A distinct expression pattern in mammalian testes indicates a conserved role for NANOG in spermatogenesis
Kuijk, E.W.; de Gier, J.; Chuva de Sousa Lopes, S.M.; Chambers, I.; van Pelt, A.M.M.; Colenbrander, B.; Roelen, B.A.J.

Published in: PLoS ONE

DOI: 10.1371/journal.pone.0010987

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
A Distinct Expression Pattern in Mammalian Testes Indicates a Conserved Role for NANOG in Spermatogenesis

Ewart W. Kuijk1,2,3, Jeffrey de Gier4, Susana M. Chuva de Sousa Lopes5, Ian Chambers6, Ans M. M. van Pelt7, Ben Colenbrander1, Bernard A. J. Roelen1*

1 Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands, 2 Department of Reproductive Medicine and Gynecology, University Medical Center Utrecht, Utrecht, The Netherlands, 3 Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands, 4 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands, 5 Department of Anatomy and Embryology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands, 6 Medical Research Council Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom, 7 Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Background: NANOG is a key player in pluripotency and its expression is restricted to pluripotent cells of the inner cell mass, the epiblast and to primordial germ cells. Spermatogenesis is closely associated with pluripotency, because through this process highly specialized sperm cells are produced that contribute to the formation of totipotent zygotes. Nevertheless, it is unknown if NANOG plays a role in this process.

Methodology/Principal Findings: In the current study, NANOG expression was examined in testes of various mammals, including mouse and human. Nanog mRNA and NANOG protein were detected by RT-PCR, immunohistochemistry, and western blotting. Furthermore, eGFP expression was detected in the testis of a transgenic Nanog eGFP-reporter mouse. Surprisingly, although NANOG expression has previously been associated with undifferentiated cells with stem cell potential, expression in the testis was observed in pachytene spermatocytes and in the first steps of haploid germ cell maturation (spermiogenesis). Weak expression in type A spermatogonia was also observed.

Conclusions: The findings of the current study strongly suggest a conserved role for NANOG in meiotic and post-meiotic stages of male germ cell development.

Introduction

NANOG, named after a mythical Celtic land of the ever young, is a homeobox transcription factor and a key player in pluripotency; i.e. the ability of a cell to differentiate into any fetal or adult cell type [1,2]. NANOG is expressed in pluripotent cell lines, including embryonic stem (ES) cells and embryonic germ (EG) cells and loss of NANOG results in a tendency of ES cells to differentiate [1–3]. On the other hand, mouse ES cells that become committed to the primordial germ cell lineage did not survive beyond E11.5, indicating that Nanog is indispensable for the development of postmigratory germ cells [3]. In mouse development, NANOG becomes detectable in migrating PGCs of E7.75–E8.0 embryos. In gonadal germ cells of E13.5 and E14.5 female embryos, NANOG is undetectable in cells positive for the synaptosomal complex-specific protein SCP3. In germ cells of E14.5–E16.5 male embryos, NANOG expression is lost during the mitotic arrest [5].

The ICM cells of Nanog−/− embryos fail to acquire pluripotency and do not develop into pluripotent epiblast cells [1,6]. When put into culture, explanted ICM cells differentiate entirely into extraembryonic endoderm lineages [1]. Remarkably, however, Nanog−/− ICM cells can participate in chimera embryonic development and contribute to all three embryonic germ layers. This demonstrates that in pluripotent cells NANOG is dispensable for the potential to differentiate into all somatic tissue. However, in these chimaeras, the Nanog−/− cells that became committed to the primordial germ cell lineage did not survive beyond E11.5, indicating that Nanog is indispensable for the development of postmigratory germ cells [3].

Somatic cells that are induced to pluripotency by the introduction of exogenous reprogramming factors do not require...
exogenous NANOG for this process [7]. However, Narog−/− neuronal stem cells can not be reprogrammed to pluripotency, unless they carry a transgene that expresses NANOG [6]. It seems that Nanog is dispensable for the initial dedifferentiation to occur, but essential for the final stage of reprogramming to allow pluripotency [6].

Male germ cells appear to be an important source of cells that are directly linked to pluripotency. Teratocarcinomas, for example, are malignant germ cell tumors that are composed of pluripotent cells and differentiated progeny of numerous cell types [9]. Moreover, a number of recent reports describe the derivation of pluripotent cells and differentiated progeny of numerous cell types from neonatal and adult mouse [9–13] and human [14–16] testes. However, the immediate link between testes and pluripotency is evidently spermatogenesis: the production of sperm cells that can fertilize oocytes and thereby contribute to the formation of completely new organisms.

