HIV and STI epidemiology in high-risk populations in the Netherlands

van Veen, M.G.

Citation for published version (APA):
Increasing trend in gonococcal resistance to ciprofloxacin in The Netherlands, 2006–8

F D H Koedij,1 M G van Veen,1 A J de Neeling,1 G B Linde,2 M A B van der Sande,1 on behalf of the Dutch STI centres and the Medical Microbiological Laboratories

ABSTRACT

Introduction Rapid development of Nonoia gonorrhoeae resistance to several antibiotics in recent years threatens treatment and prevention. Targeted surveillance of new resistance patterns and insight into networks and determinants are essential to control this trend.

Methods Since the Gonococcal Resistance to Antimicrobials Surveillance (GRAS) project was implemented within the Dutch national sexually transmitted infection (STI) surveillance network in July 2006, participating STI centres have collected a culture from each gonorrhoea patient. Isolates were tested for susceptibility to penicillin, tetracycline, ciprofloxacin and cotrimoxazole using Etest. Logistic regression was used to determine risk factors for ciprofloxacin resistance.

Results Between July 2006 and July 2008, prevalence of resistance to penicillin was 15% to tetracycline 22% and to ciprofloxacin 42%. Resistance to ciprofloxacin was not found, although minimum inhibitory concentrations higher than 0.125 mg/l drifted upward (p < 0.05).

Ciprofloxacin resistance rose from 3.5% in 2006 to 46% in 2008 (p < 0.001), despite 2008 guidelines giving ceftriaxone as first-choice therapy. In men, ciprofloxacin resistance was higher in men having sex with men (MSM) than in heterosexual men (adjusted OR 2.0, 95% CI 1.5 to 2.6). In women, it was higher in commercial sex workers (adjusted OR 25.0, 95% CI 7.7 to 79.2) and women aged over 35 years (adjusted OR 8.2, 95% CI 3.0 to 22.7) than in other women.

Conclusion Ciprofloxacin resistance in The Netherlands is increasing, and is particularly found in MSM, older women, and female sex workers. No resistance to current first-choice therapy was found, but awareness to potential clinical failures is essential. By merging epidemiological and microbiological data in GRAS, specific high-risk transmission groups can be identified and policy adjusted when needed.

Gonorrhoea is the second most common bacterial sexually transmitted infection (STI) in The Netherlands. Under the national sentinel surveillance programme in STI centres, 1137 cases were reported in 2007.1 Approximately 69% of the male cases were diagnosed among men who have sex with men (MSM), with a positivity rate of 8%. In heterosexual men and women, the positivity rate was 1.5% and 1.1%, respectively. In 2007, 14% of the new cases of gonorrhoea diagnosed were in people known to have an HIV infection, and 2% were simultaneously diagnosed with an HIV infection and gonorrhoea.4 An infection with gonorrhoea increases the risk of acquiring HIV infection and may increase the viral load in those already HIV infected.2 Infection with Neisseria gonorrhoea in men and women is an important cause of epididymitis, cervicitis, urethritis and pelvic inflammatory disease. Pelvic inflammatory disease may further lead to ectopic pregnancy, infertility or abortion.

Rapid and appropriate treatment of gonorrhoea is of great importance for public health, because it shortens the infectious period and limits transmission of the disease. The World Health Organisation recommends that first-choice therapy for gonorrhoea needs to cure at least 95% of those infected.3 National surveillance of antimicrobial resistance in gonorrhoea was conducted in The Netherlands from 1976 until 1999, the period in which reporting the disease was mandatory. Since then, national insight into its incidence, and also into resistance patterns of gonorrhoea, has been lacking, despite signs of increases in gonorrhoea infections and in resistance to fluoroquinolones such as ciprofloxacin.3,4

Initially, penicillin was the primary therapy for gonorrhoea in The Netherlands. In 1997, the spread of penicillin-resistant N. gonorrhoea led to modification of the guidelines towards single-dose therapy with ciprofloxacin or ceftriaxone. Indications of increasing quinolone resistance resulted in another revision of the guidelines in 2005, making ceftriaxone the first-choice therapy for gonorrhoea infections. At the end of 2006, ceftriaxone was selected as the primary therapy.4

