pneumothorax

Statistical significance is indicated by an asterisk ()
Cerebral amyloid angiopathy (CAA) encephalopathy is an increasingly recognized syndrome that is based upon a vasculitic or non-vasculitic inflammatory reaction to Aβ. Although the clinical and radiological symptoms are similar in both pathologic variants, immunosuppressive therapy appears to have a slightly less beneficial effect in the vasculitic subtype. Nevertheless, corticosteroid therapy seems to be an appropriate therapy for both. In an elderly patient with a subacute progressive encephalopathy with seizures, CAA-related encephalopathy has to be considered because of the major therapeutic implications.

Conclusions

CAA encephalopathy is an increasingly recognized syndrome that is based upon a vasculitic or non-vasculitic inflammatory reaction to Aβ. Although the clinical and radiological symptoms are similar in both pathologic variants, immunosuppressive therapy appears to have a slightly less beneficial effect in the vasculitic subtype. Nevertheless, corticosteroid therapy seems to be an appropriate therapy for both. In an elderly patient with a subacute progressive encephalopathy with seizures, CAA-related encephalopathy has to be considered because of the major therapeutic implications.

Consent

Written informed consent was obtained from the next of kin of the patient for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Author details

1. Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands. 2. Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands. 3. Department of Neuropathology, Academic Medical Center, Amsterdam, The Netherlands.

Authors’ contributions

RPK participated in the design of the article, collected and analyzed the data and drafted the manuscript. ER, PE and PJJN contributed to the analysis and interpretation of the data. MES and DT provided radiological and pathological data respectively. PJJN conceived of the case report and coordinated the drafting of the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 8 January 2010 Accepted: 9 March 2010 Published: 9 March 2010

References

doi:10.1186/1742-2094-7-18

Submit your next manuscript to BioMed Central and take full advantage of:
• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit