Bicarbonate Secretion of Mouse Cholangiocytes Involves Na+-HCO₃-
Cotransport in Addition to Na+-Independent Cl-/HCO₃- Exchange

Uriarte, I.; Banales, J.M.; Sáez, E.; Arenas, F.; Oude Elferink, R.P.J.; Prieto, J.; Medina, J.F.

DOI
10.1002/hep.23403

Publication date
2010

Document Version
Final published version

Published in
Hepatology

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Bicarbonate Secretion of Mouse Cholangiocytes Involves Na\(^+\)-HCO\(_3\)^− Cotransport in Addition to Na\(^+\)-Independent Cl\(^−\)/HCO\(_3\)^− Exchange

Iker Uriarte, Jesús M. Banales, Elena Sáez, Fabián Arenas, Ronald P. J. Oude Elferink, Jesús Prieto, and Juan F. Medina

Bicarbonate secretion from cholangiocytes is required for appropriate adjustment of primary canaliculal bile along the biliary tract. In human and rat cholangiocytes, bicarbonate secretion is mediated by anion exchanger (AE) 2, an electroneutral Na\(^+\)-independent Cl\(^−\)/HCO\(_3\)^− AE also involved in intracellular pH (pH\(_i\)) regulation. In Ae2\(_{a,b}\)-deficient mice, pH\(_i\) is increased in lymphocytes and fibroblasts, whereas it is surprisingly normal in cholangiocytes. Here, we analyze the mechanisms for HCO\(_3\)^− secretion in cultured Ae2\(_{a,b}\)^+/+ and Ae2\(_{a,b}\)^−/− mouse cholangiocytes by microfluorimetric measurement of pH\(_i\) changes upon established perfusion maneuvers. Cl\(^−\) withdrawal by isethionate-based perfusions showed that Ae2\(_{a,b}\)^+/+ but not Ae2\(_{a,b}\)^−/− mouse cholangiocytes can display Cl\(^−\)/HCO\(_3\)^− exchange, which is therefore entirely mediated by Ae2. Nevertheless, simultaneous withdrawal of Cl\(^−\) and Na\(^+\) revealed that mouse cholangiocytes possess an additional transport activity for HCO\(_3\)^− secretion not observed in control rat cholangiocytes. Propionate-based maneuvers indicated that this supplemental Na\(^+\)-driven HCO\(_3\)^−-secreting activity is Cl\(^−\)-independent, consistent with a Na\(^+\)-HCO\(_3\)^− cotransport (NBC). NBC activity is greater in Ae2\(_{a,b}\)^−/− than Ae2\(_{a,b}\)^+/+ mouse cholangiocytes, and membrane-depolarization experiments showed that it is electrogenic. Consistent with the potential role of Slc4a4/Nbc1 as the involved transporter, Ae2\(_{a,b}\)^−/− mouse cholangiocytes exhibit up-regulated expression of this electrogenic NBC carrier. Whereas Ae2-mediated Cl\(^−\)/HCO\(_3\)^− exchange in Ae2\(_{a,b}\)^+/+ mouse cholangiocytes is stimulated by cyclic adenosine monophosphate (cAMP) and acetylcholine, the NBC activity is down-regulated by cAMP and adenosine triphosphate (ATP) in Ae2\(_{a,b}\)^−/− mouse cholangiocytes. Polarized Ae2\(_{a,b}\)^−/− mouse cholangiocytes placed in Ussing chambers show decreased (but not abolished) cAMP-dependent Cl\(^−\) current and increased ATP-dependent/Ca\(^{2+}\)-activated Cl\(^−\) secretion, which run in parallel with decreased cystic fibrosis transmembrane conductance regulator messenger RNA expression and increased intracellular Ca\(^{2+}\) levels. Conclusion: Bicarbonate secretion in mouse cholangiocytes involves two differentially regulated activities: Ae2-mediated Cl\(^−\)/HCO\(_3\)^− exchange and Na\(^+\)-HCO\(_3\)^− cotransport.
Bile flow is produced through the coordinated secretory function of hepatocytes and cholangiocytes. These polarized cells possess different carriers in their apical and/or basolateral plasma membranes that provide vectorial transport of biliary solutes. Primary bile generated by hepatocytes is fluidized and alkalized by cholangiocytes along the biliary tract. Bicarbonate secretion from cholangiocytes to the duct lumen requires intracellular accumulation of HCO$_3^-$, which is partially achieved through catalyzed hydration of CO$_2$ and subsequent H$^+$ extrusion through Na$^+$/H$^+$ exchange. Moreover, HCO$_3^-$ loading can be assisted by additional transport activities that may vary between animal species. In rat cholangiocytes, for instance, there is a basolateral HCO$_3^-$ influx mediated by Na$^+$-HCO$_3^-$ co-transport (NBC). In human cholangiocytes, however, basolateral influx of HCO$_3^-$ occurs mainly through Na$^+$-dependent Cl$^-$/HCO$_3^-$ exchange.

In both human and rat cholangiocytes, the secretion of HCO$_3^-$ to bile occurs through a Na$^+$-independent electroneutral Cl$^-$/HCO$_3^-$ exchange mediated by the anion exchanger (AE) 2 (AE2/SLC4A2), which is an acid loader of the SLC4/AE family generally involved in intracellular pH (pHi) regulation. Secretin-stimulated bicarbonate-rich hydrocholeresis has been postulated to involve the synchronized action of AE2 and two additional transport proteins, the cyclic adenosine monophosphate (cAMP)-responsive Cl$^-$ channel cystic fibrosis transmembrane conductance regulator (CFTR) and the water channel aquaporin-1. Upon secretin/receptor interaction and subsequent increase in cAMP levels and protein kinase A activation, intracellular vesicles with all three flux proteins coredirect to the luminal membrane of cholangiocytes. Accompanying phosphorylation and activation of CFTR lead to apical efflux of Cl$^-$, which is ultimately exchanged with HCO$_3^-$ through AE2. Resultant secretion of HCO$_3^-$ is followed by osmotically driven efflux of water through aquaporin-1, ending up in the typical bicarbonate-rich hydrocholeresis induced by secretin. The effect of this mechanism may be reinforced by the recently described CFTR-associated release of adenosine triphosphate (ATP) from cholangiocytes to bile. Autocrine/paracrine stimulation of apical purinergic receptors by ATP is then followed by increased intracellular Ca$^{2+}$, activation of apical Ca$^{2+}$-dependent Cl$^-$ channels, and efflux of Cl$^-$, which is likewise exchanged with HCO$_3^-$ through AE2. Bicarbonate-enriching processes elicited by secretin might also involve CFTR-independent effects of cAMP on the AE2-mediated Cl$^-$/HCO$_3^-$ exchange, as observed in vitro in human cholangiocytes in the presence of CFTR inhibitors and in hepatocyte-derived cells that lack CFTR. Acetylcholine (ACh) may further assist biliary HCO$_3^-$ secretion through Ca$^{2+}$-dependent Cl$^-$ efflux from cholangiocytes and by potentiating the effect of secretin on both intracellular cAMP levels and Cl$^-$/HCO$_3^-$ exchange in a calcineurin-dependent manner.

