Clinical and synovial tissue studies in psoriatic arthritis
van Kuijk, A.W.R.

Citation for published version (APA):
Chapter 3

TWEAK and its receptor Fn14 in the synovium of patients with rheumatoid arthritis compared to psoriatic arthritis and its response to TNF blockade

Arno WR van Kuijk*, Carla A Wijbrandts*, Marjolein Vinkenoog,
Timothy S Zheng, Kris A Reedquist, Paul P Tak

*CA Wijbrandts and AWR van Kuijk contributed equally to this manuscript

Abstract

Objective
To investigate the expression of TNF like weak inducer of apoptosis (TWEAK) and its receptor Fn14 in the inflamed synovium of patients with arthritis, as TWEAK blockade had a beneficial effect in an animal model of RA.

Methods
Synovial tissue (ST) biopsies were obtained from 6 early, methotrexate naive RA patients as well as 13 RA patients and 16 patients with psoriatic arthritis (PsA) who were matched for treatment and disease duration. Serial ST samples were obtained from a separate cohort of 13 RA patients before and after infliximab treatment. TWEAK and Fn14 expression was evaluated by immunohistochemistry and digital image analysis.

Results
TWEAK and Fn14 were clearly expressed in ST of RA and PsA patients. TWEAK expression was significantly higher in RA (sub)lining compared to PsA (P = 0.005 and P = 0.014, respectively), but Fn14 expression was comparable. Double immunofluorescence showed TWEAK and Fn14 expression on fibroblast-like synoviocytes and macrophages, but not T cells. Of interest, persistent TWEAK and Fn14 expression was found after anti-TNF therapy.

Conclusions
TWEAK and Fn14 are abundantly expressed in the inflamed synovium of RA and PsA patients. This raises the possibility that blocking TWEAK/Fn14 signalling could be of therapeutic benefit in inflammatory arthritis.
TNF like weak inducer of apoptosis (TWEAK) is a TNF ligand superfamily member that mediates pleiotropic effects on a variety of cells via its receptor, fibroblast growth factor inducible 14 (Fn14). The TWEAK/Fn14 pathway appears to have a physiological role in the regulation of tissue repair after injury, when Fn14 expression is highly induced (1). Fn14 can be expressed by many cell types, including epithelial, mesenchymal and endothelial cells, and progenitor cells of the mesenchymal lineage (2;3). Activating Fn14 can have a number of effects, depending on cell type and context, including pro-angiogenic effects and induction of fibroblast-like synoviocytes (FLS) to produce proinflammatory cytokines and chemokines, such as IL-6, IL-8 and RANTES (3;4). TWEAK may also promote bone and cartilage destruction through inhibition of chondrogenesis and osteogenesis and promotion of osteoclastogenesis (2).

These data raise the possibility that TWEAK may contribute to chronic synovitis, a notion supported by the observation that TWEAK expression is dramatically elevated in the murine collagen-induced arthritis (CIA) model of arthritis. Blocking TWEAK signalling reduced the severity of arthritis in this model, and diminished synovial inflammation, vascularity, and cartilage and bone destruction (2;5). However, very little is known about the role of the TWEAK/Fn14 pathway in human inflammatory arthritis. To address this issue, we examined the expression of TWEAK and Fn14 in synovial tissue (ST) of patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA), in newly diagnosed, previously untreated RA patients, and in RA patients on methotrexate before and after treatment with infliximab.
Patients and methods

Patients and synovial tissue acquisition
For a comparative analysis of TWEAK and Fn14 expression, ST biopsies were obtained by arthroscopy from 13 RA patients and 16 PsA patients with clinically active arthritis. ST biopsies from a second cohort of 13 RA patients on methotrexate (MTX) therapy were obtained from the same joint before and 4 weeks after the initiation of infliximab (IFX) therapy (IFX 3 mg/kg, administered intravenously at baseline and 4 weeks later (6). Additionally, ST biopsies were obtained from 6 newly diagnosed RA patients who had not been treated with any disease-modifying antirheumatic drug (DMARD). All RA patients met the 1987 revised criteria of the American College of Rheumatology for the diagnosis of RA (7). All PsA patients fulfilled the CASPAR criteria (8), and had active joint and skin disease at the time of arthroscopy. ST biopsies were obtained by arthroscopy from an actively inflamed knee, ankle or wrist joint under local anaesthesia (9). Biopsies were obtained from 6 or more sites in each joint. ST biopsies were immediately embedded in TissueTek OCT (Miles Diagnostics, Elkhart, IN), snap-frozen in liquid nitrogen, and stored at -80ºC, as previously described in detail (9;10). All patients provided their written informed consent and patient clinical and demographic data were obtained before arthroscopy. This study was approved by the medical ethics committee.