Results from an annual nationwide laboratory questionnaire, administered since 2002, showed a remarkable increase in resistance to quinolones from 6.6% in 2002 to 26.4% in 2005.5 The questionnaire did not collect any epidemiological or clinical information on gonorrhoea patients. As this is essential to ensure adequate and updated treatment and prevention guidelines, the project Gonococcal Resistance to Antimicrobials Surveillance (GRAS) was initiated in 2006. Here, we analyse and discuss methods and results of the first 2 years of GRAS, with a focus on the determinants of resistance to ciprofloxacin (previous first-choice therapy) and third generation cephalosporins (current first-choice therapy).

METHODS

GRAS is implemented within the present Dutch national STI surveillance network, in which 32 STI centres and laboratories across eight regions provide free STI testing and care to people in specific high-risk groups, including those who wish to be tested anonymously.6 This system of testing and care was set up in addition to the routine national health services, to reach people who might otherwise not
At the beginning of participation in GRAS, the ATCC49226 and three strains kindly provided by C. fl was used to assess the significance of differences among groups. Time trends in antimicrobial resistance were assessed by using the chi-squared test for trends. Associations between ciprofloxacin-resistant and ciprofloxacin-susceptible patients were analysed using logistic regression models. Multivariate analysis was performed by using all variables with clinical and statistical importance (p < 0.05), stratified by gender. All statistical analyses were performed using SPSS software, version 15.0.

RESULTS

Between July 2006 and July 2008, susceptibility testing for N. gonorrhoeae was performed for isolates from 1596 patients (479 in 2006, 959 in 2007 and 443 in the first half of 2008), covering 66% of all patients (n = 2577) diagnosed in the participating STI centres (since they started or till they stopped participating). No isolates were excluded as comparable results were achieved for the quality control. The mean (SD) of the four reference strains of any laboratory did not differ more than 1.5 from the overall mean (SD) of the four reference strains of any laboratory.

Most of the patients with an isolate were men (87%), of whom 75% were MSM (Table 1). 61% of the cases were people of Dutch origin and 21% were HIV positive (before or simultaneous with their gonorrhoea diagnosis). Patients with an isolate differed significantly from patients without an isolate, according to most of the main characteristics (Table 1). Patients with an isolate were more often men, older, from the western part of The Netherlands, non-Dutch, MSM and HIV positive. No significant trends in time in patient characteristics were found, except for HIV status and region.

The results show a prevalence of resistance to ciprofloxacin of 42% (increasing significantly from 35% in 2006 to 46% in 2008, p < 0.05), to tetracycline of 22% (changing over time from 22% in 2006 to 27% in 2008, p < 0.05) and to penicillin of 10% (decreasing over time from 10% in 2006 to 7% in 2008, p = 0.16). Resistance to cefotaxime was not found.

Of all tested isolates, 99% (n = 600) were resistant to one of the antimicrobial drugs tested, 14% (n = 220) to two and 3% (n = 30) to three of the antimicrobial agents tested; 45% (n = 697) were susceptible to all antimicrobial drugs tested.

Ciprofloxacin resistance

N. gonorrhoeae infection with ciprofloxacin-resistant bacteria increased from 35% in 2006 to 46% in 2008 (p < 0.05; Figure 1). Univariate analyses showed that the risk of an infection with ciprofloxacin-resistant gonorrhoeae increased significantly over time in men (Table 1). It was also found that isolates from men...

Aged over 35 years were more likely to be resistant to ciprofloxacin than those from younger men (odds ratio (OR) 1.6, table 2). Furthermore, ciprofloxacin resistance was significantly higher in MSM than in heterosexual men (OR 2.3). Infection with N gonorrhoeae resistant to ciprofloxacin was more likely in Dutch than non-Dutch men (OR 1.6) and in HIV-positive men than in HIV-negative men (OR 1.5). Being a client of a commercial sex worker (CSW), urbanisation and region were no significant risk factors. Five variables were significant in the univariate regression analyses and were included in the final multivariate logistic regression model for men (table 2). When adjusted for all these factors, only MSM and year of consultation were found to be associated with ciprofloxacin resistance in men (adjusted OR 2.0 for MSM and 1.5 and 1.6 for 2007 and 2008, respectively). As with men, ciprofloxacin resistance was higher in women older than 35 years (OR 6.0, table 2). Furthermore, women who reported commercial sex contacts in the past 6 months were more likely to be resistant to ciprofloxacin than women who did not (OR 25.2). Dutch women were less likely than non-Dutch women to be infected with N gonorrhoeae resistant to ciprofloxacin (OR 0.6, but not significantly). When these three variables were tested in a multivariate model, age above 35 years and commercial sex work remained significant risk factors for resistance to ciprofloxacin in women (adjusted OR 8.2 and 25.0, respectively).