We previously hypothesized that abnormalities of AE2 in primary biliary cirrhosis (PBC) could play a pathogenic role in the disease and generated a mouse model targeted for the three major Ae2a, Ae2b1, and Ae2b2 isoforms (Ae2a,b$^{-/-}$ mice). These mice showed biochemical, serologic, histopathologic, and immunologic features compatible with PBC. pH$_1$ assessment in lymphocytes and fibroblasts of Ae2a,b$^{-/-}$ mice confirmed the expected intracellular alkalinization, while cholangiocytes isolated from these mice were found to have normal pH$_1$ values. We therefore decided to analyze the mechanisms involved in HCO$_3^-$ secretion in cultured Ae2a,b$^{+/+}$ and Ae2a,b$^{-/-}$ mouse cholangiocytes. Our present data show that wild-type but not Ae2a,b$^{-/-}$ mouse cholangiocytes exhibit Cl$^-$/HCO$_3^-$ anion exchange (AE) activity. This indicates that AE activity in normal mouse cholangiocytes is only mediated by Ae2, in agreement with previous data in human and rat cholangiocytes. Characteristically, however, mouse cholangiocytes can display an additional transport activity for HCO$_3^-$ secretion that is more pronounced in Ae2a,b$^{-/-}$-deficient cholangiocytes. This additional activity is Cl$^-$ independent and Na$^+$ dependent (consistent with NBC activity), electrogenic, and responds differentially to agonists such as cAMP, ATP, and ACh.

Material and Methods

Cultured Cholangiocytes from Normal and Ae2a,b$^{-/-}$ Mice. Cultured cholangiocytes were obtained from male Ae2a,b$^{+/+}$ and Ae2a,b$^{-/-}$ mice, starting with isolation of intrahepatic bile duct units, followed by their seeding and culture on collagen monolayer (see Supporting Information). Normal rat cholangiocytes (NRCs) were similarly obtained from male Wistar rats. Animal interventions were approved by the Institutional Animal Care and Use Committee.

Determination of HCO$_3^-$ Transport Activities. Cultured cholangiocytes were assessed for HCO$_3^-$ transport activities by microflourimetry (see Supporting Information). Cells initially perfused with Krebs-Ringer bicarbonate (KRB) medium were monitored for pH$_1$ variations upon two types of perfusion maneuvers (see detailed buffers in Supplementary Table 1). First, to test Cl$^-$/HCO$_3^-$ exchange and Na$^+$ dependency, KRB was changed to KRB without Cl$^-$ (substituted with isethionate) or without both Cl$^-$ and Na$^+$ (substituted with N-methyl-D-glucamine). These Cl$^-$-free based maneuvers are designed to elicit efflux of intracellular Cl$^-$ in exchange with extracellular HCO$_3^-$, increasing pH$_1$. In the case of AE2,
which physiologically functions as a HCO\textsubscript{3}-extruder (i.e., acid-loader), Cl-/HCO\textsubscript{3}- exchange activity is measured in a reverse mode. The exchange activity (expressed as transmembrane base fluxes \(I_{\text{OH}^-}\)) is calculated from the tangent of the experimental plot of the alkalization induced by Cl- removal. A second type of maneuver starting with propionate-KRB perfusion5,18,22 was aimed to analyze HCO\textsubscript{3}- secretion mechanisms in a more physiological manner for AE2. Here, intracellular alkalization induced by propionate removal may activate acid-loading mechanisms to extrude HCO\textsubscript{3}- and recover resting pHi. In this case, HCO\textsubscript{3}- secretion rates (\(I_{\text{OH}^-}\)) are calculated from the tangent of the experimental plot of the recovery toward resting pHi. The stimulatory effect of either a cAMP/stimulation mixture (cAMP/SM) (100 \(\mu\)M N6-O-dibutryl-cAMP, 3 \(\mu\)M forskolin, and 100 \(\mu\)M 3-isobutyl-1-methyl-xanthine),5,18,22 100 \(\mu\)M ACh13 or 10 \(\mu\)M ATP,1,8,23 and the inhibitory effect of 500 \(\mu\)M DIDS (all from Sigma) on HCO\textsubscript{3}- secretion could be assessed by application of these compounds 5 minutes before and along the perfusion maneuver.

Voltage Clamp Measurement of Short-Circuit Current on Polarized Mouse Cholangiocytes. Short-circuit current (\(I_{sc}\)) was monitored in confluent polarized mouse cholangiocytes as described for NRCs24 (see Supporting Information for details). Briefly, when cells cultured on collagen-coated inserts increased the transepithelial electrical resistance \(\geq 1,000 \Omega \cdot \text{cm}^2\), inserts were mounted in U2500 Dual-Channel Self-Contained Ussing Chambers (Warner Instruments, Hamden, CT). Each half-chamber (filled with a NaCl-rich solution at 37°C and continuously bubbled with 5% CO\textsubscript{2}-95% O\textsubscript{2}) was connected to a microcomputer-controlled current/voltage clamp amplifier, and \(I_{sc}\) (\(\mu\)A/cm2\)) was determined when transepithelial voltage was clamped to 0 mV. The system was monitored along the experiments in response to current pulses every 6 seconds. Under these conditions, changes in \(I_{sc}\) were recorded following simultaneous apical and basolateral stimulation with a particular cAMP-SM (500 \(\mu\)M 8-cpt-cAMP plus 450 \(\mu\)M 3-isobutyl-1-methyl-xanthine) or with 100 \(\mu\)M ATP (all from Sigma), essentially as described.24

Determination of the Intracellular Levels of Ca2+ and cAMP, Immunoblotting, and Real-Time Polymerase Chain Reaction. These procedures are described in the Supporting Information.

