Understanding and mastering dynamics in computing grids: processing moldable tasks with user-level overlay

Mościcki, J.T.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Table of Contents

1 Motivation and research objectives ... 1
 1.1 Distributed applications: common patterns and characteristics 2
 1.2 Infrastructures for scientific computing 8
 1.3 Higher-level middleware systems ... 9
 1.4 User requirements .. 13
 1.5 The research objectives and roadmap 15

2 Dynamics of large computing grids .. 19
 2.1 EGEE – world’s largest computing and data Grid 19
 2.2 Grid as an infrastructure ... 22
 2.3 Grid as a task processing system ... 27
 2.4 Summary ... 39

3 Analysis and modeling of task processing with late binding on the Grid ... 41
 3.1 Introduction .. 41
 3.2 Task processing model .. 42
 3.3 Distribution of job queuing time .. 44
 3.4 Simulation of task processing models 48
 3.5 Summary ... 57

4 Development of the User-level Overlay ... 59
 4.1 Vision .. 60
 4.2 Functional breakdown and architecture 62
 4.3 DIANE and Ganga software packages 63
 4.4 Operation of the User-level Overlay 64
 4.5 The DIANE task coordination framework 66
 4.6 The Ganga resource access API and user interface 73
TABLE OF CONTENTS

4.7 Heuristic resource selection .. 80
4.8 Adaptive workload balancing 85
4.9 Summary ... 89

5 User-level Overlay in action ... 91
5.1 Monte Carlo simulation with Geant4 toolkit 92
5.2 Workflows for medical imaging simulations 99
5.3 Data processing for ATLAS and LHCb experiments 102
5.4 Massive molecular docking for Avian Flu 103
5.5 Other examples of using DIANE/Ganga overlay 105
5.6 Summary ... 106

6 Capability computing case study: ITU broadcasting planning 109
6.1 Introduction .. 109
6.2 Broadcasting planning process 110
6.3 Compatibility analysis .. 111
6.4 Implementation of grid-based analysis system for the RRC06 113
6.5 Analysis of task processing .. 115
6.6 Summary ... 120

7 Capacity computing case study: LatticeQCD simulation 121
7.1 Introduction .. 121
7.2 Problem to be solved .. 122
7.3 Simulation model ... 123
7.4 Implementation and operation of the simulation system 125
7.5 Task scheduling and prioritization 130
7.6 Analysis of adaptive resource selection 137
7.7 Exploiting low-level parallelism for finer lattices 139
7.8 Summary ... 140

8 Conclusions and future work ... 143
8.1 Grid dynamics and its consequences for task processing 143
8.2 Contributions of this work .. 144
8.3 Open issues .. 146
8.4 Future work .. 147
8.5 Postscriptum ... 148

Bibliography ... 164

Summary .. 165

Nederlandse samenvatting .. 167

Streszczenie po polsku ... 169

Publications .. 171
TABLE OF CONTENTS

Acknowledgments 175
Index 177