Despite the evidence for the expression of Nanog in the testes of several species [17–20] and obvious link between testis function and pluripotency, little is known about the involvement of NANOG in the process of spermatogenesis. In the current study we describe NANOG expression in the testis and determine its expression pattern in mammalian species ranging from mouse, dog, and pig, to human. The dynamics of NANOG expression throughout spermatogenesis was similar between species suggesting a conserved role for NANOG in male meiosis and spermiogenesis.

Results

We detected the presence of Nanog mRNA in mouse testes of two different strains by reverse transcriptase-polymerase chain reaction (RT-PCR) (Fig. 1A). Transcription from the locus of Nanog in mouse testes was further confirmed by the detection of testicular eGFP transcripts in transgenic Nanog eGFP-reporter mice (TNG) [3] (Fig. 1B). Further investigation in other species revealed Nanog expression in dog, pig, and human testes (Fig. 1C, D). Importantly, rigorous negative controls demonstrated that PCR products were not derived from genomic DNA.

Localization of NANOG protein expression was performed on mouse testis sections using immunohistochemistry and expression was detected in the nucleus of pachytene spermatocytes and round spermatids (Fig. 2A–C). Weak staining for NANOG was also detected in type A spermatogonia in all stages of the epithelial cycle (e.g. Fig. 2A), but NANOG was not detected in intermediate spermatogonia (data not shown). Control sections in which the primary antibody solution was replaced by blocking solution did not show any signal in the seminiferous tubules (Fig. 2D). Next, we examined eGFP expression in testes sections of TNG mice. Although fluorescent cells were not detected by microscopy or FACS (data not shown) expression of eGFP was detected by immunohistochemistry. The cell types expressing eGFP in the testis of Nanog reporter mice corresponded to the cell types expressing NANOG (Fig. 2E). As expected, eGFP staining was not observed in testis sections of a non-transgenic mouse.

Categorization of the cell types that express NANOG in the spermatogenic stages of the seminiferous epithelium [21] revealed a distinctive temporal expression pattern. The expression dynamics of NANOG in mouse testes at the various epithelial stages of spermatogenesis are summarized in Figure 3A. NANOG was detected in nuclei of pachytene spermatocytes from epithelial stage IV onwards. Expression was maintained throughout meiosis and NANOG was detected until spermiogenic step 10. Expression was progressively lost in the course of elongation of spermatids.

We next analyzed the localization of NANOG expression in dog testis. The expression pattern resembled the patterns observed in the mouse testis and NANOG was mainly detected in maturing gametes (Fig. 4). NANOG was specifically expressed...
in pachytene spermatocytes and round spermatids of dog testis with a dynamic temporal expression pattern in the spermatogenic stages of seminiferous tubules. At canine epithelial stage V, just before spermatids initiate elongation [21], NANOG was expressed in pachytene spermatocytes, but not in elongating spermatids (Fig. 4A–C). The meiotic divisions in dogs occur at epithelial stage VIII and metaphase configurations and newly formed round spermatids were positive for NANOG at this stage. Spermatids remained positive for NANOG up until stage V (Fig. 4D–F). The expression dynamics of NANOG in dog testis at the various epithelial stages of spermatogenesis are summarized in Figure 3B, which illustrates that the observed expression pattern for NANOG in dog testis corresponds well to that observed in the mouse.

The presence of NANOG protein in dog testis was confirmed by immunoblot analysis (Fig. 5). A distinctive band of approximately 40 kDa, which corresponds to the molecular weight of NANOG, was observed in lysates from mES cells and dog testis. Additional bands in both mES cell and dog testis lysates were observed at approximately 80 kDa.

NANOG expression was also detected in maturing gametes in adult porcine testis, as determined by immunofluorescence on paraffin-embedded sections (Fig. 6). Expression was detected in pachytene spermatocytes, as determined by the morphology of their DNA (Fig. 6A–F). Protein expression of NANOG in porcine testis was further confirmed by immunoblot analysis (Fig. 5). Additional bands in both mES cell and pig testis lysates were observed at approximately 80 kDa. NANOG protein expression was also detected in human testes as determined by immunofluorescence (Fig. 7). As in the other species examined, NANOG was localized to differentiating male germ cells.