Statistical Analysis. Data are expressed as the mean \(\pm\) standard error of the mean. Two-group comparisons were performed by using adequate nonparametric (Mann-Whitney) or parametric t tests. Two-tailed \(P\) values \(< 0.05\) were considered statistically significant.

Results

Normal Mouse Cholangiocytes Display Ae2 Activity. Ae2 gene silencing in human4 and rat5 cholangiocytes have indicated that HCO\textsubscript{3}- secretion is mediated by AE2. In mouse cholangiocytes, however, the mechanisms for HCO\textsubscript{3}- secretion remain to be fully elucidated. Thus, we assessed HCO\textsubscript{3}- secretion activities in cultured \(Ae2_{a,b}^{+/+}\) and \(Ae2_{a,b}^{-/-}\) mouse cholangiocytes, using normal rat cholangiocytes as a control. As shown in Fig. 1A, selective withdrawal of Cl- elicited intracellular alkalization in control NRCs, indicating the occurrence of Cl-/HCO\textsubscript{3}- exchange (\(I_{\text{OH}^-} = 20.97 \pm 0.72\) mmol/L/minute). Likewise, Cl- withdrawal induced intracellular alkalization in normal \(Ae2_{a,b}^{+/+}\) mouse cholangiocytes, which reveals that these cells also display Cl-/HCO\textsubscript{3}- exchange activity (\(I_{\text{OH}^-} = 10.63 \pm 0.95\) mmol/L/minute) (Fig. 1B). In \(Ae2_{a,b}^{-/-}\) mouse cholangiocytes, however, no intracellular alkalization was observed after Cl- withdrawal (Fig. 1C), demonstrating that the Cl-/HCO\textsubscript{3}- exchange activity displayed by normal mouse cholangiocytes is entirely mediated by Ae2.

Mouse but not Rat Cholangiocytes Possess an Additional Cl--Independent Na+-Driven HCO\textsubscript{3}- Secretory Activity that May Maintain Bicarbonate Secretion in the Absence of Ae2. As mentioned previously, the activity displayed by AE carriers (AE2 activity included) is independent of Na+. Indeed, in the case of control NRCs, we could confirm that the Cl-/HCO\textsubscript{3}- exchange activity elicited by simultaneous withdrawal of Cl- and Na+ (\(I_{\text{OH}^-} = 20.80 \pm 0.97\) mmol/L/minute) was similar to that observed in the presence of Na+ (Fig. 1A). In mouse cholangiocytes, however, assessment of Na+ dependency uncovered a surprising effect in these cells. Unlike NRCs, both \(Ae2_{a,b}^{+/+}\) and \(Ae2_{a,b}^{-/-}\) mouse cholangiocytes showed intracellular acidification after simultaneous removal of Cl- and Na+ from the media (Fig. 1B,C), indicating the presence of a Na+-driven acidification activity that involves HCO\textsubscript{3}- secretion. This Na+-driven activity was more pronounced in \(Ae2_{a,b}^{-/-}\) than normal mouse cholangiocytes (\(I_{\text{OH}^-} = 10.92 \pm 2.02\) versus \(1.82 \pm 0.95\) mmol/L/minute; \(P < 0.001\)), which might be partially due to the counterbalancing Ae2-mediated alkalization that takes place in normal but not \(Ae2_{a,b}^{-/-}\) mouse cholangiocytes (see Fig. 1B,C for the first maneuver of Cl- withdrawal).

To further ascertain that the Na+-driven acidification activity selectively observed in mouse cholangiocytes involves secretion of HCO\textsubscript{3}- and is Cl--independent, we turned to propionate-based maneuvers in the presence and absence of Cl- (see Material and Methods). As expected, control NRCs showed a final step of acidification...
change in these cells. By contrast, Ae2_{a,b}^{+/+} mouse cholangiocytes showed no inhibition of the HCO₃⁻ extrusion rate despite Cl⁻ withdrawal (J_{OH}⁻ = 2.87 ± 0.33 mmol/L/minute in the presence of Cl⁻ versus 2.83 ± 0.29 mmol/L/minute in the absence of this anion) (Fig. 2B), thus unmasking a Cl⁻-independent HCO₃⁻ extrusion activity. This observation was even clearer in Ae2_{a,b}^{-/-} mouse cholangiocytes. In spite of their Ae2 deficiency, these cells were able to display HCO₃⁻ extrusion activity regardless of the presence or absence of extracellular Cl⁻ (J_{OH}⁻ = 4.91 ± 1.12 versus 5.89 ± 0.80 mmol/L/minute, respectively; Fig. 2C). In fact, HCO₃⁻ extrusion rate values were significantly higher in Ae2_{a,b}^{-/-} than Ae2_{a,b}^{+/+} mouse cholangiocytes (P < 0.05 in the presence of Cl⁻ and P < 0.01 in its absence). This Cl⁻-independent and Na⁺-driven activity to secrete HCO₃⁻ observed in mouse cholangiocytes is by definition a Na⁺-HCO₃⁻ cotransport (i.e., an NBC activity).^{25,26} As shown in Fig. 2D, additional experiments indicated that this activity is sensitive to DIDS (a nonspecific inhibitor of HCO₃⁻ transporters)²⁵ in both Ae2_{a,b}^{+/+} (J_{OH}⁻ = 2.81 ± 0.23 versus 1.03 ± 0.44 mmol/L/minute in the presence of DIDS; P < 0.001) and Ae2_{a,b}^{-/-} (J_{OH}⁻ = 6.15 ± 0.86 versus 3.05 ± 0.63 mmol/L/minute; P < 0.05) mouse cholangiocytes.

Na⁺-Driven Cl⁻-Independent HCO₃⁻ Secretion Displayed by Mouse Cholangiocytes Is Electrogenic.

