A method for valuing architecture-based business transformation and measuring the value of solutions architecture
Slot, R.G.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of Figures

Figure 2-1. Basic transformation approach 8
Figure 2-2. Main elements of strategic management according to Johnson & Scholes 11
Figure 3-1. The relationship between IT expenditures and organizational performance (from Soh and Markus) 15
Figure 3-2. Relationship between architecture, transformation scenario, solution architecture, transformation program and operational processes 16
Figure 4-1. Decision tree for big bang scenario example (M€) 22
Figure 4-2. Decision tree for phased scenario example (M€) 23
Figure 4-3. Probability density function of an example normal distribution 30
Figure 4-4. Cumulative probability function of an example normal distribution 30
Figure 4-5. Probability density function of an example lognormal distribution 32
Figure 4-6. Cumulative probability function of an example lognormal distribution 32
Figure 4-7. Example probability density function of the cost (left), revenue (right) and cash flow (middle). 35
Figure 4-8. Cumulative probability function of CF(x) 38
Figure 5-1. Overview of the business architecture for the domain input handling (picture courtesy of the case study institution) 44
Figure 5-2. Probability distribution function for expected benefits 52
Figure 5-3. Overview of budget overrun for 70 IT projects 54
Figure 5-4. Lognormal analysis for project budget overrun 54
Figure 5-5. Lognormal distribution for project budget overrun 55
Figure 5-6. Probability density function describing the cost of the business architecture 57
Figure 5-7. Probability distribution for expected benefits after operational costs 57
Figure 5-8. PDF’s of cost, cash flow and revenue of the business architecture 58
Figure 5-9. Cumulative probability function of the cash flow 58
Figure 5-10. Sensitivity analyses for benefits 59
Figure 5-11. Results of sensitivity analysis for the cash flow function 60
Figure 5-12. Comparing cash flows with and without contracting option. Example for fixed price of € 4M. 61
Figure 5-13. Likely and expected value of the standard and the contract scenario 62
Figure 5-14. Values of Sp and Fp as function of A and T. 64
Figure 5-15. Intersection line between Sp and Fp. 64
Figure 5-16. Relationship between option value and fixed-price 66
Figure 5-17. Comparison of standard option versus the contract option 67
Figure 6-1. Project and success variables (from Wohlin) 73
Figure 6-2. Value of the confidence interval multiplier for various sample sizes 82
Figure 7-1. Customer satisfaction as function of budget overrun 96
Figure 7-2. Customer satisfaction as function of time overrun 97
Figure 7-3. Analysis of variance for project timeframe using two project variables 102
Figure 7-4. Number of significant H_0 statement correlations for each project variable 106
Figure 7-5. Project success rates (Standish Chaos Report, 1999). 108
Figure 7-6. Correlation between project cost and margin 108
Figure 7-7. Comparison of normal distribution budget overrun 111
Figure 9-1. Benefits of real options analysis (Kodukula, et al., 2006). 119
Figure 1-1. Costs for year 1 140
Figure 1-2. Benefits, costs and cash flow for year 2 140
Value of Architecture-Based Business Transformation

