
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing

Verloop, I.M.; Ayesta, U.; Nunez Queija, R.

Published in:
Operations Research

DOI:
10.1287/opre.1110.0914

Link to publication

Citation for published version (APA):
Verloop, I. M., Ayesta, U., & Núñez-Queija, R. (2011). Heavy-traffic analysis of a multiple-phase network with
discriminatory processor sharing. Operations Research, 59(3), 648-660. https://doi.org/10.1287/opre.1110.0914

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

Download date: 17 Jun 2019

https://doi.org/10.1287/opre.1110.0914
https://dare.uva.nl/personal/pure/en/publications/heavytraffic-analysis-of-a-multiplephase-network-with-discriminatory-processor-sharing(4f3e6381-f1c9-4430-b350-2557f9362400).html


OPERATIONS RESEARCH
Vol. 59, No. 3, May–June 2011, pp. 648–660
issn 0030-364X �eissn 1526-5463 �11 �5903 �0648 doi 10.1287/opre.1110.0914

© 2011 INFORMS

Heavy-Traffic Analysis of a Multiple-Phase Network
with Discriminatory Processor Sharing

I. M. Verloop
BCAM—Basque Center for Applied Mathematics, 48170 Derio, Spain; CWI, 1090 GB Amsterdam, The Netherlands,

verloop@bcamath.org

U. Ayesta
BCAM—Basque Center for Applied Mathematics, 48170 Derio, Spain; IKERBASQUE, Basque Foundation for Science,

48011 Bilbao, Spain, ayesta@bcamath.org

R. Núñez-Queija
CWI, 1090 GB Amsterdam, The Netherlands; University of Amsterdam, 1018 WB Amsterdam, The Netherlands,

nunezqueija@uva.nl

We analyze a generalization of the discriminatory processor-sharing (DPS) queue in a heavy-traffic setting. Customers
present in the system are served simultaneously at rates controlled by a vector of weights. We assume that customers
have phase-type distributed service requirements and allow that customers have different weights in various phases of their
service.

In our main result we establish a state-space collapse for the queue-length vector in heavy traffic. The result shows that in
the limit, the queue-length vector is the product of an exponentially distributed random variable and a deterministic vector.
This generalizes a previous result by Rege and Sengupta [Rege, K. M., B. Sengupta. 1996. Queue length distribution for
the discriminatory processor-sharing queue. Oper. Res. 44(4) 653–657], who considered a DPS queue with exponentially
distributed service requirements. Their analysis was based on obtaining all moments of the queue-length distributions
by solving systems of linear equations. We undertake a more direct approach by showing that the probability-generating
function satisfies a partial differential equation that allows a closed-form solution after passing to the heavy-traffic limit.

Making use of the state-space collapse result, we derive interesting properties in heavy traffic: (i) For the DPS queue,
we obtain that, conditioned on the number of customers in the system, the residual service requirements are asymptotically
independent and distributed according to the forward recurrence times. (ii) We then investigate how the choice for the
weights influences the asymptotic performance of the system. In particular, for the DPS queue we show that the scaled
holding cost reduces as classes with a higher value for dk/E4B

fwd
k 5 obtain a larger share of the capacity, where dk is the

cost associated to class k, and E4B
fwd
k 5 is the forward recurrence time of the class-k service requirement. The applicability

of this result for a moderately loaded system is investigated by numerical experiments.

Subject classifications : discriminatory processor sharing; heavy traffic; phase-type service requirements; residual service
requirements; scheduling.

Area of review : Stochastic Models.
History : Received March 2009; revisions received December 2009, May 2010; accepted June 2010.

1. Introduction
The discriminatory processor-sharing (DPS) model intro-
duced in Kleinrock (1967) is a versatile generalization of
the celebrated (egalitarian) processor-sharing (PS) model.
DPS allows class-based differentiation by assigning dif-
ferent weights to customers of different classes. (In this
paper we adopt the traditional queueing theoretic terminol-
ogy; often “customers” are abstract entities such as jobs,
flows, packets, etc.) The processing resources are then dis-
tributed among all customers, in proportion to their relative
weights. As new customers join the system and others leave
after having completed their service requirement, the actual
resource allocation to each customer fluctuates dynamically
over time.

The asymmetric and dynamic fluctuation of the service
rates give rise to complex behavior of the stochastic pro-
cesses describing the numbers of customers in the system
and their respective service completion times. The litera-
ture devoted to the analysis of DPS has been significantly
extended over the past decade as renewed interest in DPS
arose due to its relevance in communication networks with
distributed control, in particular, the Internet (Altman et al.
2004). An extensive survey of the DPS literature can be
found in Altman et al. (2006).

The seminal paper of Fayolle et al. (1980) provided
the first analysis of the mean sojourn time conditioned
on the service requirement, by solving a system of inte-
grodifferential equations. As a by-product, the mean queue
lengths of the various classes were shown to depend on
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the entire service requirement distributions of all customer
classes. This is as opposed to the egalitarian PS model,
where the marginal queue lengths have a geometric distri-
bution that only depends on the average loads of all classes,
thus exhibiting a desirable insensitivity among the vari-
ous classes. Although not strictly insensitive towards higher
moments of service requirement distributions, the DPS
model was shown to have finite mean queue lengths irre-
spective of any higher-order characteristics (Avrachenkov
et al. 2005). This is further illustrated by the heavy-traffic
bounds on the mean queue lengths reported in Aalto et al.
(2007), which depend only on the service weights and the
mean traffic loads. Partial insensitivity results have also
been demonstrated for other performance criteria such as
the class-dependent mean sojourn time conditioned on the
service requirement (Avrachenkov et al. 2005), and the tail
index of the sojourn time distribution (Borst et al. 2006).

Several papers have analyzed (discriminatory) processor-
sharing mechanisms assuming overload conditions with
general service requirement distributions. Altman et al.
(2004) determine the queue-length growth rates of the stan-
dard DPS model by a fixed-point equation, generalizing
the analogous result for egalitarian processor sharing (Jean-
Marie and Robert 1994). More recently, further extensions
to bandwidth-sharing networks (Egorova et al. 2007) and a
network setting similar to ours (Ben Tahar and Jean-Marie
2009) have been obtained. In all these references the tran-
sient behavior of the queue lengths is studied under over-
load conditions while we investigate the convergence of
the (scaled) steady-state distribution as the critical load is
approached.

In the present paper, we assume that all customer classes
have phase-type service requirement distributions and study
the heavy-traffic behavior of a generalization of the DPS
model, allowing customers to have different weights in
various phases of their service. This extension allows, for
example, incorporation of sophisticated scheduling tech-
niques that give preferential treatment to customers that are
close to service completion, thus reducing the number of
customers in the system and their mean response times,
(cf. Righter and Shanthikumar 1989). Similar generaliza-
tions of DPS were previously considered by Ben Tahar
and Jean-Marie (2009), Grishechkin (1992), and Haviv and
van der Wal (2008). The analysis in Grishechkin (1992) is
particularly relevant for the present study. There, the gener-
alized DPS model was investigated, assuming finite second
moments of the service times. Through appropriate choices
for quite a general functional of the queue-length pro-
cess, Grishechkin (1992) determined the heavy-traffic dis-
tributions of the marginal queue lengths and response times
(after scaling). Our results are complementary to those: on
one hand, we restrict the focus to the queue lengths, and
on the other hand, we study the joint queue-length distri-
bution. Doing so, we establish a state-space collapse for
the queue-length vector in heavy traffic. The result shows
that in the limit, the queue-length vector is the product of

an exponentially distributed random variable and a deter-
ministic vector. The reduction of dimensionality of a mul-
tidimensional stochastic process under heavy-traffic scaling
has been demonstrated previously in other queueing mod-
els; see, for example, Bell and Williams (2001), Stolyar
(2004), and Kang et al. (2009).

