Detection of interstellar oxidaniumyl: Abundant H$_2$O$^+$ towards the star-forming regions DR21, Sgr B2, and NGC6334

V. Ossenkopf1,2, H. S. P. Müller1, D. C. Lis3, P. Schilke1,4, T. A. Bell3, S. Bruderer5, E. Bergin5, C. Ceccarelli6, C. Comito4, J. Stutzki1, A. Bacman6,7, A. Baudry7, A. O. Benz8, M. Benedettini9, O. Berne10, G. Blake3, A. Boogert3, S. Bottinelli13, F. Boulanger10, S. Cabrit1, P. Caselli12, E. Caux13,14, J. Cernicharo15, C. Codella6, A. Coutens13, N. Crimin6,15, N. R. Crockett6, F. Daniel11,15, K. Demyk13, P. Dieleman2, C. Dominik18,19, M. L. Dubernet20, M. Emprechtinger1, P. Encrenaz11, E. Falgarone17, K. France27, A. Fuente21, M. Gerin17, T. F. Giesen1, A. M. di Giorgio9, J. R. Goicoechea15, P. F. Goldsmith23, R. Güsten4, A. Harris23, F. Helmich2, E. Herbst34, P. Hily-Blant6, K. Jacobs1, T. Jacq7, Ch. Joblin13,14, D. Johnstone25, C. Kahane6, M. Kama18, T. Klein4, A. Klotz13, C. Kramer20, W. Langer22, B. Lefloch6, C. Leinzen4, A. Lorenzani16, S. D. Lord3, S. Marep7, P. G. Martin27, J. Martin-Pintado15, C. McCoo28,41, M. Melchior29, G. J. Melnick30, K. M. Menten4, B. Mookerjea40, P. Morris3, J. A. Murphy31, D. A. Neufeld32, B. Nisini33, S. Pacheco6, L. Pagani10, B. Parise4, J. C. Pearson22, M. Pérault41, T. G. Phillips3, R. Plume34, S.-L. Quin1, R. Rizzo21, M. Röllig3, N. R. Crockett5, F. D. Daniel11, C. Dominik18, D. C. Li3, P. Schilke1, A. Boogert3, K. Schuster26, F. F. S. van der Tak13,35, A. G. G. M. Tielens16, D. Teysseyre37, N. Trappe31, C. Vastel13,14, S. Vit38, V. Wakelam7, A. Walters13, S. Wang5, N. Whyborn39, M. van der Wiel2,35, H. W. Yorke22, S. Yu22, and J. Zmuidzinas3

(Affiliations are available in the online edition)

Received 30 March 2010 / Accepted 7 May 2010

ABSTRACT

Aims. We identify a prominent absorption feature at 1115 GHz, detected in first HIFI spectra towards high-mass star-forming regions, and interpret its astrophysical origin.

Methods. The characteristic hyperfine pattern of the H$_2$O$^+$ ground-state rotational transition, and the lack of other known low-energy transitions in this frequency range, identifies the feature as H$_2$O$^+$ absorption against the dust continuum background and allows us to derive the velocity profile of the absorbing gas. By comparing this velocity profile with velocity profiles of other tracers in the DR21 star-forming region, we constrain the frequency of the transition and the conditions for its formation.

Results. In DR21, the velocity distribution of H$_2$O$^+$ matches that of the [CII] line at 158 μm and of OH cm-wave absorption, both stemming from the hot and dense clump surfaces facing the H II-region and dynamically affected by the blister outflow. Diffuse foreground gas dominates the absorption towards Sgr B2. The integrated intensity of the absorption line allows us to derive lower limits to the H$_2$O$^+$ column density of 7.2 × 1012 cm$^{-2}$ in NGC 6334, 2.5 × 1013 cm$^{-2}$ in DR21, and 1.1 × 1013 cm$^{-2}$ in Sgr B2.

Key words. astrochemistry – line: identification – molecular data – ISM: abundances – ISM: molecules – ISM: clouds

1. Introduction

Oxidaniumyl or oxoniumyl (Connelly et al. 2005), the reactive water cation, H$_2$O$^+$, plays a crucial role in the chemical network describing the formation of oxygen-bearing molecules in UV irradiated parts of molecular clouds (van Dishoeck & Black 1986; Gerin et al. 2010). It was identified at optical wavelengths (van Dishoeck & Black 1986; Gerin et al. 2010). It was identified as H$_2$O$^+$ absorption in the tail of comets in the 1970’s (Fehrenbach & Arpigny 1973; Herzberg & Lew 1974; Wehinger et al. 1974), but its detection in the general interstellar medium has proven elusive.