Cephalosporin resistance
No resistance to cefotaxime was found. The distribution of MIC values for cefotaxime showed a slight upward drift between 2006 and 2008 (figure 2), as the proportion of isolates with an MIC value higher than 0.125 mg/l increased significantly in that period (p<0.05). An MIC value of 0.5 mg/l was found in seven isolates, of which five were from MSM.

DISCUSSION
The prevalence of N gonorrhoeae resistant to ciprofloxacin has increased to 46% in 2005, despite a 2003 revision of the guidelines mandating its replacement by third-generation cephalosporin. Whereas resistance to cefotaxime was not found, an upward shift among its MIC values was observed during the study period. These findings suggest that in the future, novel (multi-drug) treatment options might be needed to treat N gonorrhoeae effectively, to prevent an upsurge of gonorrhoea infections.

Antimicrobial resistance in N gonorrhoeae is a growing worldwide public health problem. Increasing trends in ciprofloxacin resistance have been observed in most European countries, as well as in other countries worldwide.10–12 In The Netherlands, the prevalence of ciprofloxacin resistance increased significantly over time in men and was found to be significantly higher in MSM than in heterosexual men, whereas in women, CSW and women aged above 35 years were most likely to have an infection with ciprofloxacin-resistant bacteria. Current findings show that risk-group patterns of resistance to the newer antibiotics echo patterns seen when penicillin resistance emerged in The Netherlands in the 1980s. Pencillin