Our work is inspired by the heavy-traffic analysis for
the traditional DPS model with exponentially distributed
service requirements in Rege and Sengupta (1996). After
developing a procedure to determine all moments of the
queue-length distributions from systems of linear equa-
tions, Rege and Sengupta (1996) show that the variabil-
ity of the queue-length vector is of a lower order than
the mean queue lengths, which directly leads to state-
space collapse of the multidimensional queue-length vec-
tor. In Kessel et al. (2004) it was indicated that a similar
approach could be followed for the heavy-traffic analysis
of the DPS queue with phase-type distributions. Here we
follow a different and more direct approach by investigat-
ing the joint probability-generating function of the queue
lengths. The probability-generating function is shown to
satisfy a partial differential equation that takes a conve-
nient form after passing to the heavy-traffic limit, allowing
a closed-form solution in that case. This approach allows
an elegant heavy-traffic analysis for the case of phase-type
distributions.

Because phase-type distributions lie dense in the class
of all probability distributions, in practice the restriction
to this class is not seen as being essential. In the present
study, an important caveat must be accounted for, however.
Because all phase-type distributions (with a finite number
of phases) have a finite second moment, this restriction is
implicit in our modeling approach. We do believe, however,
that our results extend to general service requirements.

Allowing the relative service weights of customers to
change over time as they acquire service opens up a way
to implement size-based scheduling by assigning relatively
high weights in service phases that are more likely to lead
to a quick service completion. A classical result in the size-
based literature states that the so-called c�-rule minimizes
the mean holding cost in an (i) M/G/1-queue among all
nonpreemptive work-conserving disciplines (Gelenbe and
Mitrani 1980) and in a (ii) G/M/1-queue among all pre-
emptive nonanticipating disciplines (Buyukkoc et al. 1985,
Nain and Towsley 1994). We recall that the c�-rule is the
discipline that gives strict priority in descending order of
ck�k, where ck and �k refer to a cost and the inverse of
the mean service requirement, respectively, of class k. The
optimality of the c�-rule can be understood from the fact
that for both systems (i) and (ii), the original mean service
requirement 1/�k coincides with the expected remaining
service requirement of a class-k customer at a scheduling
decision epoch. Our analysis extends the c�-rule to DPS-
like policies: in heavy traffic we show that the scaled hold-
ing cost reduces as more preference is given to customers in
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service phases with an expected remaining service require-
ment that is small compared with its associated cost.

For the case of the standard DPS queue with phase-
type service requirement distributions, we show that in
the heavy-traffic setting, conditioned on the number of
customers present in each class, the remaining service
requirements of the various customers are independent, and
distributed according to the forward recurrence times, a
result that is well known for egalitarian PS (see, for exam-
ple, Cohen 1979, Kelly 1979). In addition, we derive that
the scaled holding cost in a DPS queue reduces as more
preference is given to classes according to the cost of a
class divided by its mean forward recurrence time. This
provides a useful guideline to schedule a multiclass queue
close to saturation for the cases not covered by the c�-rule.

The paper is organized as follows. In §2 we introduce
the Markovian framework studied in the paper and state the
main result, which establishes a state-space collapse of the
joint queue-length vector. As a preparation for the proof of
the main result, the functional equation for the generating
function of the joint queue-length vector is studied in §3
and, under the heavy-traffic scaling, in §4. The proof of the
main result is given in §5. Section 6 discusses size-based
scheduling. Section 7 applies the state-space collapse result
to the standard DPS queue with phase-type distributed ser-
vice requirements. In addition, it presents the implications
for residual service requirements and monotonicity proper-
ties of the holding cost. Concluding remarks can be found
in §8.

2. Markovian Framework and Main Result
We consider a Markovian system with J customer types.
Customers arrive according to a Poisson arrival process
with rate �, and an arriving customer is of type i with prob-
ability p0i, i = 11 0 0 0 1 J . Customers of type i have an expo-
nentially distributed service requirement with mean 1/�i.
After service completion, they become of type j with prob-
ability pij , j = 11 0 0 0 1 J , and leave the system with proba-
bility pi0 2= 1−

∑J
j=1 pij . Let P be a J ×J matrix with P =

4pij5, i1 j = 11 0 0 0 1 J . We assume that all customers even-
tually leave the system. This implies limn→� P n = 0, and
hence, 4I − P5−1 is well defined. In addition, we assume
that none of the J types are redundant (i.e., eventually all
types are observed); this assumption is formalized follow-
ing Equation (1) below.

The J customer types share a common resource of capac-
ity 1. There are strictly positive weights g11 0 0 0 1 gJ associ-
ated with each of the types. Whenever there are qi type-i
customers, i = 11 0 0 0 1 J , present in the system, each type-j
customer is served at rate

gj
∑J

i=1 giqi
1 j = 11 0 0 0 1 J 0

We denote the number of type-j customers in the system
by Qj .

The above-described framework is a generalization of
the standard DPS queue with phase-type distributed service
requirements: It represents an M/PH/1 DPS queue where
customers may have different weights in various phases of
their service. In §7 we specify how the standard DPS queue
fits into our representation.

We let Ri denote the remaining service requirement
until departure for a customer that is now of type i.
Note that this includes service in all subsequent stages as
the customer changes from one type to another. Because
the service time of each type is exponentially distributed,
the expected remaining service requirements can be inter-
preted as absorption times in an appropriate Markov
chain and therefore satisfy the following system of lin-
ear equations: Ɛ4Ri5 = 1/�i +

∑J
j=1 pijƐ4Rj5. Let Ɛ4 ER5 =

4Ɛ4R151 0 0 0 1Ɛ4RJ 55 and Em = 41/�11 0 0 0 11/�J 5, so that we
can write

Ɛ4 ER5T = 4I −P5−1
EmT 0

Denote the total traffic load by

� 2= �
J
∑

j=1

p0jƐ4Rj50

Let �i represent the expected number of times a customer
is of type i during its visit in the network. Hence, �11 0 0 0 1 �J

satisfy the following equations:

�i = p0i +

J
∑

j=1

�jpji1 i = 11 0 0 0 1 J 1 (1)

i.e., E� = Ep04I − P5−1, with E� = 4�11 0 0 0 1 �J 5 and Ep0 =

4p011 0 0 0 1 p0J 5. Our assumption that none of the J types is
redundant entails that E� is a vector with strictly positive
elements. Note that �i/�i represents the expected cumula-
tive amount of service a customer requires while being of
type i during its visit in the network. We denote the load
corresponding to customers while they are of type i by

�i 2= �
�i

�i

0

Hence, for the total traffic load � we may equivalently write

�= �
J
∑

j=1

p0jƐ4Rj5= � Ep0Ɛ4 ER5T

= � Ep04I −P5−1
EmT

= � E� EmT
= �

J
∑

j=1

�j

�j

=

J
∑

j=1

�j 0 (2)

Our main result shows that the steady-state distribution
of the queue-length vector takes a rather simple form when
the system is near saturation, i.e., � ↑ 1, which is commonly
referred to as the heavy-traffic regime. This regime can be
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obtained by fixing the Ep0, P , and Em, and letting

� ↑ �̂ 2=
1

Ep04I −P5−1 EmT
1 (3)

because then �= � Ep04I −P5−1 EmT ↑ 1. Although approach-
ing heavy traffic in this way is natural, the results remain
valid for any other sequence of parameters (belonging to
stable systems) that reaches heavy traffic in the limit. In
heavy traffic, we denote by

�̂i = �̂
�i

�i

the load corresponding to customers while they are of type i
(
∑J

j=1 �̂j = 1).
We can now state our main result, which establishes

a state-space collapse for the queue-length vector in the
heavy-traffic regime. We note that throughout the paper we
do not explicitly reflect the dependence of the queue length
processes on the traffic load �, in order to keep notation
compact.