We report a detection of the ground-state rotational transition of H$_2$O$^+$ in some of the first spectra taken with the HIFI instrument (de Graauw et al. 2010) on board the Herschel Space Observatory (Pilbratt et al. 2010) during the performance verification campaign and early science observations. Section 2 briefly introduces the properties of the sources where H$_2$O$^+$ was detected. Section 3 summarises the spectroscopic data of the molecule. The observations and the line identification are described in Sects. 4 and 5 and we discuss the physical properties of the H$_2$O$^+$ absorption layer.

2. The sources

We observed three massive Galactic star-forming/HII regions with very different properties. The DR21 star-forming region is embedded in a ridge of dense molecular material that obscures it at optical wavelengths. The embedded cluster drives a violent bipolar outflow and creates bright photon-dominated (or photo-dissociation) regions (PDRs), visible as clumps of 8 μm PAH emission in Spitzer IRAC maps (Marston et al. 2004) and showing up in emission lines from tracers of irradiated hot gas, such as HCO$^+$, high-J CO, atomic and ionised carbon, and atomic oxygen (Lane et al. 1990; Jakob et al. 2007). The eastern, blueshifted outflow expands in a blister-like fountain, while the western, red-shifted outflow is confined to a small cone.
Table 1. Parameters of the hyperfine lines \(F' - F'' \) in the observed \(J_{11} = 0_0 \), \(J = 3/2 - 1/2 \) ortho \(\text{H}_2\text{O}^+ \) transition, including predicted frequencies, Einstein-A and optical depth at low temperatures.

\[
\begin{array}{cccccc}
F' - F'' & v_{\text{Stokes}} & v_{\text{Stokes}} & v_{\text{OH-based}} & A & \int \tau dv \\
(\text{MHz}) & (\text{MHz}) & (\text{MHz}) & & (\text{s}^{-1}) & \\
5/2 - 3/2 & 1115 204.1 & 1115 175.8 & 1115 161.0 & 0.031 & 23.51 \\
3/2 - 1/2 & 1115 150.5 & 1115 122.0 & 1115 107.0 & 0.017 & 8.67 \\
3/2 - 3/2 & 1115 263.2 & 1115 235.6 & 1115 221.0 & 0.141 & 7.00 \\
1/2 - 1/2 & 1115 186.2 & 1115 158.0 & 1115 143.0 & 0.027 & 6.96 \\
1/2 - 3/2 & 1115 298.9 & 1115 271.6 & 1115 257.0 & 0.030 & 8.88 \\
\end{array}
\]

Notes. \(^{(a)} \) Predictions based on Strahan et al. (1986) and Mürtz et al. (1998). Nominal uncertainties are \(\approx 2 \text{ MHz} \) but this is inconsistent with the discrepancy between the two predictions so that the actual uncertainty is unknown; \(^{(b)} \) from the matching DR21 OH pattern by Guilloteau et al. (1984); \(^{(c)} \) \(\int \tau_{\text{low}} \tau_{\text{H}_2\text{O}} \text{d}v \) in \(10^{-14} \text{ km s}^{-1} \text{ cm}^{-2} \).

Table 2. Summary of the observational parameters.

<table>
<thead>
<tr>
<th>DR21(C)</th>
<th>Sgr B2(M)</th>
<th>NGC 6334</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA (J2000)</td>
<td>20h39m01.1s</td>
<td>17h47m20.35s</td>
</tr>
<tr>
<td>Dec</td>
<td>42°19′43.0″</td>
<td>−28°23′03.0″</td>
</tr>
<tr>
<td>Mode</td>
<td>Load-chop</td>
<td>DBS</td>
</tr>
<tr>
<td>(t_{\text{last source}}) (s)</td>
<td>150</td>
<td>48</td>
</tr>
<tr>
<td>(t_{\text{rise}}) (s)</td>
<td>0.07 K</td>
<td>0.08 K</td>
</tr>
</tbody>
</table>

Notes. \(^{(1)} \) At native WBS resolution (1.1 MHz = 0.30 km s\(^{-1}\)). \(^{(2)} \) OFF position = 20h37m10s, 42°37′00″.

The Sgr B2(M) and (N) cores are the most massive star-formation sites in our Galaxy. The line of sight, located in the plane of the Galaxy, passes through many spiral arm clouds and the extended envelope of Sgr B2 itself. The foreground clouds display a very rich molecular and atomic spec-

3. The \(\text{H}_2\text{O}^+ \) spectroscopy

The \(\text{H}_2\text{O}^+ \) cation is a radical with a \(^2B_1 \) electronic ground state and bond lengths and angle slightly larger than \(\text{H}_2\text{O} \). Quantum-chemical calculations (Weis et al. 1989) yield a ground-state dipole moment of 2.4 D. The \(B_1 \) symmetry of the ground electronic state leads to a reversal of the \text{ortho} and \text{para} levels relative to water.