Electrogenicity of the NBC activity in mouse cholangiocytes was analyzed using propionate-based maneuvers under depolarizing conditions with 10-fold the physiological extracellular concentration of K⁺.²⁷ Upon membrane depolarization, an electrogenic-driven HCO₃⁻ extrusion would be diminished, whereas an electroneutral transport would remain unchanged.²⁷ Whereas HCO₃⁻ secretion activity in NRCs was maintained (consistent with its complete mediation by electroneutral Ae2 activity) (Fig. 3A), the secretion rate was diminished in Ae2_{a,b}^{-/-} mouse cholangiocytes (J_{OH}⁻ = 3.09 ± 0.19 versus 1.54 ± 0.16 mmol/L/minute; P < 0.001) (Fig. 3B) and totally abolished in Ae2_{a,b}^{-/-} mouse cholangiocytes (J_{OH}⁻ = 4.83 ± 0.46 versus 0 mmol/L/minute; P < 0.001) (Fig. 3C), indicating that the Na⁺-HCO₃⁻ cotransport displayed by mouse cholangiocytes is electronegic.

Slc4a4 Expression Is Up-Regulated in Ae2_{a,b}^{-/-} Mouse Cholangiocytes. Among NBC carriers, Slc4a4 and Slc4a5 have been reported to be electronegic,^{26,28} whereas Slc4a7 is electroneutral.^{27,29} We therefore analyzed the messenger RNA (mRNA) expression of these cotransporters as well as the Na⁺-dependent Cl⁻/HCO₃⁻ exchanger Slc4a8 in mouse cholangiocytes. Both Ae2_{a,b}^{-/-} and Ae2_{a,b}^{-/-} mouse cholangiocytes showed expression of Slc4a4 mRNA, which was 1.8-fold up-regu-

Fig. 1. Mouse cholangiocytes display Ae2-mediated Cl⁻/HCO₃⁻ AE activity. (A) Representative trace from control experiments with NRCs showing that removal of Cl⁻ (both in the presence of Na⁺ through perfusion with isethionate-based medium, and in the absence of Na⁺ through perfusion with N-methyl-D-glucamine–based medium), results in intracellular alkalinization (left). This observation is as expected, because NRCs were described to possess AE activity,²² which upon Cl⁻ removal is forced to operate in the reverse mode with Cl⁻ efflux in exchange to HCO₃⁻ influx. When Cl⁻/HCO₃⁻ exchange activities in the presence and in the absence of Na⁺ were calculated, values were found to be rather similar (right), also consistent with the Na⁺-independency of the Ae2-mediated Cl⁻/HCO₃⁻ exchange in these rat cells.⁵ To prevent acidification of the pH₁ through Na⁺/H⁺ exchange activity after Na⁺ removal, amiloride (1 mM) was added along these experiments (as well as along following experiments with mouse cholangiocytes). (B,C) Maneuvers of Cl⁻ removal from Ae2_{a,b}^{-/-} and Ae2_{a,b}^{-/-} mouse cholangiocytes, respectively. Removal of Cl⁻ alone induces intracellular alkalinization in Ae2_{a,b}^{+/-} but not Ae2_{a,b}^{-/-} mouse cholangiocytes, indicating that the increase in pH₁ in the former is mediated by a reverse-mode operating Ae2. Unlike NRCs, simultaneous removal of Na⁺ and Cl⁻ revealed that murine cells of both genotypes possess an additional Na⁺-dependent HCO₃⁻-secreting activity that acidifies the pH. This Na⁺-dependent acidifying activity becomes more apparent in Ae2_{a,b}^{-/-} than Ae2_{a,b}^{-/-} mouse cholangiocytes. For each type of cell, n values were obtained from three different cell preparations.

recovery—indicative of HCO₃⁻ extrusion—in the presence of Cl⁻ (J_{OH}⁻ = 5.39 ± 0.24 mmol/L/minute) but not in its absence (Fig. 2A), confirming again that HCO₃⁻ secretion only occurs through Cl⁻/HCO₃⁻ ex-

ulated in \(\text{Ae2}^{-/-} \) versus \(\text{Ae2}^{+/+} \) mouse cholangiocytes (\(P < 0.01 \)) (Fig. 3D). Slc4a7 mRNA was similarly detected in mouse cholangiocytes of the two genotypes (Fig. 3D), whereas no mRNA expression of Slc4a5 and Slc4a8 was found in any genotype (not shown). Western blotting confirmed a four-fold increased expression of Slc4a4 at the protein level in the \(\text{Ae2}^{-/-} \) mouse cholangiocytes (Fig. 3E).

HCO\(_3\)\(^-\) Secretion Is Stimulated by cAMP in \(\text{Ae2}^{+/+} \) Cholangiocytes but Inhibited in \(\text{Ae2}^{-/-} \) Cholangiocytes. Rise of intracellular cAMP levels is known to stimulate Ae2 activity in human and rat cholangiocytes, resulting in an increase of HCO\(_3\)\(^-\) secretion to bile.\(^1\) As shown in Fig. 4A, application of a cAMP/SM to \(\text{Ae2}^{+/+} \) mouse cholangiocytes increased the HCO\(_3\)\(^-\) extrusion rate (\(\text{J}_{\text{OH}^-} = 2.81 \pm 0.23 \) versus 4.10 \(\pm 0.48 \) mmol/L/minute; \(P < 0.05 \)), whereas the same application to \(\text{Ae2}^{-/-} \) mouse cholangiocytes diminished HCO\(_3\)\(^-\) extrusion (\(\text{J}_{\text{OH}^-} = 6.15 \pm 0.86 \) versus 3.64 \(\pm 0.45 \) mmol/L/minute; \(P < 0.001 \)) (Fig. 4B). On the other hand, analysis of intracellular cAMP levels (both baseline and following cAMP stimuli) indicated that \(\text{Ae2}^{-/-} \) mouse cholangiocytes have raised levels compared with \(\text{Ae2}^{+/+} \) mouse cholangiocytes (Fig. 4C).