Proposition 1. Consider the general Markovian frame-
work. When scaled by 1−�, the queue-length vector has a
proper limiting distribution as 4�11 0 0 0 1 �J 5→ 4�̂11 0 0 0 1 �̂J 5,
such that � ↑ 1,

41 −�54Q11Q21 0 0 0 1QJ 5
d

→ 4Q̂11 Q̂21 0 0 0 1 Q̂J 5

d
= X ·

(

�̂1

g1

1
�̂2

g2

1 0 0 0 1
�̂J

gJ

)

1 (4)

where
d

→ denotes convergence in distribution and X is an
exponentially distributed random variable with mean

Ɛ4X5=

∑J
j=1 �̂jƐ4Rj5

∑J
j=14�̂j/gj5Ɛ4Rj5

0 (5)

The proof will be given in §5. Here we give some intu-
ition for the result. Proposition 1 shows that in heavy traf-
fic, the multidimensional queue-length process essentially
reduces to a one-dimensional random process: it can be
expressed as a random variable X times a deterministic vec-
tor. Given this reduced variability of the process, the value
of the deterministic vector can be understood as follows.
When the queue is stable, the rate conservation law (see,
for example, Sigman 1991, Theorem 2.1) implies that

�j = Ɛ

(

gjQj
∑J

i=1 giQi

· 14∑J
i=1 Qi>05

)

1 (6)

because the expression within the expectation operator
reflects the capacity allocated to type j . Here the func-
tion 1A denotes the indicator function, i.e., 1A = 1 if A is
true, and 0 otherwise. Using that the process reduces to
one dimension in heavy traffic, in the limit we may replace
Qj/Qi by a ratio of constants aj/ai. Together with (6) and

the fact that the scaled queue length will be strictly positive
in heavy traffic, this implies

aj =

( J
∑

i=1

giai

)

�̂j

gj
0

The prefactor
∑

i giai is common to all aj , which explains
the appearance of the vector 4�̂1/g11 �̂2/g21 0 0 0 1 �̂J /gJ 5 in
Proposition 1.

Numerical illustration of Proposition 1: We consider two
types of customers and choose g1 = 2, g2 = 1, �1 = 2,
�2 = 5, p01 = 006, p02 = 004, p12 = 003, and p21 = 001.
In Figure 1 we plot the joint queue-length probabilities
(obtained by simulation) for loads �= 008 (�1 ≈ 0059, �2 ≈

0021), �= 0090 (�1 ≈ 0066, �2 ≈ 0024), and �= 0099 (�1 ≈

0073, �2 ≈ 0026), respectively. The horizontal and vertical
axes correspond to Q1 and Q2, respectively. As a conse-
quence of the state-space collapse stated in Proposition 1,
in heavy traffic the probabilities will lie on a straight line
with slope 4g1/�̂154�̂2/g25≈ 0072, starting from the origin.
In Figure 1 we see that as the load increases, the likely
states indeed tend to concentrate more around this line. For
load �= 0099, this effect is clearly visible; the likely queue-
length states are strongly concentrated around the line with
slope 0.72.

3. Functional Equation
Before focusing on the heavy-traffic regime, we derive
a functional equation for the generating function of the
joint queue-length process. Denote by EQ and Eq the vectors
4Q11Q21 0 0 0 1QJ 5¾ E0 and 4q11 q21 0 0 0 1 qJ 5¾ E0, respectively.
The equilibrium distribution �4 Eq5 2=�4 EQ = Eq5 satisfies

��4E05=

J
∑

i=1

�ipi0�4Eei51 (7)

and for Eq 6= E0,

(

�+

∑J
i=1giqi�i
∑J

i=1giqi

)

�4 Eq5

=

J
∑

i=1

�p0i�qi
�4 Eq− Eei5+

J
∑

i=1

gi4qi+15
∑J

j=1gjqj +gi
·�ipi0�4 Eq+ Eei5

+

J
∑

i=1

J
∑

j=1

�qj
·

gi4qi+15
∑J

m=1gmqm+gi−gj
·�ipij�4 Eq+ Eei− Eej51 (8)

where �q = 1 if q > 0, and �q = 0 otherwise, and with Eei
the ith unit vector. It will be notationally convenient to use
the following transformation:

R4E05= 0 and R4 Eq5=
�4 Eq5

∑J
j=1 gjqj

1 for Eq 6= E00
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Figure 1. Joint queue-length probabilities for load �= 008 (left), �= 0090 (center), and �= 0099 (right), respectively.
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Also, let p4Ez5 and r4Ez5 denote the generating functions of
�4 Eq5 and R4 Eq5, respectively, where Ez = 4z11 0 0 0 1 zJ 5 and
�zi�< 1 for i = 11 0 0 0 1 J :

p4Ez5= Ɛ4zQ1
1 · · · · · z

QJ
J 5=

�
∑

q1=0

· · ·

�
∑

qJ =0

z
q1
1 · · · · · z

qJ
J �4 Eq51

r4Ez5= Ɛ

(

z
Q1
1 · · · · · z

QJ
J

∑J
i=1 Qigi · 14∑J

j=1 Qj>05

)

=

�
∑

q1=0

· · ·

�
∑

qJ =0

z
q1
1 · · · · · z

qJ
J R4 Eq50

Note that

gizi
¡r4Ez5

¡zi
=

∑

Eq2
∑J

j=1 qj>0

giqi
∑J

j=1 gjqj
z
q1
1 · · · · · z

qJ
J �4 Eq50 (9)

Multiplying (8) by z
q1
1 · · · z

qJ
J , summing both sides over

q11 q21 0 0 0 1 qJ and adding Equation (7), we obtain from (9)
that

�p4Ez5+

J
∑

i=1

�igizi
¡r4Ez5

¡zi
=

J
∑

i=1

�p0izip4Ez5+

J
∑

i=1

�igipi0

¡r4Ez5

¡zi

+

J
∑

i=1

J
∑

j=1

�igipijzj
¡r4Ez5

¡zi
0 (10)

Because �4E05= 1 −�, it follows from (9) that

J
∑

i=1

gizi
¡r4Ez5

¡zi
+ 1 −�= p4Ez50 (11)

Together with (10) this gives the following partial differen-
tial equation for r4Ez5:

�41 −�5

(

1 −

J
∑

i=1

p0izi

)

=

J
∑

i=1

(

�igi

(

pi0 +

J
∑

j=1

pijzj − zi

)

−�gizi

(

1 −

J
∑

j=1

p0jzj

))

¡r4Ez5

¡zi
0 (12)

This equation turns out to be very useful to analyze the joint
queue-length distribution in heavy traffic because it allows
for an explicit solution in that asymptotic regime. That is
the topic of the next two sections. Note that Equation (12)
was derived in Rege and Sengupta (1996) for the case of
exponentially distributed service requirements.