Table 2

<table>
<thead>
<tr>
<th>Year of consultation</th>
<th>Men</th>
<th>Women</th>
<th>No of resistant isolates (%)</th>
<th>Univariate analysis OR (95% CI)</th>
<th>Multivariate analysis OR (95% CI)</th>
<th>No of resistant isolates (%)</th>
<th>Univariate analysis OR (95% CI)</th>
<th>Multivariate analysis OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td>16 (38.9)</td>
<td>ref</td>
<td>ref</td>
<td>12 (28.9)</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>2007</td>
<td>200 (45.0)</td>
<td>1.4 (1.0 to 2.0)</td>
<td>1.5 (1.0 to 2.1)</td>
<td>0 (0.0)</td>
<td>1.6 (0.4 to 4.0)</td>
<td>25 (51.7)</td>
<td>2.0 (1.5 to 2.6)</td>
<td>17 (52.8)</td>
</tr>
<tr>
<td>2008</td>
<td>162 (47.2)</td>
<td>1.6 (1.1 to 2.2)</td>
<td>1.6 (1.1 to 2.4)</td>
<td>6 (36.4)</td>
<td>1.0 (0.5 to 2.0)</td>
<td>30 (46.2)</td>
<td>0.6 (0.3 to 1.2)</td>
<td>21 (39.6)</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><25</td>
<td>262 (35.5)</td>
<td>ref</td>
<td>ref</td>
<td>43 (24.8)</td>
<td>ref</td>
<td>ref</td>
<td>37 (23.6)</td>
<td>ref</td>
</tr>
<tr>
<td>≥25</td>
<td>305 (41.9)</td>
<td>1.6 (1.3 to 2.0)</td>
<td>1.3 (1.0 to 1.7)</td>
<td>7 (25.0)</td>
<td>0.6 (0.3 to 1.4)</td>
<td>42 (48.5)</td>
<td>0.6 (0.3 to 1.2)</td>
<td>27 (46.2)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Dutch</td>
<td>161 (30.7)</td>
<td>ref</td>
<td>ref</td>
<td>37 (23.6)</td>
<td>ref</td>
<td>ref</td>
<td>37 (23.6)</td>
<td>ref</td>
</tr>
<tr>
<td>Dutch</td>
<td>454 (46.4)</td>
<td>1.6 (1.3 to 2.0)</td>
<td>1.2 (1.0 to 1.6)</td>
<td>23 (24.2)</td>
<td>0.6 (0.3 to 1.2)</td>
<td>56 (46.4)</td>
<td>0.6 (0.3 to 1.2)</td>
<td>24 (24.2)</td>
</tr>
<tr>
<td>Sexual performance (yes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV-negative</td>
<td>111 (32.9)</td>
<td>ref</td>
<td>ref</td>
<td>38 (27.8)</td>
<td>ref</td>
<td>ref</td>
<td>38 (27.8)</td>
<td>ref</td>
</tr>
<tr>
<td>MSM</td>
<td>456 (48.5)</td>
<td>2.0 (1.8 to 2.2)</td>
<td>2.1 (1.5 to 2.6)</td>
<td>30 (42.4)</td>
<td>0.6 (0.3 to 1.2)</td>
<td>64 (46.4)</td>
<td>0.6 (0.3 to 1.2)</td>
<td>30 (42.4)</td>
</tr>
<tr>
<td>MSM (seromart)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes, last 6 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>224 (25.0)</td>
<td>ref</td>
<td>ref</td>
<td>52 (23.6)</td>
<td>ref</td>
<td>ref</td>
<td>52 (23.6)</td>
<td>ref</td>
</tr>
<tr>
<td>Positive</td>
<td>377 (37.4)</td>
<td>1.6 (1.3 to 2.0)</td>
<td>1.1 (0.8 to 1.4)</td>
<td>17 (40.0)</td>
<td>0.6 (0.3 to 1.2)</td>
<td>68 (46.4)</td>
<td>0.6 (0.3 to 1.2)</td>
<td>17 (40.0)</td>
</tr>
<tr>
<td>Antimicrobial resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>48 (10.4)</td>
<td>1.1 (0.9 to 1.3)</td>
<td>1.1 (0.8 to 1.4)</td>
<td>6 (10.0)</td>
<td>0.6 (0.3 to 1.2)</td>
<td>9 (16.2)</td>
<td>0.6 (0.3 to 1.2)</td>
<td>6 (10.0)</td>
</tr>
</tbody>
</table>

*Values for OR, CSW, commercial sex worker, MSM, HIV, and other tests vary with each OR, with 95% CI.
resistance was mainly associated with transmission in high-risk individuals such as CSW and MSM, and these high-risk groups are more likely to acquire an infection caused by ciprofloxacin-resistant bacteria, according to reports published worldwide.

Insight into resistance patterns in diverse sexual networks may add to our understanding of the transmission dynamics of gonorrhoea in those populations. The presence of distinct heterosexual and homosexual networks, each showing sustained transmission, may explain the ongoing transmission of gonococcal resistance despite its decreased use in STI centres in The Netherlands. The guidelines of the National Society for Venereology and Dermatology were changed in 2003 and recommended that ciprofloxacin be replaced by third-generation cephalosporins, as in many other countries. However, outside STI centres in The Netherlands ciprofloxacin may still be prescribed for N. gonorrhoea; especially since general practitioners (GP) guidelines still mention ciprofloxacin as the second choice of therapy in 2009 (guidelines will be updated in 2009).

All isolates we tested were susceptible to cefotaxime, and no failures in its treatment of gonorrhoea have yet been reported in The Netherlands. However, we observed an upward shift in its MIC values reported by GRAS participants. Isolates showing reduced susceptibility (MIC value 0.18 mg/l) to cefotaxime and ceftriaxone have been reported since before 2006 in Asia and Australia and also recently in Europe, although therapeutic failures have not been reported. Therefore, monitoring the susceptibility to cephalosporins is of high importance. These first results from the GRAS project should nevertheless be interpreted with caution. The characteristics of patients from whom bacteria were isolated or not differed significantly for some variables, and susceptibility testing was performed in only 66% of all gonorrhoea patients diagnosed at the participating STI centres in the study period. Moreover, an important obstacle to obtaining samples for susceptibility testing is the need to store and transport them rapidly and appropriately to a laboratory for culturing. All STI centres participating in GRAS were instructed to grow cultures for susceptibility testing, but specimen collection and transport failed on some occasions. Also, some of the samples had a positive PCR test and negative culture results representing a false-positive PCR. Finally, some STI centres asked for a culture only when an (asymptomatic) patient reported back for treatment due to a positive PCR, and some of these patients may have spontaneously recovered from the infection or obtained treatment elsewhere. At the moment, research is ongoing to evaluate the possibility of using molecular techniques (PCR) to monitor resistance patterns, in order to circumvent the cumbersome transport and storage procedures needed to enable culturing.