Discussion

NANOG is an essential factor for establishing pluripotency [6]. Recent studies have demonstrated that, in addition to cells of the ICM, the epiblast, primordial germ cells, and cultured male germ cells from mouse and human testes can give rise to pluripotent stem cells [9–16]. In the current study, we examined the expression of NANOG in male germ cells, since NANOG is
expressed in other cell types from which pluripotent cell lines have been established [1,2,5,18].

Nanog transcripts and protein were detected in testes of mouse, dog, pig, and human. Furthermore, eGFP mRNA and protein were detected in the testis of Nanog reporter mice, which is strong evidence that the Nanog gene is transcribed in mouse testis. Multiple antibodies of different origins showed specific and comparable staining for NANOG in different species. Moreover, the observed expression in type A spermatogonia, spermatocytes, and round spermatids corresponds well to that described in previous studies of Nanog reporter mice, which is strong evidence that the Nanog gene is transcribed in mouse testis.

In some previous studies, Nanog expression was not detected in mouse testis, even though expression was observed in cells of the ICM, the epiblast, and in primordial germ cells [1,5]. Another study has detected NANOG in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours, but not in normal adult testis [22]. Similarly, NANOG expression has also been detected in fetal gonocytes of the marmoset, but not in adult testis [23]. This probably indicates that the expression levels described here are relatively weak in differentiating male germ cells. Indicative of this low expression is the lack of detection of fluorescent cells by microscopy or FACS (data not shown) in TNG mouse testis. Nevertheless, eGFP could clearly detected by immunohistochemistry in TNG mouse testis, but not in the testis of non-transgenic mice. The sensitivity of the various approaches in the current study could have been decisive for the successful detection of NANOG in testes.

In transgenic mice that can express a short hairpin RNA against Nanog after tamoxifen exposure, conditional knockdown of Nanog in migratory PGCs induces apoptotic cell death and results in a
reduction of the number of PGCs in E12.5 embryos [24]. The authors of this study also described that embryonic Cre-recombinase mediated down regulation of Nanog resulted in tubules with disrupted spermatogenesis in the adult testes, which contained scattered TRA98-positive spermatogonia in the otherwise empty tubules. The authors interpreted this phenotype as developmental retardation of the seminiferous tubule probably caused by the embryonic loss of Nanog-negative germ cells [24]. However, the observed phenotype could also indicate a role for Nanog in spermatogenesis. The lack of meiotic and post meiotic stages correlates with our data on the onset of NANOG expression in pachytene spermatocytes.

Figure 4. Expression of NANOG in dog testis as determined by immunofluorescence. (A–F) NANOG expression in differentiating male germ cells. Roman figures in panels represent the stage of the canine epithelial cycle (G–I) high magnification image of section in which the primary antibody was replaced by blocking solution, to control for non-specific binding of the secondary antibody; (J–L) image of testis section that was incubated with a rabbit IgG isotype control, to control for non-specific binding of the primary antibody.

doi:10.1371/journal.pone.0010987.g004
In the course of germ cell development, male germ cells undergo critical epigenetic changes intended for successful progression through meiosis, meiotic sex chromosome inactivation, post-meiotic sex-chromosome repression, and chromatin remodeling [25]. The fundamental role of histone and DNA methyltransferases and other epigenetic modifiers in male meiosis is exemplified by various knockout studies that result in arrest and/or apoptosis of early to late pachytenocyte spermatocytes [25,26]. NANOG could be involved in these epigenetic events in spermatogenesis. For example, NANOG is known to interact with repression complexes that contain active histone deacetylases [27,28]. Inhibition of histone deacetylase-1 results in male infertility through apoptosis in spermatogonia and spermatocytes [29,30].

In conclusion, in the present study we demonstrated that Nanog is expressed in mammalian differentiating male germ cells. In mouse testis, weak expression in type A spermatogonia was also observed. The reported meiotic and post-meiotic association of NANOG in male germ line cells suggests a role for NANOG as epigenetic modifier in spermatogenic reprogramming.