4. Heavy-Traffic Scaling
It will be convenient to use the change of variables zi =

e−si with si > 0, i = 11 0 0 0 1 J . Denote Es = 4s11 0 0 0 1 sJ ) and
e−41−�5Es = 4e−41−�5s11 0 0 0 1 e−41−�5sJ 5. If

lim
�↑1

p4e−41−�5Es5= lim
�↑1

Ɛ4e−41−�5s1Q1 · · · · · e−41−�5sJQJ 5 (13)

exists, then there is a (possibly defective) random vector
4Q̂11 Q̂21 0 0 0 1 Q̂J 5 such that 41 − �54Q11Q21 0 0 0 1QJ 5 con-
verges in distribution to 4Q̂11 Q̂21 0 0 0 1 Q̂J 5, and the distri-
bution of 4Q̂11 Q̂21 0 0 0 1 Q̂J 5 is uniquely determined by the
limit in (13) (cf. the continuity theorem, see Feller 1971).
For now, we assume that the limit exists; we come back to
this assumption in §5. In this section we give two lemmas
that describe properties of lim�↑1 p4e

−41−�5Es5. In particular,
in Lemma 2 we obtain a partial differential equation that
will be the key element in the proof of the main result
stated in Proposition 1.

In order to describe the behavior of the generating func-
tion, we define

r̂ 4Es5= Ɛ

(

1 − e−s1Q̂1 · · · · · e−sJ Q̂J

∑J
j=1 Q̂jgj

· 14∑J
j=1 Q̂j>05

)

0

The “1” in the numerator is to ensure that the expression
between brackets remains bounded when the Q̂js are all
near zero. We can now state the following lemma. The
proof of this lemma can be found in the electronic compan-
ion (e-companion). The e-companion is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Lemma 1. If lim�↑1 p4e
−41−�5Es5 exists, then it satisfies

lim�↑1 p4e
−41−�5Es5=

∑J
i=1 gi4¡r̂4Es5/¡si50
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In the following lemma we show that the partial differ-
ential equation as given in (12) simplifies considerably in
the heavy-traffic regime. The proof may be found in the
e-companion.

Lemma 2. If lim�↑1 p4e
−41−�5Es5 exists, then the function

r̂ 4Es5 satisfies the following partial differential equation:

0 =

J
∑

i=1

Fi4Es5
¡r̂4Es5

¡si
= EF 4Es5 · 5r̂ 4Es51 ∀ Es ¾ E01

where EF 4Es5= 4F14Es51 0 0 0 1 FJ 4Es55, and

Fi4Es5=gi

(

�i

(

−si+
J
∑

j=1

pijsj

)

+�̂
J
∑

j=1

p0jsj

)

1 i=110001J 1

with �̂ as defined in (3).

5. Proof of the Main Result
This section contains the proof of the main result stated in
Proposition 1. It consists of two steps, which will be treated
separately. First, we show in §5.1 that

4Q̂11 Q̂21 0 0 0 1 Q̂J 5
d
=

(

�̂1

g1

1
�̂2

g2

1 0 0 0 1
�̂J

gJ

)

·X (14)

for some random variable X. Second, we demonstrate
in §5.2 that X is exponentially distributed with mean as
given in (5).

With these two partial results, the proof can be com-
pleted as follows: In §4 we assumed that lim�↑1 p4e

−41−�5Es5
exists, thereby showing in §§5.1 and 5.2 that there is
a unique limit. From tightness of the scaled queue-
lengths (which follows from tightness of the scaled work-
load, see §5.2) we obtain that there exists a subse-
quence of � such that 41 − �5Qi converges in distribu-
tion; cf. Prohorov’s theorem (Billingsley 1999), and hence
for this subsequence lim�↑1 p4e

−41−�5Es5 exists. Because for
any converging subsequence we obtain the same limit,
this implies that the limit itself exists (see corollary in
Billingsley 1999, p. 59). This establishes the state-space
collapse 41 −�54Q11Q21 0 0 0 1QJ 5

d
→ 4Q̂11 Q̂21 0 0 0 1 Q̂J 5 with

4Q̂11 Q̂21 0 0 0 1 Q̂J 5 taking only values on the line described
in (14).

5.1. State-Space Collapse

In this section we give the proof of (14). The proof is based
on the fact that the probability-generating function satisfies
the partial differential equation as described in Lemma 2.
From this partial differential equation it can be derived that
the function r̂ 4Es5 is constant on the 4J − 15-dimensional
hyperplane

Hc 2=

{

Es ¾ E02
J
∑

j=1

�̂j

gj
sj = c

}

1 c > 00

Lemma 3. For any c > 0, the function r̂ 4Es5 is constant
on Hc.

Hence, the function r̂ 4Es5 depends on Es only through
∑J

j=14�̂j/gj5sj , so there exists a function r̂∗2 � → �
such that r̂ 4Es5 = r̂∗4

∑J
j=14�̂j/gj5sj5. From Lemma 1

and ¡r̂4Es5/¡si = 4�̂i/gi54dr̂
∗4v5/dv5�v=∑J

j=14�̂j/gj 5sj
, we then

obtain

Ɛ
(

e−
∑J

i=1 siQ̂i
)

= lim
�↑1

p
(

e−41−�5Es
)

=

J
∑

i=1

gi
¡r̂4Es5

¡si

=

J
∑

i=1

�̂i

dr̂∗4v5

dv

∣

∣

∣

∣

v=
∑J

j=14�̂j/gj 5sj

=
dr̂∗4v5

dv

∣

∣

∣

∣

v=
∑J

j=14�̂j/gj 5sj

1

which again depends on Es only through
∑J

j=14�̂j/gj5sj .
Equivalently, we can write

Ɛ
(

e−
∑J

i=1 siQ̂i
)

= Ɛ4e−4g1/�̂15Q̂1
∑J

i=14�̂i/gi5si

· e−s24�̂2/g2544g2/�̂25Q̂2−4g1/�̂15Q̂15

· · · · · e−sJ 4�̂J /gJ 544gJ /�̂J 5Q̂J −4g1/�̂15Q̂1550

Because this only depends on
∑J

j=14�̂j/gj5sj , it implies that
4gi/�̂i5Q̂i = 4gj/�̂j5Q̂j almost surely for all i1 j , and we
obtain

4Q̂11 Q̂21 0 0 0 1 Q̂J 5=

(

�̂1

g1

1
�̂2

g2

1 0 0 0 1
�̂J

gJ

)

·
g1

�̂1

Q̂11

almost surely,

or equivalently

4Q̂11 Q̂21 0 0 0 1 Q̂J 5
d
=

(

�̂1

g1

1
�̂2

g2

1 0 0 0 1
�̂J

gJ

)

·X1

with X distributed as 4g1/�̂15Q̂1.
The proof of Lemma 3 may be found in the e-compan-

ion. Here we give a geometric interpretation for the fact
that the generating function r̂ 4Es5 is constant on the hyper-
plane Hc in the particular case of J = 3. In Figure 2 (left)
we depict the hyperplane Hc for J = 3. For a given Es0 ∈