The rotational spectrum was measured by laser magnetic resonance (Strahan et al. 1986; Mürtz et al. 1998). Predictions of the

Fig. 1. Energy level diagram of the lowest rotational levels of ortho-
\(\text{H}_2\text{O}^+ \) and its radiative transitions. The fine structure transition frequencies are given in GHz.

\(N_{K,K} \approx 111 - 0_0, J = 3/2 - 1/2 \) fine structure component near 1115 GHz using the new parameters by Mürtz et al. (1998) are between 27.3 and 28.5 MHz higher than those calculated from Strahan et al. (1986), even though both articles claim to have reproduced the experimental data to \(\approx 2 \text{ MHz} \). The reanalysis of equivalent measurements of \(\text{SH}^+ \), by Brown & Müller (2009), shows that this accuracy is in principle achievable. However, the large centrifugal distortion in \(\text{H}_2\text{O}^+ \) requires a large set of spectroscopic parameters to reproduce a comparatively small set of data; this may cause problems in the zero-field extrapolation. Moreover, the frequencies of the two fine structure levels of the \(J_{11} \) rotational state in Table V of Mürtz et al. (1998) agree precisely with those of the \(F' = J', F'' = J'' \) hyperfine transitions. This can only be achieved when the calculated frequencies are lower by 51.56 and 88.05 MHz, respectively, since the respective hyperfine component is the lowest in each case. Correcting the published frequencies of the \(J = 3/2 - 1/2 \) fine structure component by 51.56 MHz improves the agreement with Strahan et al. (1986). The results are summarized in Table 1. Alternatively, we could use the corrected frequencies of Mürtz et al. (1998) and arrive at values that are lower by about 23 MHz. This provides a rough estimate of the uncertainty in the predictions. An \(\text{H}_2\text{O}^+ \) catalogue entry will be prepared for the CDMS (Müller et al. 2005) by carefully scrutinizing the available IR data summarised in Zheng et al. (2008), and references therein) with \(\pm 150 \text{ MHz} \) uncertainties.

4. Observations of the 1115 GHz ground-state transition

The \(\text{H}_2\text{O}^+ \) line was detected in DR21 during performance verification observations of the HIFI instrument, testing spectral scans in the HIFI band 4b. Later science observations of Sgr B2 and NGC 6334 also confirmed the detection in these sources using the identification and frequency assignment from DR21. The main parameters of the observations are summarised in Table 2. At 1115 GHz, the Herschel beam has 21″ HPBW.

The identification with \(\text{H}_2\text{O}^+ \) was straightforward in DR21 because of the simple source velocity structure that cannot be confused with the well resolved, characteristic hyperfine structure of the line. When fitting the line, one has to take into account that the line extinction begins to saturate, with a maximum optical depth of 0.59 for DR21 and 1.55 for Sgr B2 (see below). For
DR21, we fitted the observed profile using an adjusted velocity profile with asymmetric wings. Because of the limited signal-to-noise ratio, the fit was performed manually by adding three Gaussian components of increasing width (see Fig. 2).

The resulting velocity distribution allows us to interpret the origin of the absorbing material by comparing with the velocity distribution of other species observed towards the same position with comparable beam size (see Ossenkopf et al. 2010; Falgarone et al. 2010; van der Tak et al. 2010). Figure 3 shows that the peak H$_2$O$^+$ velocity of -1.7 km s$^{-1}$ is not seen in any other tracer. The intrinsic velocity of the DR21 molecular ridge is -3.0 km s$^{-1}$, which is matched by the line centres of the H13CO$^+$ 1–0, the CO 6–5, and the 13CO 6–5 transitions. The higher excitation lines of 13CO, C18O, H$_2$O, and the [C II] line exhibit a slightly blue-shifted peak velocity of about -5.0 km s$^{-1}$. The H$_2$O$^+$ profile exhibits a prominent, very broad blue wing, but is not found in any of the molecular emission lines, because of the widths of the [C II] profile and the OH absorption profile measured by Guilloteau et al. (1984) towards the same position.

To underline this good match, we have superimposed in Fig. 2 the absorption profile that would be obtained by simply adding three Gaussian components of increasing width (see Fig. 2).