Materials and Methods

Ethics statement

After institutional approval, mouse testes were obtained from fertile males that were housed at the Utrecht University Central Animal Facilities and the MRC Center Development in Stem Cell Biology, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh. Because we made use of post-mortem surplus material from animals that were used for other experiments, ethical approval to use this material was not necessary. Surplus canine testicles were obtained from healthy client-owned dogs that underwent routine elective gonadectomy, performed by surgeons of the Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht, The Netherlands. Adult pig testes were collected at a local slaughterhouse. Anonym human testis samples for RNA isolation were obtained at the Center for Reproductive Medicine, Academic Medical Center, Amsterdam, from 2 patients undergoing bilateral castration as part of prostate cancer treatment. Patients were asked to donate this spare material for research and gave oral consent. Written consent was not considered necessary because the material would otherwise be discarded and because the consent of the patient was documented in their medical files. Ethics committee approval was not obtained, because according to Dutch law this is not necessary when anonym tissue samples are used. None of these men had previously received chemotherapy or radiotherapy, and the morphology of the testes showed normal spermatogenesis in all cases. Anonymized, sections embedded in paraflin of post-mortem human testes were obtained from the Biobank at the Department of Pathology of the University Medical Center in Utrecht. Approval to use this material for the current study was obtained from the scientific committee of the Department of Pathology of the University Medical Center in Utrecht (PA code RP 2007-34). There were no indications that this material was derived from infertile men or men suffering from testicular diseases as determined by testis morphology.

RNA extraction, reverse transcription, and PCR

From human testes, mRNA was extracted using the MagNA Pure LC (Roche, Basel, Switzerland) according to the manufacturer’s protocol. For cDNA synthesis 0.03 μg of mRNA of human testis tissue was used in a reverse transcriptase reaction with random primers and M-MLV reverse transcriptase (Invitrogen, Groningen, The Netherlands). For mouse, dog, and pig, total RNA was isolated from 50–100 mg testis sections with Trizol (Invitrogen), according to the manufacturer’s protocol with an additional purification step immediately following phase separation. In this extra step, one volume of phenol:chloroform:isoamyl alcohol (Fluka, Sigma-Aldrich, Zwijndrecht, The Netherlands) was added to the aqueous phase and samples were mixed, incubated at room temperature (RT) for 5 min, and centrifuged. Subsequently, samples were incubated in RT for an additional 5 min, after which the aqueous phase was transferred to a new tube and put on ice. From here, the Trizol RNA isolation protocol was resumed, from the RNA precipitation step onwards. The presence of Nanog pseudogenes requires reliable negative controls in RT-PCR experiments [31]. Therefore, RNA was treated with 2 μl DNAse (2,75 Kunitz units/μl; Qiagen, Venlo, The Netherlands) for 20min at 37°C, after which incubation at 65°C for 10 min was performed to inactivate the enzyme. Next, RNA was reverse-transcribed to first strand cDNA with Superscript III (Invitrogen) according to the company’s instructions. Random primers were used and for each sample an equivalent mixture was prepared, from which Superscript III was omitted, to control for genomic DNA contamination. Reverse transcribed cDNA samples were stored at −20°C before they were used in a polymerase chain reaction.

Species-specific primers for Nanog were designed with Beacon Designer 4 (PREMIER Biosoft International, Palo Alto, CA, USA; Table 1).

Complementary DNA amplification was performed with HotStarTaq (Qiagen) according to the manufacturer’s protocol. The reaction mixture contained 2 nM MgCl2 and 0.5 μM of each primer. To 24 μl of mixture, 1 μl of sample was added, after which the PCR was carried out in a MyCycler (Bio-Rad). Each PCR started with a 15-min dwell at 94°C, followed by 40 cycles with 3 steps/cycle; 30 sec melting of double strands at 94°C, 30 sec annealing at the primer specific annealing temperature (Table 1), and finally 30 sec elongation at 72°C. For each sample, RT negative controls were used in all reactions to prevent contamination with genomic DNA. The amplicons (10 μl) were electrophoresed in 1% agarose gels and sequence analysis was used to confirm the amplification of Nanog transcripts in all species.