Hc, we draw a flow curve Ef 4u5, u ¾ 0, defined such that
Ef 405 = Es0 ∈ Hc and the tangent at every point is precisely
Ef ′4u5 2= EF 4 Ef 4u55, with EF 4 · 5 as defined in Lemma 2. In

the proof of Lemma 3 (see the e-companion), it is derived
that the vector EF 4Es5 is parallel to the hyperplane Hc, for all
Es ∈ Hc; thus, the flow Ef 4u5 stays in the hyperplane Hc for
all u ¾ 0. By Lemma 2, the vector EF 4Es5 and the gradient
5r̂ 4Es5 are perpendicular for all Es, so Ef ′4u5 = EF 4 Ef 4u55 ⊥

5r̂ 4 Ef 4u55. Thus, the function r̂ has the same value in every
point on a given flow Ef 4u5. In Figure 2 (right) we draw sev-
eral flows in the hyperplane Hc. In the proof of Lemma 3
it is derived that all flows starting in the hyperplane Hc

converge to one common point c · Es∗. Because the function
r̂ 4 · 5 is continuous and constant on each flow trajectory, it
follows that r̂ 4Es5 is constant on the whole hyperplane Hc,
or equivalently, 5r̂ 4Es5⊥Hc.
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Figure 2. Geometrical interpretation of the proof of Lemma 3 for the case J = 3.
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5.2. Determining the Common Factor

In the previous section we showed that 4Q̂11 Q̂21 0 0 0 1 Q̂J 5
d
=

4�̂1/g11 �̂2/g21 0 0 0 1 �̂J /gJ 5 · X1 with X some random vari-
able. In this section we determine the distribution of X. In
order to do so, we consider the total workload in the net-
work, denoted by W . When scaled with 41 − �5, the total
workload has a proper distribution as � ↑ 1; see Kingman
(1961):

41 −�5W
d

→ ̂W1

where ̂W is exponentially distributed with mean

Ɛ4̂W5=

J
∑

j=1

�̂jƐ4Rj50 (15)

The total workload can be represented as

W =

J
∑

j=1

Qj
∑

h=1

Rj1h1

with Rj1 h the remaining service requirement of the hth
type-j customer. Note that the remaining service require-
ments of all customers in phase j are i.i.d. and have the
same phase-type distribution independent of EQ, more pre-
cisely, Rj1 h

d
=Rj for all h. Hence,

Ɛ4e−sW 5= Ɛ
(

e−s
∑J

j=1
∑

Qj
h=1 Rj1 h

)

= Ɛ

( J
∏

j=1

Ɛ
(

e−s
∑

Qj
h=1 Rj1 h � EQ

)

)

= Ɛ

( J
∏

j=1

4Ɛ4e−sRj 55Qj

)

= Ɛ
(

e
∑J

j=1 Qj ln4Ɛ4e−sRj 55
)

for s > 0. For the scaled workload we can therefore write

Ɛ4e−ŝW 5= lim
�↑1

Ɛ4e−41−�5sW 5

= lim
�↑1

Ɛ
(

e
∑J

j=14ln4Ɛ4e
−41−�5sRj 55/441−�5s5541−�5sQj

)

= Ɛ
(

e−s
∑J

j=1 Ɛ4Rj 5Q̂j
)

1 (16)

where in the last step we used that

e
∑J

j=14ln4Ɛ4e
−41−�5sRj 55/41−�5s541−�5sQj

is bounded by 1 and converges in distribution to
e−s

∑J
j=1 Ɛ4Rj 5Q̂j . The latter follows from ln4Ɛ4e−41−�5sRj 55/

441 −�5s5→ −Ɛ4Rj5 as � ↑ 1. From (16) we obtain that

̂W
d
=

J
∑

j=1

Ɛ4Rj5Q̂j1

and together with (14) this gives

̂W
d
=X ·

J
∑

j=1

�̂j

gj
Ɛ4Rj50 (17)

Because ̂W is exponentially distributed, the same is true
for X. Taking expectations in (17), from (15) we obtain

Ɛ4X5=

∑J
j=1 �̂jƐ4Rj5

∑J
j=14�̂j/gj5Ɛ4Rj5

1

which concludes the proof of Proposition 1.

6. Size-Based Scheduling
Allowing the relative service weights of customers to
change over time as they acquire service opens up a way
to implement size-based scheduling by assigning relatively
high weights in service phases that are more likely to lead
to a quick service completion. In this section we investigate
how the choice of the weights influences the performance
of the system. With each type of customers we associate
a cost cj ¾ 0, j = 11 0 0 0 1 J . As a performance measure, we
take the holding cost

∑J
j=1 cjQj .

Recall that we consider the general Markovian frame-
work where type-j customers have weight gj . In this
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section we will write Q
4g5
j (Q̂4g5

j ) instead of Qj (Q̂j ) to
emphasize the dependence on the weights g11 0 0 0 1 gJ . From
Proposition 1 we obtain that the scaled holding cost,
41 −�5

∑J
j=1 cjQ

4g5
j , converges in distribution to an expo-

nentially distributed random variable with mean

J
∑

j=1

cjƐ4Q̂
4g5
j 5=

∑J
j=14�̂j/gj5 · cj

∑J
j=14�̂j/gj5 · Ɛ4Rj5

·

J
∑

j=1

�̂jƐ4Rj51 (18)

as � ↑ 1. Using this expression, we obtain the following
monotonicity result in the heavy-traffic regime: the holding
cost decreases “stochastically” as more preference is given
to customers of types with a large value of ci/4Ɛ4Ri55.

Proposition 2. Consider the general Markovian
framework and consider two policies with weights
4g11 0 0 0 1 gJ 5 and 4g̃11 0 0 0 1 g̃J 5, respectively. Let cj ¾ 0,
j = 11 0 0 0 1 J . Without loss of generality, we assume that
the types are ordered such that c1/4Ɛ4R155¾ c2/4Ɛ4R255¾
· · ·¾ cJ /4Ɛ4RJ 550

If gj/gj+1 ¶ g̃j/g̃j+1, for all j = 11 0 0 0 1 J − 1, then

lim
�↑1

41 −�5
J
∑

j=1

cjQ
4g5
j ¾st lim

�↑1
41 −�5

J
∑

j=1

cjQ
4g̃5
j 1

where ¾st denotes the usual stochastic ordering, i.e.,
X ¾st Y if and only if �4X ¾ z5¾�4Y ¾ z5 for all z.