![Fig. 2. Fit of the hyperfine multiplet of the H$_2$O$^+$1115 GHz line in DR21. The bottom panel shows the 0.5 K absorption line superimposed on two different fit profiles, one based on a 3-component Gaussian (see text) and the other one using the OH 6 cm absorption spectrum from Guilloteau et al. (1984). The top panel shows a breakdown of the fitted profile into its hyperfine constituents in the case of the 3-Gaussian profile.](image)

![Fig. 3. Comparison of the fitted H$_2$O$^+$ velocity profile to other tracers observed in DR21 with similar beam size. The profiles are normalised to a peak of unity and separated by multiples of 0.5 from bottom to top. The fit (bottom line) used the Strahan et al. (1986) based line frequency prediction, the profile at the top is shifted by -4.0 km s$^{-1}$, corresponding to a rest frequency lower by 15 MHz. The identification and the corrected frequencies are then used to analyse the line structures in Sgr B2 and NGC 6334 (Figs. 4 and 5). In Sgr B2, we see absorption at both the velocity of its envelope and the velocities of many foreground clouds, almost saturating the line. NGC 6334 exhibits weak H$_2$O$^+$ absorption at -13 km s$^{-1}$. This deviates from the OH absorption profile towards the source measured by Brooks & Whiteoak (2001). At velocities below -10 km s$^{-1}$, only some OH maser emission was found. This might indicate that the observed H$_2$O$^+$ is not related to the foreground material, but to hot gas in the direct vicinity of the continuum sources. Alternatively, if we use the predicted frequencies from Strahan et al. (1986) in Table 1, the H$_2$O$^+$ absorption in NGC 6334 is centred on -9 km s$^{-1}$, in reasonable agreement with the OH absorption at -8.2 km s$^{-1}$ measured toward component F†. At about -9 km s$^{-1}$, Beuther et al. (2005) also observed CH$_3$OH and NH$_3$ absorption towards the H II region.

5. Discussion and outlook

That H$_2$O$^+$ shows up in absorption against the dust continuum implies that the excitation of the molecule must be colder than the dust. As a reactive ion (see the discussion by Black 2007; Stäuber & Bruderer 2009, for CO$^+$), H$_2$O$^+$ is not expected to be in thermal equilibrium at the kinetic temperature of the gas. Its excitation reflects either the chemical formation process or the

A similar case is reported by Gerin et al. (2010) for W31C. The source shows a complicated spectrum with multiple absorption components, but a closer correlation with other tracers is found when using the Strahan et al. (1986) based frequencies. A recent detection of H$_2$O$^+$ in W3 IRS5 and AFGL2591 by Benz et al. (in prep.) seems to favour the frequency predictions by Müürtz et al. (1998).
radiative coupling with the environment. From a single absorption line, one can only provide a lower limit to the H$_2$O column density, assuming a low excitation temperature where basically all H$_2$O$^+$ resides in the ground state, which is applicable to temperatures well below the upper level energy of 53 K.

Table 1 provides the integral over the optical depth of the hyperfine component on a linear column density scale, i.e., without optical depth correction.

Fig. 4. Fit of the observed H$_2$O line in Sgr B2. The dashed line visualises the velocity structure of the absorbers by plotting the strongest hyperfine component on a linear column density scale, i.e., without optical depth correction.

Fig. 5. Same as Fig. 4, but for NGC 6334.

There is no obvious correlation with the distributions of CO, H$_2$O, or HCO$^+$. For Sgr B2, we can clearly identify absorption in multiple translucent foreground clouds. Their densities must be high enough to produce some molecular hydrogen, but low enough not to quickly destroy the H$_2$O$^+$. For NGC 6334, the gas component producing the H$_2$O$^+$ absorption remains unidentified.

With the identification of H$_2$O$^+$ in the interstellar medium, we provide a first step to quantifying an important intermediate node in the oxygen chemical network, connecting OH$^+$ in diffuse clouds and at cloud boundaries, through H$_2$O$^+$, with water in denser and cooler cloud parts. To obtain an estimate for the total H$_2$O$^+$ abundance, we need to measure the excitation temperature of H$_2$O$^+$. Observations of additional transitions of H$_2$O$^+$, such as those at 742 GHz, are therefore essential.

Acknowledgements. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada, and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U.Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronómico Nacional (IGN), Centro de Astrobiología (CSIC-INTA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Ondřejov Space Observatory; Swedish National Space Board. Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NHSC.

This work was supported by the German Deutsche Forschungsgemeinschaft, DFG project number Os 1711/1. HSPM is grateful to the Bundesministerium für Bildung und Forschung (BMBF) for financial support aimed at maintaining the Cologne Database for Molecular Spectroscopy, CDMS. This support has been administered by the Deutsches Zentrum für Luft- und Raumfahrt (DLR). D.C.L. is supported by the NSF, award AST-0540882 to the Caltech Submillimeter Observatory. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space administration.

References

Black 2007, in Molecules in Space and Laboratory, ed. J. L. Lemaire, & F. Combes, (s. Diana publ.), 90