Immunoblot analysis

Total protein was extracted with lysis buffer containing 25 mM 2-(N-morpholino) ethanesulfonic acid monohydrate (Sigma-
Aldrich), 150 mM NaCl, 1 mM EGTA, protease inhibitors (Roche), and 1% Triton X-100. The amount of protein was determined by a DC protein assay (Bio-Rad) and 5–20 μg of total protein, was boiled for 5 min in Laemmli buffer (Bio-Rad) with 0.5 M β-mercaptoethanol and separated by electrophoresis on a 12% Tris–HCl PAGE gel. To determine protein sizes, a benchmark pre-stained protein ladder was run in each gel. After electrophoresis, proteins were transferred to a Trans-Blot nitrocellulose transfer membrane (Bio-Rad). Subsequently, membranes were blocked overnight at 4°C with 5% Blotting Grade Blocker non-fat dry milk (Bio-Rad), in PBST and incubated with 1 μg/ml rabbit polyclonal anti-mouse NANOG (Chemicon) in 5%
non-fat dry milk for 1 hr at room temperature. Membranes were washed in PBST, and subsequently incubated for 1 hr at RT in a horseradish peroxidase-conjugated goat anti-rabbit IgG (Pierce, Rockford, USA) secondary antibody solution diluted 1:5000 in 5% non-fat dry milk. Specific binding of the antibodies was visualized using SuperSignal West Dura Extended Duration Substrate (Pierce, Rockford, IL) after which the blots were exposed to film (Kodak). The primary antibody is known to bind non-specifically to a 55 kDa protein and therefore, bands detected at that height were considered non-specific.

Immunohistochemistry, Immunofluorescence, and Confocal Laser Scanning Microscopy

After collection, testes were fixed overnight (o/n) in 4% PFA or Bouins fixative and embedded in paraffin using standard procedures the following day. Sections were cut at 5–7 μm and mounted on superfrost plus slides (Menzel, Braunschweig, Germany), which were dried o/n at 37°C and stored at 4°C until further use. For IHC with the NANOG antibody (Table 2) on mouse sections, endogenous peroxidases were blocked with 1.5% H2O2 (Merck) in 40 mM citric acid and 120 mM Na2HPO4 for 15 min at RT. After antigen retrieval with 10 mM EDTA buffer (20 min, pH 9), non-specific binding sites were blocked with 1% bovine serum albumin in PBS for 30 min at RT. After blocking, sections were incubated with rabbit anti-nanog (Bethyl, Montgomery, USA) in blocking solution overnight at 4°C. Slides were incubated with a Powervision poly-HRP-anti-rabbit conjugated secondary antibody (ImmunoVision Technologies) for 1 hr at RT. Subsequently, sections were incubated in Fast 3,3’-diaminobenzidine (Sigma-Aldrich) and counterstained with hematoxylin. Slides were mounted with Pertex (Klinipath, Duiven, The Netherlands).

For immunohistochemistry with the GFP antibody (Table 2), PFA fixed mouse sections were deparaffinized after which endogenous peroxidases were blocked with methanol/0.3% H2O2. Next, antigen retrieval was performed by boiling the slides for 10 min in EDTA buffer (1 mM, pH 9). Endogenous biotin was blocked by incubation of the sections with avidin and biotin, respectively. Subsequently, non-specific binding was blocked with 10% normal goat serum in 2% normal goat serum (NGS) in PBST (60 min at RT). Sections were then incubated in biotinylated goat anti-mouse IgGs (1:100; Dako, Heverlee, Belgium) in 2% NGS in PBST for 30 min at RT. After 20 min incubation with horseradish peroxidase (HRP)-conjugated streptavidin (DAKO) in 2% NGS in PBST, slides were incubated in AEC solution (Sigma-Aldrich) and counter stained with hematoxylin.

For immunofluorescence, slides were deparaffinized in xylene and subjected to antigen retrieval by boiling the slides for 10 min in citrate buffer (pH 2 or pH 6). For canine testis sections,

Table 1. Primers used for RT-PCR and sequence analysis.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence origin</th>
<th>Primers</th>
<th>Ta (°C)</th>
<th>Amplicon size (bp)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse Nanog</td>
<td>NM_028016</td>
<td>F: 5’-AGATGCGGGAGCTGGTCTTC-3’</td>
<td>58</td>
<td>281</td>
<td>PCR/sequence</td>
</tr>
<tr>
<td>Canine Nanog</td>
<td>XM_543828</td>
<td>F: 5’-CCGTCCTCTCCCTCCCTTCAT-3’</td>
<td>54.3</td>
<td>348</td>
<td>PCR/sequence</td>
</tr>
<tr>
<td>Porcine Nanog</td>
<td>NM_001129971</td>
<td>F: 5’-CTCTCCCTCTCTGACTCTGATC-3’</td>
<td>58</td>
<td>345</td>
<td>PCR/sequence</td>
</tr>
<tr>
<td>Human Nanog</td>
<td>NM_024865</td>
<td>F: 5’-CCTCCACGAGATGCAAGAATC-3’</td>
<td>58</td>
<td>172</td>
<td>PCR/sequence</td>
</tr>
<tr>
<td>eGFP</td>
<td>EU541500</td>
<td>F1: 5’-CAGGACGCGAGCAGGAGGC-3’</td>
<td>59</td>
<td>630</td>
<td>PCR/sequence</td>
</tr>
</tbody>
</table>