Proof. We have that 41 −�5
∑J

j=1 cjQ
4g5
j converges in dis-

tribution to an exponentially distributed random variable
with mean as stated in (18). Because exponentially dis-
tributed random variables are stochastically ordered accord-
ing to their means, it only remains to check that

∑J
j=1 cj �̂j/gj

∑J
j=14�̂j/gj5Ɛ4Rj5

¾
∑J

j=1 cj �̂j/g̃j
∑J

j=14�̂j/g̃j5Ɛ4Rj5
0

This holds because
( J
∑

j=1

cj �̂j

gj

)

·

( J
∑

j=1

�̂j

g̃j
Ɛ4Rj5

)

=
∑

j1i2j 6=i

�̂j �̂i

(

1
gj g̃i

cjƐ4Ri5+
1

gig̃j
ciƐ4Rj5

)

+

J
∑

j=1

�̂2
j

1
gj g̃j

cjƐ4Rj5

¾
∑

j1i2j 6=i

�̂j �̂i

(

1
gig̃j

cjƐ4Ri5+
1

gj g̃i
ciƐ4Rj5

)

+

J
∑

j=1

�̂2
j

1
gj g̃j

cjƐ4Rj5

=

( J
∑

j=1

cj �̂j

g̃j

)

·

( J
∑

j=1

�̂j

gj
Ɛ4Rj5

)

0

Here we used that ciƐ4Rj541/4gig̃j5− 1/4gj g̃i55¾ cjƐ4Ri5 ·

41/4gig̃j5 − 1/4gj g̃i55, which follows from the fact that
gi/gj ¶ g̃i/g̃j and ci/4Ɛ4Ri55¾ cj/4Ɛ4Rj55, for i¶ j . �

As mentioned in the introduction, the c�-rule minimizes
the mean holding cost in an (i) M/G/1-queue among all
nonpreemptive work-conserving disciplines as well as in

an (ii) G/M/1-queue among all preemptive nonanticipat-
ing disciplines. In both systems the expected remaining
service requirement of a class-k customer at a schedul-
ing decision epoch is precisely 1/�k. Hence, the c�-rule
gives priority according to the cost ck divided by the
expected remaining service requirement of a class-k cus-
tomer. Proposition 2 can be seen as an extension of the c�-
rule for DPS-based disciplines in the heavy-traffic regime:
the performance improves as larger weights are assigned
according to the values of cj/4Ɛ4Rj55, j = 11 0 0 0 1 J . In par-
ticular, we obtain that a policy that gives lowest priority
to type i = arg minj=110001J cj/4Ɛ4Rj55 minimizes the scaled
holding cost in heavy traffic among all DPS-based policies.

7. The Standard DPS Queue in
Heavy Traffic

In this section we specialize the results obtained so far to
the standard DPS queue with phase-type distributed service
requirements. In order to show how this queue fits into the
Markovian framework of §2, let us give a brief description
of the standard DPS queue.

We consider a single-server system with capacity 1 and
Poisson arrivals with rate �. With probability pk an arrival
is a class-k customer. Class-k customers have phase-type
distributed service requirements, Bk, with a finite number of
phases. In particular, this implies that the second moment
of Bk is finite. Let

�k 2= �pkƐ4Bk5

be the load associated with class-k customers. The capacity
is shared among the customers of the various classes in
accordance with the DPS discipline. When there are nk

class-k customers present in the system, k = 11 0 0 0 1K, each
class-k customer is served at rate

wk
∑K

l=1 wlnl

1

where wk is the weight associated with class k. It is impor-
tant to note that the weight for a class-k customer is inde-
pendent of the current phase of its service requirement.
Denote by Nk the number of class-k customers in the DPS
queue in steady state.

We now describe how the DPS queue with phase-type
distributed service requirements fits into the Markovian
framework as described in §2. Within each customer class
of the DPS queue, we distinguish between customers resid-
ing in different service phases and represent them in the
general framework as different customer types. Denoting
the number of phases of the class-k phase-type distribution
with Jk, the total number of types is J 2=

∑K
k=1 Jk. With

slight abuse of terminology, we also refer to a class-k cus-
tomer in the jth service phase as being of type

∑k−1
l=1 Jl + j .

We use k4j5 to denote the customer class to which type-j
customers belong. If types i and j belong to the same cus-
tomer class, then they are associated with the same weight,
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i.e., gi = gj = wk4j5 when k4i5 = k4j5. The p0j in the gen-
eral framework is taken such that for l = k4j5, p0j/pl

is the probability that a class-l customer starts with ser-
vice phase j . In the DPS queue, no transitions are possi-
ble between types belonging to different customer classes;
hence, for the general framework this implies that pij = 0
if k4i5 6= k4j5. If a class-k4i5 customer finishes phase i,
then pij is the probability that it continues in phase j (with
k4i5 = k4j5). The number of class-l customers in the DPS
model can be written as Nl =

∑

j2 k4j5=lQj .
The mean service requirement of a class-l customer may

be written as Ɛ4Bl5 =
∑

j2 k4j5=l4p0j/pl5Ɛ4Rj5. Hence, the
load in class l can be expressed by

�l = �plƐ4Bl5= �
∑

j2 k4j5=l

p0jƐ4Rj50 (19)

For the DPS queue, the set of equations as given in (1)
simplify: per class there is a set of equations that can be
solved independently. For class l, the corresponding �is can
be found from the following set of equations:

�i = p0i +
∑

j2 k4j5=l

�jpji1 for all i s.t. k4i5= l0

Applying the same reasoning as we followed to obtain
Equation (2), it follows that an equivalent representation
of �l is

�l = �
∑

j2 k4j5=l

�j

�j

=
∑

j2 k4j5=l

�j 0 (20)

Note that the total load in the DPS queue equals
∑K

l=1 �l =
∑K

l=1

∑

j2 k4j5=l �j =2 �1 i.e., it coincides indeed with the total
load in the general framework.

Before proceeding with the main result of this section,
we first give expressions for the forward recurrence time of
the service requirements. For class l, we denote this random
variable by B

fwd
l . From renewal theory we know that the

associated distribution is

�4Bfwd
l ¶ x5 2=

1
ƐBl

∫ x

y=0
�4Bl > y5dy1 (21)

and hence Ɛ4Bfwd
l 5 = Ɛ44Bl5

25/42Ɛ4Bl55. Alternatively, we
can write

�4Bfwd
l ¶ x5=

∑

j2 k4j5=l

�j

�l

·�4Rj ¶ x53 (22)

see Asmussen (2003, Chapter III, Corollary 5.3). Intu-
itively, Relation (22) can be explained as follows: Note that
�j/pl represents the expected number of visits to phase j
during the lifetime of the random variable Bl, with k4j5= l.
As a consequence, �j/4pl�j5 is the expected time spent in
phase j . Thus, with probability

�j/4pl�j5
∑

i2 k4i5=l �i/4pl�i5
=

�j
∑

i2 k4i5=l �i

=
�j

�l

1

the residual lifetime equals the residual service requirement
starting in phase j , and this gives Relation (22). Combin-
ing (21) and (22), we obtain that the mean forward recur-
rence time of Bl satisfies

Ɛ44Bl5
25

2Ɛ4Bl5
= Ɛ4Bfwd

l 5=
∑

j2 k4j5=l

�j

�l

· Ɛ4Rj50 (23)

We now show the state-space collapse for the standard
DPS queue with phase-type distributed service require-
ments. When passing � ↑ 1 as described in §2, we actu-
ally fix the service requirement distributions and the class
probabilities pk, while increasing the arrival rate. In partic-
ular, the heavy-traffic scaling as considered in §2, � ↑ �̂=

4 Ep04I − P5−1 EmT 5−1, is equivalent with � ↑ 4
∑

l plƐ4Bl55
−1,

because
∑K

l=1 plƐ4Bl5 =
∑J

j=1 p0jƐ4Rj5 = Ep04I − P5−1 EmT .
We denote the limiting loads of all classes by �̂l =

�̂plƐ4Bl5, l = 11 0 0 0 1K (or equivalently, �̂l =
∑

j2 k4j5=l �̂j ).