Acetylcholine Stimulates HCO\(_3\)\(^-\) Secretion in \(\text{Ae2}^{+/+} \) but not in \(\text{Ae2}^{-/-} \) Mouse Cholangiocytes. ACh is also known to regulate HCO\(_3\)\(^-\) secretion in the biliary epithelium.\(^13-15\) As shown in Fig. 5A, the presence of ACh increased HCO\(_3\)\(^-\) secretion in \(\text{Ae2}^{+/+} \) mouse cholangiocytes (\(\text{J}_{\text{OH}^-} = 3.63 \pm 0.48 \) versus 6.79 \(\pm 0.56 \) mmol/L/minute; \(P < 0.001 \)). However, the presence of ACh did not affect HCO\(_3\)\(^-\) secretion in \(\text{Ae2}^{-/-} \) mouse cholangiocytes (\(\text{J}_{\text{OH}^-} = 4.15 \pm 0.66 \) versus 4.02 \(\pm 0.65 \) mmol/L/minute) (Fig. 5B).

ATP Inhibits HCO\(_3\)\(^-\) Secretion in \(\text{Ae2}^{-/-} \) Mouse Cholangiocytes. ATP has also been reported to play an indirect role in HCO\(_3\)\(^-\) secretion in the biliary epithelium.\(^13,30\) In our experimental setting of perfused cells, however, the presence of 10 \(\mu \)M ATP did not modify the HCO\(_3\)\(^-\) secretion rate in \(\text{Ae2}^{+/+} \) mouse cholangiocytes (\(\text{J}_{\text{OH}^-} = 5.53 \pm 0.66 \) versus 4.68 \(\pm 0.52 \) mmol/L/

Fig. 2. Na\(^+\)-dependent HCO\(_3\)\(^-\)-secreting activity displayed by mouse cholangiocytes does not depend on Cl\(^-\), consistent with NBC. (A) Control experiments with NRCs to test HCO\(_3\)\(^-\) secretion by using propionate-based maneuvers. The weak intracellular acidification initially induced by perfusion with propionate is sufficient to overstimulate acid extrusion mechanisms, which upon propionate withdrawal (through perfusion with KRB medium) results in pronounced intracellular alkalization. Increased pH\(_i\) may then activate acid-loading mechanisms such as Ae2, which physiologically functions extruding HCO\(_3\)\(^-\) in exchange with Cl\(^-\) entrance. Indeed, withdrawal of Cl\(^-\) from perfusion medium totally blocks intracellular acidification, consistent with the notion that recovery of resting pH\(_i\) in rat cholangiocytes involves HCO\(_3\)\(^-\) secretion through Cl\(^-\)/HCO\(_3\)\(^-\) exchange. HCO\(_3\)\(^-\) secretion rate is calculated from the acidification curves after propionate removal and administration of KRB with and without Cl\(^-\). (B,C) Propionate-based maneuvers on \(\text{Ae2}^{+/+} \) and \(\text{Ae2}^{-/-} \) mouse cholangiocytes, respectively. Unlike NRCs, murine cells of both genotypes are able to secrete HCO\(_3\)\(^-\) in a Cl\(^-\)-independent manner, because Cl\(^-\) withdrawal does not affect their HCO\(_3\)\(^-\) secretion rate. The Cl\(^-\)-independent HCO\(_3\)\(^-\) secretion rate is higher in \(\text{Ae2}^{+/+} \) than \(\text{Ae2}^{-/-} \) mouse cholangiocytes and should correspond to the NBC activity uncovered with the N-methyl-D-glucamine-based perfusion maneuvers (Fig. 1). (D) Cl\(^-\)-independent HCO\(_3\)\(^-\) secretion in both \(\text{Ae2}^{+/+} \) and \(\text{Ae2}^{-/-} \) mouse cholangiocytes is sensitive to the nonspecific inhibitor of HCO\(_3\)\(^-\) transporters DIDS (0.5 mM), as expected for an NBC-mediated activity. For each type of cell, n values were obtained from three different cell preparations.
minute) (Fig. 6A), and interestingly resulted in diminished rate in \(\text{Ae}^{2a,b} / \text{H}^{11002} \) mouse cholangiocytes (\(\text{J}_{\text{Cl}^-} \), 5.99 \pm 0.34 \text{ mmol/L/minute}; \(P < 0.001 \)) (Fig. 6B).

Ae\(^{2a,b} \)-/- Mouse Cholangiocytes Show Altered Cl\(^{-}\) Secretion. Previous studies in Ussing chambers to analyze the Cl\(^{-}\) conductance in NRCs with recovered cell polarity indicated that cAMP stimulation leads to apical secretion of Cl\(^{-}\) through Cftr activation, while purinergic stimulation by ATP leads to apical Cl\(^{-}\) efflux through activation of Ca\(^{2+}\)-dependent Cl\(^{-}\) channels.\(^{24,30,31}\) We therefore decided to directly assess the Cl\(^{-}\) conductance in polarized mouse cholangiocytes upon cAMP and ATP stimulations. As shown in Fig. 7A, cAMP stimulation of \(\text{Ae}^{2a,b} / \text{H}^{11002} \) mouse cholangiocytes resulted in increased values of short-circuit current intensity due to Cl\(^{-}\) secretion (\(\Delta J_{\text{sc}} \), 3.45 \pm 0.38 \mu A/cm\(^2\)), which was similar to that reported for polarized NRCs.\(^{24}\) However, cAMP stimulation of \(\text{Ae}^{2a,b} / \text{H}^{11002} \) mouse cholangiocytes resulted in less intense Cl\(^{-}\) secretion (\(\Delta J_{\text{sc}} \), 0.95 \pm 0.13 \mu A/cm\(^2\)) (Fig. 7B).
When we measured the area under the curve (AUC) of \(I_{sc} \), the cAMP response in \(\text{Ae2}_{a,b}^{-/-} \) mouse cholangiocytes was found to be significantly lower than that in \(\text{Ae2}_{a,b}^{+/+} \) mouse cholangiocytes (AUC 10.63 ± 1.071 versus 2.85 ± 0.22; \(P < 0.05 \)) (Fig. 7A). Interestingly, these data are consistent with our observation that the levels of Cftr mRNA are much lower in \(\text{Ae2}_{a,b}^{-/-} \) than \(\text{Ae2}_{a,b}^{+/+} \) mouse cholangiocytes (13.7% versus 100%; \(P < 0.001 \)) (Fig. 7B).