FIGURE 1-3. BENEFITS, COSTS AND CASH FLOW FOR YEAR 3
FIGURE 1-4. BENEFITS AND CASH FLOW FOR YEAR 4
FIGURE 1-5. ANNUAL CASH FLOW PDF’S
FIGURE 1-6. CASH FLOW CDF FROM LEFT TO RIGHT FOR YEAR 1 TO 4
FIGURE 1-7. OVERALL CASH FLOW PROBABILITY DENSITY FUNCTION
FIGURE 1-8. OVERALL CASH FLOW PROBABILITY DENSITY FUNCTION
FIGURE 3-1. HISTOGRAM OF PROJECT BUDGET SUCCESS VARIABLE
FIGURE 3-2. HISTOGRAM OF PROJECT BUDGET SUCCESS VARIABLE AFTER OUTLIER ELIMINATION
FIGURE 3-3. ANALYSIS OF PROJECT BUDGET SUCCESS VARIABLE FOR NORMAL DISTRIBUTION
FIGURE 3-4. ANALYSIS OF PROJECT BUDGET SUCCESS VARIABLE FOR LOGNORMAL DISTRIBUTION
FIGURE 3-5. HISTOGRAM FOR TRANSFORMED BUDGET SUCCESS VARIABLE
FIGURE 3-6. DISTRIBUTION ANALYSIS OF TIME OVERRUN
FIGURE 3-7. HISTOGRAM FOR TRANSFORMED TIME SUCCESS VARIABLE
FIGURE 3-8. HISTOGRAM OF CUSTOMER SATISFACTION SUCCESS VARIABLE
FIGURE 3-9. HISTOGRAM OF PERCENTAGE DELIVERED SUCCESS VARIABLE
FIGURE 3-10. HISTOGRAMS OF FUNCTIONAL AND TECHNICAL FIT
FIGURE 4-1. PROBABILITIES H₀ STATEMENT I
FIGURE 4-2. DISTRIBUTIONS FOR PROJECT VARIABLE 8 SAMPLES
FIGURE 4-3. DISTRIBUTIONS FOR PROJECT VARIABLE 8 SAMPLES. ANSWER 1 AND 2 JOINED.
FIGURE 4-4. PROBABILITIES H₀ STATEMENT II
FIGURE 4-5. DISTRIBUTIONS FOR PROJECT VARIABLE 1 SAMPLES. ANSWER 2 ELIMINATED
FIGURE 4-6. DISTRIBUTIONS FOR PROJECT VARIABLE 5 SAMPLES
FIGURE 4-7. DISTRIBUTIONS FOR PROJECT VARIABLE 5 SAMPLES. ANSWER 2 AND 3 JOINED.
FIGURE 4-8. PROBABILITIES H₀ STATEMENT III
FIGURE 4-9. DISTRIBUTIONS FOR PROJECT VARIABLE 5 SAMPLES. ANSWER 2 AND 3 JOINED.
FIGURE 4-10. DISTRIBUTIONS FOR PROJECT VARIABLE 6 SAMPLES
FIGURE 4-11. DISTRIBUTIONS FOR PROJECT VARIABLE 6 SAMPLES. ANSWER 2 AND 3 JOINED
FIGURE 4-12. DISTRIBUTIONS FOR PROJECT VARIABLE 7 SAMPLES
FIGURE 4-13. DISTRIBUTIONS FOR PROJECT VARIABLE 7 SAMPLES. ANSWER 2 AND 3 JOINED
FIGURE 4-14. DISTRIBUTIONS FOR PROJECT VARIABLE 10 SAMPLES. ANSWER 1 ELIMINATED.
FIGURE 4-15. PROBABILITIES H₀ STATEMENT IV
FIGURE 4-16. PROBABILITIES H₀ STATEMENT V
FIGURE 4-17. REGRESSION FOR PROJECT VARIABLE 3
FIGURE 4-18. REGRESSION FOR PROJECT VARIABLE 4
FIGURE 4-19. REGRESSION FOR PROJECT VARIABLE 5
FIGURE 4-20. REGRESSION FOR PROJECT VARIABLE 6
FIGURE 4-21. REGRESSION FOR PROJECT VARIABLE 7
FIGURE 4-22. PROBABILITIES H₀ STATEMENT VI
FIGURE 4-23. REGRESSION FOR PROJECT VARIABLE 4
FIGURE 4-24. REGRESSION FOR PROJECT VARIABLE 5
FIGURE 4-25. REGRESSION FOR PROJECT VARIABLE 6
FIGURE 4-26. REGRESSION FOR PROJECT VARIABLE 7
FIGURE 4-27. REGRESSION FOR PROJECT VARIABLE 8
FIGURE 4-28. PROBABILITIES H₀ STATEMENT VII
FIGURE 4-29. PROBABILITIES H₀ STATEMENT VIII
FIGURE 4-30. MEANS OF TECHNICAL FIT VERSUS PROJECT VARIABLE 5

xvi