Proposition 3. Assume phase-type distributed service
requirements, and consider a standard DPS queue with
weights w11 0 0 0 1wK . When scaled by 1 − �, the queue-
length vector has a proper distribution as � ↑ 1,

41 −�54N11N21 0 0 0 1NK5
d

→ 4 ºN11 ºN21 0 0 0 1 ºNK5

d
= X ·

(

�̂1

w1

1
�̂2

w2

1 0 0 0 1
�̂K

wK

)

1 (24)

where
d

→ denotes convergence in distribution and X is an
exponentially distributed random variable with mean

Ɛ4X5=

∑

k pkƐ44Bk5
25

∑

k pkƐ44Bk5
25/wk

1 (25)

which is equal to 1 when wk = 1 for all k, i.e., in the case
of a standard PS queue.

Remark 1. In the case of exponentially distributed ser-
vice requirements, in Kang et al. (2009) a related result
is proved. The authors consider a sequence of systems
indexed by r such that �r

k → �̂k, �r =
∑K

k=1 �
r
k ↑ 1, and

√
r41−�r5→ 1, as r → �, and obtain that 41−�r5 EN r4rt5

converges in distribution to

̂W4t5
∑K

k=1 �̂k/4wk�k5
·

(

�̂1

w1

1 0 0 0 1
�̂K

wK

)

1 (26)

with ̂W4t5 the diffusion-scaled workload process, being
equal to a reflected Brownian motion with negative drift.
The stationary distribution of the latter process is exponen-
tial with mean

∑K
k=1 �̂k/�k. Hence, for exponentially dis-

tributed service requirements, the stationary limit of (26)
coincides with the heavy-traffic limit of the steady-state
queue lengths (24) as derived in Proposition 3. Interest-
ingly, this shows that the heavy-traffic limit and the steady-
state limit commute in the case of exponentially distributed
service requirements.
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Proof of Proposition 3. Recall that the DPS queue with
phase-type distributed service requirements is a special case
of the general framework of §2 when the parameters are
chosen as described in the beginning of this section. In
particular, recall that gi = gj = wl when k4i5 = k4j5 = l.
Because Nl =

∑

j2 k4j5=lQj , �̂l =
∑

j2 k4j5=l �̂j (see (20)), and
because for the general framework Relation (4) holds, Rela-
tion (24) follows directly where X is an exponentially dis-
tributed random variable with mean as given in (5). We are
left with showing that (5) reduces to (25).

From (19) and (23), and because type-j customers
belong to class k4j5 and have weight gj = wk4j5, we
obtain that

J
∑

j=1

�j

gj
Ɛ4Rj5=

K
∑

l=1

�l

wl

∑

j2 k4j5=l

�j

�l

Ɛ4Rj5

=

K
∑

l=1

�l

wl

Ɛ4B2
l 5

2Ɛ4Bl5
=

K
∑

l=1

�pl

wl

Ɛ4B2
l 5

2
0 (27)

Similarly, we have that

J
∑

j=1

�jƐ4Rj5=

K
∑

l=1

�l

∑

j2 k4j5=l

�j

�l

Ɛ4Rj5

=

K
∑

l=1

�lƐ44Bl5
25/42Ɛ4Bl55

=

K
∑

l=1

�plƐ44Bl5
25/20 (28)

Obviously, Equations (27) and (28) remain valid in
heavy traffic. Equation (25) follows after substituting (27)
and (28) into (5). �

Note that although the limiting distribution depends on
the second moments of the service requirement distribu-
tions through Ɛ4X5, the impact of the second moment on
Ɛ4X5 is uniformly bounded, and in particular

min
k

wk ¶ Ɛ4X5¶ max
k

wk1

(cf. Aalto et al. 2007).
The state-space collapse, as demonstrated above, allows

us to show further interesting properties for the DPS queue
in heavy traffic. In §7.1 we obtain heavy-traffic results for
the residual service requirements of the customers in the
various classes. In §7.2, monotonicity in the weights of the
standard DPS policy is investigated.

7.1. Residual Service Requirements

The distribution of the residual service requirement of a
customer, without having knowledge of the current phase
of its service requirement, depends on the used schedul-
ing discipline. For example, in a first-come first-served
queue the residual service requirement for customers wait-
ing to be served is given by their original service require-
ment. In case of a standard PS queue, the residual service

requirements are independent random variables distributed
according to the forward recurrence times of the service
requirements. Given that there are nk class-k customers in
the system, let Br

k1h denote the remaining service require-
ment of the hth class-k customer, k = 11 0 0 0 1K, h =

11 0 0 0 1 nk. The following result is known for PS:

�4Br
k1h ¶ xk1h1Nk = nk1 k = 11 0 0 0 1K1 h= 11 0 0 0 1 nk5

=�4Nk = nk1 k = 11 0 0 0 1K5
K
∏

k=1

nk
∏

h=1

�4Bfwd
k ¶ xk1h51

with xk1h ¾ 0. The joint distribution of the numbers of cus-
tomers is of product form: �4Nk = nk1 k = 11 0 0 0 1K5 =

41 − �544n1 + · · · + nK5!/n1! · · · · · nK !5
∏K

k=1 �
nk
k 1 see for

example Cohen (1979), Kelly (1979). In this section we
show that in a heavy-traffic setting a similar result holds
for the DPS queue.

Obviously, in the heavy-traffic limit, there will be an
infinite number of customers present in the system. There-
fore, we concentrate on the first yk <� class-k customers,
k = 11 0 0 0 1K. In the following proposition we show that
the scaled numbers of customers in the various classes and
the remaining service requirements of any finite subset of
customers are independent in a heavy-traffic setting. In par-
ticular, the remaining service requirement of a class-k cus-
tomer is distributed according to the forward recurrence
time of its service requirement Bk. It will be convenient to
set Br

k1h = 0 whenever h>Nk, k = 11 0 0 0 1K.

Proposition 4. Assume phase-type distributed service
requirements, and consider a standard DPS queue with
weights w11 0 0 0 1wK . Then,

lim
�↑1

Ɛ
(

e−
∑K

l=1 sl41−�5Nl−
∑K

l=1
∑yl

h=1 sl1 hB
r
l1 h

)

= Ɛ
(

e−
∑K

l=1 sl
ºNl
)

·

K
∏

l=1

yl
∏

h=1

Ɛ
(

e−sl1 hB
fwd
l

)

1

for yl ∈ 80111 0 0 09 and sl1 h1 sl > 0, l = 11 0 0 0 1K, h =

11 0 0 0 1 yl.

The proof may be found in the e-companion. Recall
that 4 ºN11 ºN21 0 0 0 1 ºNK5

d
= X · 4�̂1/w11 �̂2/w21 0 0 0 1 �̂K/wK51

where X is exponentially distributed with mean Ɛ4X5 =
∑K

l=1 plƐ44Bl5
25/4

∑K
l=1 plƐ44Bl5

25/wl5, cf. Proposition 3.

7.2. Monotonicity in the Weights

In this section, we investigate how the choice of the weights
influences the holding cost for the standard DPS queue.
We denote by dk the cost associated with a class-k cus-
tomer. Note that this is a different setting compared to §6,
where a cost was assigned per type. As we will see in the
proposition below, the scaled holding cost stochastically
decreases when relatively larger weights are assigned to
classes according to the values of dk/Ɛ4B

fwd
k 5, k = 11 0 0 0 1K.
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From Proposition 4 it follows that the expected residual ser-
vice requirement of a class-k customer is Ɛ4Br

k5 = Ɛ4Bfwd
k 5

in heavy traffic. Hence, in order to decrease the holding
cost in heavy traffic, priority should be given according to
the cost dk divided by the expected residual service require-
ment of a class-k customer. This agrees with the celebrated
c�-rule; see also §6.