On the other hand, ATP stimulation led to significantly higher \(\text{Cl}^{-} \) secretion in \(\text{Ae2}_{a,b}^{+/+} \) compared with \(\text{Ae2}_{a,b}^{-/-} \) mouse cholangiocytes (AUC 49.68 ± 6.02 versus 19.3 ± 5.58, respectively; \(P < 0.05 \)) (Fig. 7C). It is noteworthy that this effect was correlated with higher relative values for increased intracellular \(\text{Ca}^{2+} \) in response to ATP in \(\text{Ae2}_{a,b}^{+/+} \) mouse cholangiocytes (AUC of fluorescence values: 68.05 ± 6.62 versus 32.54 ± 3.25, respectively; \(P < 0.001 \)) (Fig. 7D).

Discussion

Biliary \(\text{HCO}_{3}^{-} \) secretion is important for the alkalinization and fluidization of bile as well as for pH homeostasis in cholangiocytes.\(^1\) In human and rat cholangiocytes, \(\text{HCO}_{3}^{-} \) secretion occurs essentially through \(\text{AE2/Ae2-mediated Cl}^{-}/\text{HCO}_{3}^{-} \) anion exchange.\(^4,5\) Previously, we hypothesized that abnormalities in the liver expression and function\(^18\) of \(\text{AE2 and concomitant alterations of HCO}_{3}^{-} \) secretion in the biliary epithelium,\(^32\) may be involved in the pathogenesis of PBC. More recently, this hypothesis has been supported by our findings in \(\text{Ae2}_{a,b}^{-/-} \) mice, in which important PBC features are reproduced.\(^20\) We therefore decided to explore the transport mechanisms for \(\text{HCO}_{3}^{-} \) secretion in cultured mouse cholangiocytes from these mice.
Studies involved monitoring pH$_i$ variations after two different types of perfusion maneuvers, i.e. with Cl$^{-}$-free media (mainly an isethionate-based medium), and propionate-based perfusions. Although Cl$^{-}$ withdrawal is designed to provoke Cl$^{-}$/HCO$_3$$^{-}$ exchange running in the opposite direction to the physiological one for Ae2 (with HCO$_3$$^{-}$ entry into the cell instead of exit), this maneuver provided relevant information. It showed that, as with NRCs, normal mouse cholangiocytes display Cl$^{-}$/HCO$_3$$^{-}$ exchange activity that is entirely mediated by Ae2; the reverse-mode alkalinization upon Cl$^{-}$ withdrawal was completely absent in Ae2$_{a,b}^{-/-}$ deficient mouse cholangiocytes (Fig. 1). Thus, in agreement with our previous data from Ae2 gene silencing in normal human and rat cholangiocytes, no additional Na$^{+}$-independent Cl$^{-}$/HCO$_3$$^{-}$ exchangers (e.g., Ae1, Ae3, Slc26a3, Slc26a4, Slc26a6, or Slc26a7) or Na$^{+}$-dependent exchange carriers (e.g., Slc4a8) mediate the AE activity observed in normal mouse cholangiocytes. But unlike the case with NRCs, in which alkalinization remained after simultaneous removal of Cl$^{-}$ and Na$^{+}$, mouse cholangiocytes of both genotypes exhibited an opposite effect resulting in pH$_i$ acidification. This unexpected effect in murine cholangiocytes indicated the presence of an additional HCO$_3$$^{-}$ secretory activity that is driven by Na$^{+}$. Interestingly, this activity appeared more pronounced in Ae2$_{a,b}^{-/-}$ than Ae2$_{a,b}^{+/+}$ mouse cholangiocytes (Fig. 1). This observation was confirmed with propionate-based maneuvers (Fig. 2). These maneuvers—designed for directly measuring the acid-loading activity (e.g., HCO$_3$$^{-}$ secretion, when cells try to recover their resting pH$_i$ from intracellular alkalinization)—also confirmed that the Na$^{+}$-driven HCO$_3$$^{-}$ secretory activity observed in both Ae2$_{a,b}^{+/+}$ and Ae2$_{a,b}^{-/-}$ mouse cholangiocytes does not depend on extracellular Cl$^{-}$, which is consistent with a Na$^{+}$-HCO$_3$$^{-}$ cotransport or NBC activity. This NBC activity is electrogenic, as it is sensitive to membrane depolarization induced by high extracellular concentration of K$^+$ during the propionate maneuvers. Such electrogenic Cl$^{-}$-independent and Na$^{+}$-driven HCO$_3$$^{-}$ secretory activity was not detected in NRCs and therefore appears mouse-specific.

Our findings of up-regulated expression of Slc4a4 mRNA in Ae2$_{a,b}^{-/-}$ (versus normal mouse cholangiocytes) and absent Slc4a4 expression in both Ae2$_{a,b}^{-/-}$ and Ae2$_{a,b}^{+/+}$ mouse cholangiocytes (Fig. 3) suggest Slc4a4 might be the responsible electrogenic NBC carrier. This concept is supported by our finding of increased expression of the Sl4a4 protein in the Ae2$_{a,b}^{-/-}$ cells. Slc4a4 up-regulation and subsequently increased NBC activity in Ae2$_{a,b}^{-/-}$ mouse cholangiocytes may account for an elevated HCO$_3$$^{-}$ secreting activity in these cells, which might be viewed as an attempt to compensate Ae2 deficiency for pH$_i$ regulation. In this sense, cholangiocytes from Ae2$_{a,b}^{-/-}$-deficient mice appear to be more capable of maintaining their resting pH$_i$ than Ae2$_{a,b}^{-/-}$ mouse fibroblasts, in which Slc4a4 is not expressed.

Stoichiometry of the NBC activity displayed by Slc4a4 is cell type--dependent; 1:3 stoichiometry runs for Na$^{+}$ and HCO$_3$$^{-}$ efflux (acid load), whereas 1:2 works for influx of these ions into the cell (acid extrusion). Moreover, Slc4a4 stoichiometry may vary in the same cells, as reported for mouse kidney cells, in which protein kinase A–mediated phosphorylation in Ser982 shifts stoichiometry from 1:3 to 1:2, leading to decreased HCO$_3$$^{-}$ efflux. This mechanism might also mediate the decrease in HCO$_3$$^{-}$ secretory activity observed in cAMP/SM-stimulated Ae2$_{a,b}^{-/-}$ mouse cholangiocytes (Fig. 4). Baseline NBC activity of these Ae2$_{a,b}^{-/-}$-deficient cells is surprisingly high in spite of elevated cAMP production (also observed in Ae2$_{a,b}^{-/-}$-deficient mouse fibroblasts), but further increased CAMP levels after cAMP/SM stimulation may trigger the decreasing effect. In the case of wild-type mouse cholangiocytes, cAMP/SM administration leads to
overall increase in HCO$_3^-$ secretion (similarly to what had been observed in NRCs with cAMP stimulation), probably because stimulation of Ae2-mediated Cl$^-$/HCO$_3^-$ exchange overcomes the concurrent decrease in the NBC activity.