Another limitation of GRAS is its focus on high-risk patients attending STI centres, rather than members of the general public visiting their GP. In The Netherlands, there is currently no systematic collection of data on the susceptibility patterns of gonorrhoea patients diagnosed by GPs (or by other healthcare professionals outside the STI centre system), although approximately 70% of all STI in The Netherlands are diagnosed by GPs. Unlike Chlamydia, however, transmission of N. gonorrhoea appears to occur predominantly among high-risk groups. Therefore, targeted surveillance of N. gonorrhoea resistance among high-risk transmitters, as monitored by GRAS, is important for the early detection of changing resistance patterns as this may necessitate the modification of treatment guidelines. Targeted surveillance also enables the exploration of risk factors for infection with such strains and the understanding of high-risk transmission patterns. Development of resistance in the wider community is associated with the importation of new strains and their spread in the community following initial transmission in high-risk groups. Indeed, these high-risk groups are the targets of surveillance. Our results show that the prevalence of ciprofloxacin resistance in The Netherlands is still increasing and is particularly high in MSM, older women and female CSW. Resistance to the current first-choice therapy has not yet been found. However, monitoring and clinical awareness is essential, as the MIC values of cefotaxime are increasing.

Key messages
- Ciprofloxacin resistance is still increasing in The Netherlands.
- No resistance to current first-choice therapy has been found yet; however, monitoring is essential.
- By merging epidemiology with microbiology in GRAS, risk groups for antimicrobial resistance can be identified and treatment guidelines can be adjusted when needed.
Acknowledgements
The authors thank all STI centres and medical microbiology laboratories in The Netherlands for their contribution in data collection: A van Eiel (Eindhoven), I. Kruchten (I. Linde), M van Ogtrop, P Oostvogel, E Stobberingh, V. Sigurdsson, J. van Zeijl (Streeklaboratorium, Leeuwarden), L Sabbe Spaargaren (Streeklaboratorium, Enschede), A Speksneijder (Streeklaboratorium, Ziekenhuis, Roermond), C Janssen (Medisch Centrum, Maastricht), J van Lindt (Academisch Ziekenhuis, Maastricht), A van Griethuysen (Alysis Zorggroep, Zeeland-Brabant), E van der Veen (South-Holland, South), E Stobberingh (Streeklaboratorium, Zeeland), M Langevoort (Utrecht), P van Leeuwen (South-Holland, North), J van de Sande (Streeklaboratorium, Zeeland), M de Kruijff (Streeklaboratorium, Nijmegen), R van Belkum (Streeklaboratorium, Nijmegen), J Koedijk FDH, van Veen MG, J van den Broek IVF, J van Bergen JE, J van der Heijden TM, P van de Sande (Streeklaboratorium, Eindhoven), C van den Oord, P van der Wolf, F van Vught, M Langevoort (Utrecht), E de Kruijff, J Ouboter, E Stobberingh, H van Vught, A van Bree, J van der Heijden, J van den Broek, M van der Wolf, J Ouboter, E Stobberingh.

Contributors
Role in the编写 manuscript, input for discussion, data delivery. MABvdS: Editing manuscript, input for discussion, responsible for laboratory part of the surveillance. GBL: Editing manuscript, input for discussion, responsible for technical assistance.

Competing interests
None.

Provenance and peer review
Not commissioned, externally peer reviewed.

REFERENCES
6. CLSI; National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. 16th supplement (M100-S16). Wayne, PA: Clinical and Laboratory Standards Institute, 2006.