Proposition 5. Assume phase-type distributed service
requirements and consider two standard DPS queues with
weights 4w11 0 0 0 1wK5 and 4 ¶w11 0 0 0 1 ¶wK5. Let dk ¾ 0, k =

11 0 0 0 1K. Without loss of generality, we assume that
the classes are ordered such that d1/Ɛ4B

fwd
1 5 ¾ · · · ¾

dK/Ɛ4B
fwd
K 50

If wk/wk+1 ¶ ¶wk/ ¶wk+1, for all k = 11 0 0 0 1K − 1, then

lim
�↑1

41 −�5
K
∑

k=1

dkN
DPS4w5
k ¾st lim

�↑1
41 −�5

K
∑

k=1

dkN
DPS4 ¶w5
k 1

where ¾st denotes the usual stochastic ordering, and
N

DPS4w5
k denotes the number of class-k customers in the

DPS queue with weights w11 0 0 0 1wK .

The proof is similar to the proof of Proposition 2 and
may be found in the e-companion.

When the service requirements are exponentially dis-
tributed, it holds that dk/Ɛ4B

fwd
k 5 = dk�k. Hence, the

c�-rule can be obtained in the limit from a DPS policy by
letting the ratios wk/wk+1, k = 11 0 0 0 1K − 1, all go to �.

Remark 2. In Kim and Kim (2006) it was conjectured
that, in the case of exponentially distributed service require-
ments, a result similar to Proposition 5 holds outside heavy
traffic; see also Verloop et al. (2010, §6.1).

Remark 3. In Coffman and Denning (1973, pp. 188–199)
it was conjectured that Var4B5/4Ɛ44B5255 < 1 is a sufficient
condition to ensure that the queue length under PS has a
smaller mean than under the least attained service disci-
pline (denoted by LAS or FB), which gives service to the
customers that have received the least amount of service.
In Wierman et al. (2004), the authors found a counterexam-
ple to this conjecture, and it was later shown in Aalto and
Ayesta (2006) that a stronger condition is needed in order
to compare the performance of LAS and PS; to be specific,
the distribution needs to have an “increasing mean residual
life.” This result is in concordance with the intuition behind
size-based scheduling: queue lengths can be reduced by pri-
oritizing customers that (are likely to) have smaller residual
service requirements. The same intuition also explains the
conditions in Proposition 5 which are based on Ɛ4B fwd

k 5 =

Ɛ44Bk5
25/42Ɛ4Bk55 =

1
2 44Var4Bk5/4Ɛ4Bk555+ Ɛ4Bk55. Cus-

tomers belonging to classes with highly variable service
distributions are likely to have longer service requirements.

Although the monotonicity of the weight structure in
Proposition 5 is only proved in the heavy-traffic limit,
it is actually a good rule of thumb for systems operat-
ing close to saturation as well. We conclude this section
with a numerical example where the behavior of the DPS

queue is numerically investigated for different values of the
total load.

Numerical evaluation of Proposition 5: We consider a
DPS queue with two classes. Class-1 customers have hyper-
exponentially distributed service requirements, i.e., with a
certain probability p a class-1 customer has an exponen-
tially distributed service requirement with mean 1/�11, and
with probability 1 −p it has an exponentially distributed
service requirement with mean 1/�12. Class-2 customers
have exponentially distributed service requirements with
mean 1/�2. Furthermore, we assume the load is equally
distributed between classes 1 and 2, i.e., �1 = �2. We are
interested in the total number of customers in the system;
hence, we set d1 = d2 = 1. Note that

Ɛ4Bfwd
1 5=

p/�2
11 + 41 −p5/�2

12

p/�11 + 41 −p5/�12

and Ɛ4Bfwd
2 5= 1/�20

Without loss of generality we set w1 = 1 and w2 = r , with
r > 0. Proposition 5 states that in a heavily loaded sys-
tem the steady-state scaled total number of customers is
stochastically increasing in r when Ɛ4Bfwd

1 5 < Ɛ4Bfwd
2 5, is

constant in r when Ɛ4Bfwd
1 5= Ɛ4Bfwd

2 5, and is stochastically
decreasing in r when Ɛ4Bfwd

1 5 > Ɛ4Bfwd
2 5. Note that when

r = 1, the policy reduces to standard PS, and in that case
the total mean number of customers is given by �/41 −�5.

In Figure 3 we plot the total mean number of cus-
tomers as a function of the weight parameter r (denoted
by Ɛ4N DPS4r55). We consider the case �11 = 001, �12 = 10,
and �2 = 1, while choosing several values for f 2=
Ɛ4Bfwd

1 5/Ɛ4Bfwd
2 5. The total mean number of customers

is obtained by solving a system of linear equations as
described in Fayolle et al. (1980). For � = �1 + �2 we
chose the following values: 0.6, 0.8, 0.9, and 0.999.
We see that in the latter case, a heavily loaded system,
the total mean number of customers indeed exhibits the
above-described phenomena depending on whether f < 1
(increasing), f = 1 (constant), or f > 1 (decreasing). As the
total load decreases, the monotonicity no longer necessar-
ily holds. This can be explained as follows. Because �11 <
�2 < �12, the c�-rule suggests to prioritize class-1 cus-
tomers in phase 2, whereas the class-1 customers in phase 1
should receive lowest priority. In the DPS queue no dif-
ferentiation can be made between customers residing in
different phases. Therefore, the way the weight r affects
the total mean number of customers depends on the typ-
ical mix of numbers of class-1 customers residing in the
two phases. In heavy traffic, this mix is characterized by
the loads corresponding to the work of class 1 residing in
phases 1 and 2, cf. Proposition 1, and is hence independent
of r . However, away from heavy traffic, this mix may itself
be influenced by r , leading to the observed nonmonotonic
behavior in the figures.

8. Conclusion
We have studied a multiple-phase network of which the
DPS queue with phase-type distributed service require-
ments is a special case. In our main result we have
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Figure 3. Total mean number of customers under a DPS policy with weights w1 = 1 and w2 = r .
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Notes. Class-1 service requirements are hyper-exponentially distributed (with parameters �11 = 0011�12 = 10), and class-2 service requirements are expo-
nentially distributed (with �2 = 1). The load �= �1 +�2 equals 0.6, 0.8, 0.9, and 0.999, respectively.

shown that in heavy-traffic conditions the queue-length
vector exhibits a so-called state-space collapse: The mul-
tidimensional vector describing the numbers of customers
in the various classes converges in distribution to a one-
dimensional random vector. Based on this result, we found
that the DPS model in heavy traffic inherits several well-
known properties of PS (not necessarily in heavy traffic).
For example, in the limit, the (scaled) number of customers
present in a DPS model is exponentially distributed, which
is the continuous analogue of the geometric queue-length
distribution of the PS queue. In addition, in a heavy-traffic
regime the residual service requirements are independent
and distributed according to the forward recurrence times,
which is true for PS as well.

We have investigated the performance of a DPS queue
as a function of the weights and showed that the scaled
holding cost reduces as customers with smaller weighted
residual service requirements get larger weights. This prop-
erty can be understood from the standard intuition of the
c�-rule.

9. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.
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