F = forward primer, R = reverse primer. Ta = annealing temperature used in PCR reaction.

doi:10.1371/journal.pone.0010987.0001
additional antigen retrieval was performed by putting the slides in methanol for 10 sec. Following antigen retrieval, slides were permeabilized in TBS containing 0.05% Tween (TBST) and Triton X-100 (0.1%). Permeabilized slides were blocked for 1 hr in TBST containing 0.5% BSA (Sigma-Aldrich) followed by o/n incubation with the primary antibody (Table 2) in blocking solution at 4°C. The following day, slides were incubated in the secondary antibody in blocking solution for 1 hr at 4°C, after which the slides were counterstained with TOPRO-3 (Invitrogen) and mounted in Vectashield. DNA could not be visualized after antigen retrieval at pH 2.

Fluorescent images were analyzed at the Center for Cell Imaging at the Faculty of Veterinary Medicine in Utrecht. Fluorescent signals were visualized using a Confocal Laser Scanning Microscope (Bio-Rad) and on an epifluorescence microscope from which pictures were captured with a CCD camera. Within each session, identical settings were used to image NANOG stains and negative controls. For post-capture analysis, only brightness and contrast were used to enhance signals and negative control images were treated in an equal manner.

References

Author Contributions

Conceived and designed the experiments: EK, SMCDsl, IC, AMM-P. Performed the experiments: EK, JdG, SMCDsl, IC, AMMvP, BC, BAR. Contributed reagents/materials/analysis tools: JdG, SMCDsl, IC, AMMvP, BC, BAR. Wrote the paper: EK.

Acknowledgments

We are thankful to Dr. Ingrid Vos for the surplus mouse material that she provided for this study. Furthermore, we would like to thank Dr. Roel Goldschmeding and his colleagues from the Biobank Facility of the UMC Utrecht for the human testis material. We are also grateful to Karlijn Wilchut for her help with IHC. We would also like to thank Dr. Peter de Boer, Dr. Bart Gadeeda, and Dr. Ian Brewis for their support in this project. Furthermore, we are very grateful to the support of Ir. Anko de Graaff and Dr. Richard Wubbolts at the Center for Cell Imaging at the Faculty of Veterinary Medicine in Utrecht.

Table 2. Antibodies used for immuno applications.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Source</th>
<th>Concentration</th>
<th>Description</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA1-50 mouse NANOG</td>
<td>A300-398A (Bethyl)</td>
<td>10 µg/ml</td>
<td>Rabbit polyclonal</td>
<td>IHC mouse</td>
</tr>
<tr>
<td>Full length mouse NANOG fusion protein</td>
<td>AB21603 (Abcam)</td>
<td>1–2 µg/ml</td>
<td>Rabbit polyclonal</td>
<td>IF, Dog, human</td>
</tr>
<tr>
<td>Synthetic peptide mouse NANOG</td>
<td>AB5731 (Chemicon)</td>
<td>1 µg/ml</td>
<td>Rabbit polyclonal</td>
<td>IB, IF pig</td>
</tr>
<tr>
<td>Human NANOG</td>
<td>14-5768 (eBioscience)</td>
<td>1–2 µg/ml</td>
<td>Mouse monoclonal</td>
<td>IF human</td>
</tr>
<tr>
<td>GFP (B-2)</td>
<td>SC9996 (Santa Cruz)</td>
<td>1:500</td>
<td>Mouse monoclonal</td>
<td>IHC TNG mouse</td>
</tr>
<tr>
<td>Rabbit IgG</td>
<td>31460 (Pierce)</td>
<td>0.16 µg/ml</td>
<td>Goat polyclonal peroxidase conjugated</td>
<td>IB</td>
</tr>
</tbody>
</table>

AA = Amino Acids, IHC = immunohistochemistry, IF = immunofluorescence, IB = immunoblotting.
doi:10.1371/journal.pone.0010987.t002