Experiments performed in isolated bile duct units with preserved bile duct lumen (thus resembling the in vivo situation) suggested that the stimulatory effect of cAMP on biliary HCO$_3^-$ secretion is initiated by Cftr activation and Cl$^-$ efflux into bile; Cl$^-$/HCO$_3^-$ exchange would follow as a consequence of outside-to-inside transmembrane gradient of Cl$^-$ at a relatively high intracellular HCO$_3^-$ concentration. Moreover, cAMP activation of Cftr was recently associated with apical release of ATP. Autocrine/paracrine purinergic stimulation through the potent apically located ATP-responsive P2Y receptors and subsequent activation of Ca$^{2+}$-dependent Cl$^-$ channels with additional efflux of Cl$^-$ to bile could therefore result in further increased Cl$^-$/HCO$_3^-$ exchange at the apical membrane. In our model of perfused cholangiocytes, however, released Cl$^-$ became diluted in the vast volume of perfusion media, with no chance for the alleged indirect stimulatory effects of the cAMP/SM on Cl$^-$/HCO$_3^-$ exchange after outside-to-inside transmembrane gradient of Cl$^-$. Thus, cAMP appears to exert alternative stimulatory effects on the Ae2-mediated Cl$^-$/HCO$_3^-$ exchange in our Ae2$_{a,b}^{+/+}$ mouse cholangiocytes.

ACh was also reported to indirectly stimulate HCO$_3^-$ secretion in rat isolated bile ducts. ACh binds to M3 muscarinic receptors at the basolateral membrane of cholangiocytes, leading to increased intracellular Ca$^{2+}$ levels, activation of Ca$^{2+}$-dependent Cl$^-$ channels and further Cl$^-$ efflux into the bile duct lumen, and subsequent Cl$^-$/HCO$_3^-$ exchange for HCO$_3^-$ secretion to bile. In our perfused Ae2$_{a,b}^{+/+}$ mouse cholangiocytes, we found that ACh increased HCO$_3^-$ secretion similarly to cAMP. However, in contrast to cAMP, ACh showed no effect in our perfused Ae2$_{a,b}^{-/-}$ mouse cholangiocytes. Our data therefore suggest that ACh may stimulate HCO$_3^-$ secretion through Ae2 without affecting the NBC activity. Interestingly, these effects were the opposite of those observed with ATP, which caused net inhibition of the NBC-mediated HCO$_3^-$ secretion in our perfused Ae2$_{a,b}^{+/+}$-deficient mouse cholangiocytes while

Fig. 7. Altered Cl$^-$ secretion in polarized Ae2$_{a,b}^{+/+}$ mouse cholangiocytes. Short-circuit current (I_{sc}, indicative of Cl$^-$ conductance) was analyzed in polarized Ae2$_{a,b}^{+/+}$ and Ae2$_{a,b}^{-/-}$ mouse cholangiocytes mounted in Ussing chambers. (A) Representative I_{sc} tracings in Ae2$_{a,b}^{+/+}$ and Ae2$_{a,b}^{-/-}$ mouse cholangiocytes (left) in response to cAMP stimulation (500 μM 8-cpt-cAMP plus 450 μM 3-isobutyl-1-methyl-xanthine). Upon cAMP stimulation, calculated I_{sc} values (right) are lower in Ae2$_{a,b}^{-/-}$ than Ae2$_{a,b}^{+/+}$ mouse cholangiocytes. (B) Relative Cftr mRNA levels are lower in Ae2$_{a,b}^{-/-}$ than Ae2$_{a,b}^{+/+}$ mouse cholangiocytes. Glyceraldehyde 3-phosphate dehydrogenase-normalized values in Ae2$_{a,b}^{+/+}$ mouse cholangiocytes are given as percentages of those in Ae2$_{a,b}^{+/+}$ mouse cholangiocytes (100%) (n = 6 each). (C) Representative I_{sc} traces in Ae2$_{a,b}^{+/+}$ and Ae2$_{a,b}^{-/-}$ mouse cholangiocytes (left) in response to 100 μM ATP. Upon ATP administration, calculated I_{sc} values (right) are greater in Ae2$_{a,b}^{+/+}$ than Ae2$_{a,b}^{-/-}$ mouse cholangiocytes. (D) Representative tracings of Fluor-4 fluorescence emission at 535 nm captured every 2 seconds, indicative of intracellular Ca$^{2+}$ variations in Ae2$_{a,b}^{+/+}$ and Ae2$_{a,b}^{-/-}$ mouse cholangiocytes in response to administration of 100 μM of nonhydrolyzable ATP-γ-S (left); fluorescence values are relative to the baseline measurement (F/F₀). Upon ATP stimulation, calculated fluorescence values (right) are greater in Ae2$_{a,b}^{+/+}$ than Ae2$_{a,b}^{+/+}$ mouse cholangiocytes. For each type of cell, n values were obtained from three different cell preparations. Once monitored, values for I_{sc} (A,C) and the relative Fluor-4 fluorescence (D) are given as the calculated AUC (arbitrary units) in the experimental plots.
having no overall effect on normal mouse cholangiocytes. Although different Ca\(^{2+}\) signaling pathways and/or different wave patterns of Ca\(^{2+}\) change might be involved in the differentiated effect of ATP on the NBC-mediated HCO\(_3^-\) transport versus that of ACh (for instance, calcium waves elicited by ATP can differ from those caused by ACh), additional Ca\(^{2+}\)-independent mechanism may also be implicated.

We finally assessed Cl\(^-\) efflux in polarized Ae2\(_{a,b}^{+/+}\) and Ae2\(_{a,b}^{-/-}\) mouse cholangiocytes in response to cAMP and ATP stimulation (through Cftr and Ca\(^{2+}\)-activated Cl\(^-\) channels, respectively). Interestingly, cAMP stimulation elicited lower (but did not abolish) Cl\(^-\) secretory activity in Ae2\(_{a,b}^{-/-}\) than Ae2\(_{a,b}^{+/+}\) mouse cholangiocytes. The diminished Cftr activity in the absence of Ae2 suggests a close functional interaction of these flux proteins in biliary cells, which is not surprising in view of their colocalization (together with aquaporin-1) in intracellular vesicles that migrate toward the apical membrane in response to cAMP.\(^7\) Thus far, no evidence for such functional interaction has been available, although previous studies in \textit{Xenopus} oocytes and HEK293 cells have shown regulatory interactions of CFTR with electrogenic Cl\(^-\)/HCO\(_3^-\) exchangers.\(^{36}\) Our data may shed some light on former findings in CFTR-deficient human and mouse cholangiocytes (isolated from patients with cystic fibrosis and \textit{Cftr}\(^{-/-}\) mice, respectively),\(^{37,38}\) in which cAMP stimulation elicited no HCO\(_3^-\) secretion. These findings seemingly argued for CFTR/Cftr as the carrier mediating the cAMP-stimulated HCO\(_3^-\) secretion in cholangiocytes, and thus questioned AE2/Ae2 involvement. However, our present data in Ae2\(_{a,b}^{-/-}\)-deficient mouse cholangiocytes, together with the aforementioned \textit{AE2}-silencing results in human and rat cholangiocytes\(^{4,5}\) confirm the crucial role of AE2/Ae2. In fact, our Ae2\(_{a,b}^{-/-}\)-deficient cholangiocytes were completely unable to respond transporting HCO\(_3^-\) upon Cl\(^-\) removal— with and without cAMP stimulation— while they exhibited cAMP-stimulated Cl\(^-\) current, even though this was certainly diminished. Reduced cAMP-stimulated Cl\(^-\) current in Ae2\(_{a,b}^{-/-}\)-deficient mouse cholangiocytes might be due to both Cftr-Ae2 interaction failures and low Cftr gene expression. ATP stimulation, however, elicited higher values of Cl\(^-\) currents in Ae2\(_{a,b}^{-/-}\) mouse cholangiocytes, which suggests overactivation of Ca\(^{2+}\)-dependent Cl\(^-\) channels attempting to maintain Cl\(^-\) homeostasis in these cells as reported for cystic-fibrosis cholangiocytes.\(^{37}\) This might be related with the fact that the ATP-stimulated increase in intracellular Ca\(^{2+}\) levels was more pronounced in Ae2\(_{a,b}^{-/-}\) than Ae2\(_{a,b}^{+/+}\) mouse cholangiocytes.

In conclusion (see working model on Fig. 8), our data indicate that Ae2, in close interaction with Cftr, mediates

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Fig8.png}
\caption{Working model of HCO\(_3^-\) secretion in mouse cholangiocytes. Similar to both normal rat and human cholangiocytes, the Cl\(^-\)/HCO\(_3^-\) AE activity in mouse cholangiocytes is entirely mediated by Ae2. Physiologically, this activity results in HCO\(_3^-\) secretion. But in contrast to rat and human cholangiocytes, mouse cholangiocytes possess an additional carrier for HCO\(_3^-\) secretion that functions as an electrogenic NBC. Because Slc4a4 is the only electrogenic NBC found to be expressed in mouse cholangiocytes, this carrier is presumably involved in the NBC-mediated HCO\(_3^-\) secretion described here. Moreover, Ae2\(_{a,b}^{-/-}\) mouse cholangiocytes exhibit up-regulated expression of Slc4a4 compared with Ae2\(_{a,b}^{+/+}\) mouse cholangiocytes, which is consistent with the increased HCO\(_3^-\)-secreting NBC activity encountered in the former. This NBC activity in Ae2\(_{a,b}^{-/-}\) mouse cholangiocytes is decreased by both cAMP and ATP, but not by ACh. Finally, the mechanisms for Cl\(^-\) secretion (which in vivo is crucially required by Ae2 for Cl\(^-\)/HCO\(_3^-\) exchange and subsequent HCO\(_3^-\) secretion at the biliary epithelium) are also altered in Ae2\(_{a,b}^{-/-}\) mouse cholangiocytes, with diminished (but not abolished) activity of Cftr and up-regulated activity of Ca\(^{2+}\)-dependent Cl\(^-\) channels.}
\end{figure}
biliary HCO$_3^-$ secretion in mouse cholangiocytes through Cl$^-$/HCO$_3^-$ exchange, which is directly activated by both cAMP and ACh. Additionally, mouse cholangiocytes possess a Na$^+$/HCO$_3^-$ cotransport activity, which under circumstances of diminished Ae2 activity allows the biliary cells to maintain basal pH$_i$ and HCO$_3^-$ secretion. Unlike Ae2, NBC activity in mice appears to be negatively regulated by cAMP and ATP. Finally, Ae2 deficiency in $Ae2_{a,b}^{-/-}$ mouse cholangiocytes is associated with impaired Cfr activity and overactivation of Ca$^{2+}$-dependent Cl$^-$ channels.

$Ae2_{a,b}^{-/-}$ mouse cholangiocytes resemble PBC cholangiocytes concerning baseline pH$_i$, homeostasis. $Ae2_{a,b}$-deficient mouse cholangiocytes can maintain their resting pH$_i$ through the supplementary NBC-mediated HCO$_3^-$ secreting activity, which is absent in human cholangiocytes.6,8,17 However, PBC cholangiocytes may in turn maintain resting pH$_i$ because they generally display residual AE2 activity,18 due to diminished (rather than absent) AE2 expression in most PBC samples.17 Such a similar outcome might contribute to the fact that our $Ae2_{a,b}^{-/-}$ mice indeed reproduce several features of PBC20 and may therefore be employed as an animal model of the human disease.

Acknowledgment: We are grateful to Sarai Sarvide for her excellent technical assistance. We also thank A. Ferrer, J. T. Salas, and S. Melero for their valuable help.

References