Immunohistochemistry and digital image analysis
ST samples were cut with a cryostat (5 μm), fixed with acetone, and endogenous peroxidase activity was blocked with 0.3% hydrogen peroxide. Specific monoclonal antibodies were used to detect TWEAK (clone P3H8) and Fn14 (clone P2D3) (both from Biogen Idec, Cambridge, MA). Bound antibody was detected with a 3-step immunoperoxidase method using a biotinylated tyramine amplification method (11). Stained sections were then randomly analyzed using digital image analysis (DIA), as previously described in detail (12). Expression of TWEAK and Fn14 is presented as integrated optical density (IOD)/(, an arbitrary unit representing the amount of staining per mm² (13).

Double immunofluorescence
TWEAK and Fn14 expression in distinct synovial cell populations was assessed by double immunofluorescence in 15 randomly selected patients (8 PsA and 7 RA). Sections were incubated overnight at 4°C with primary monoclonal antibodies against TWEAK and Fn14, and then labelled with streptavidin-ALEXA 594 (Invitrogen/Molecular Probes, Breda, the Netherlands) for 30 minutes. Next, sections were blocked with 10% normal mouse serum, incubated for 30 min with FITC-labelled markers for CD55 (clone BRIC 110, Sanquin, Amsterdam, the Netherlands), CD3 (clone SK7, Becton Dickinson), and
CD68 (clone KP1, Dako), covered with VectaShield mounting medium (H-1200, Vector laboratories, Burlingame, CA), and analyzed with a wide-field upright microscope (Leica DMRA, Wetzlar, Germany) coupled to a CCD camera and Image-Pro Plus software (Media Cybernetics, Dutch Vision Components, Breda, the Netherlands). Co-expression of CD68, CD55 and CD3 with TWEAK and Fn14 was determined by the manual counting of positive cells by two independent blinded observers (Dr. Tom Smeets and Dion Groot, AMC).

Statistical analysis

To compare the differences in expression of TWEAK and Fn14 between groups the Mann-Whitney U test for non-parametric data was used. Correlations were assessed using Spearman’s rank correlation coefficient. Serial biopsies were evaluated using Wilcoxon signed-rank test. A P value < 0.05 was considered statistically significant.

Results

Table 1 shows the patient characteristics of the first patient cohort (13 RA patients and 16 PsA patients) who were used for cross sectional comparison. All these patients were treated with methotrexate; there was a trend towards slightly higher dosages in RA, but this difference was not statistically significant. In both groups one patient was also treated with prednisolone 10 mg daily. Most patients had longstanding disease and displayed comparable ESR and CRP levels, indicating similar degrees of inflammatory activity.

<table>
<thead>
<tr>
<th>Table 1. Demographic data of the first cohort of patients with psoriatic arthritis (PsA) and rheumatoid arthritis (RA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Female, no. (%)</td>
</tr>
<tr>
<td>Age yrs, mean (range)</td>
</tr>
<tr>
<td>Disease duration months, mean (range)</td>
</tr>
<tr>
<td>RF and/or anti-CCP pos, no. (%)</td>
</tr>
<tr>
<td>Erosions, no. (%) of patients</td>
</tr>
<tr>
<td>ESR mm/hr, median (IQR)</td>
</tr>
<tr>
<td>CRP mg/l, median (IQR)</td>
</tr>
<tr>
<td>Methotrexate dose (mg), mean (SD)</td>
</tr>
</tbody>
</table>

The RA patients were more often RF and/or anti-CCP positive than the PsA patients. No other significant differences in the clinical data between RA and PsA patients were detectable. RF, rheumatoid factor; anti-CCP, antibodies against citrullinated cyclic peptides; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; IQR, interquartile range, i.e. 25th-75th percentile; SD, standard deviation
In RA and PsA ST, strong expression of TWEAK was observed in the intimal lining layer and the synovial sublining, including perivascular regions in a subset of blood vessels (Figure 1). Expression of TWEAK was higher in RA than in PsA in both the intimal lining layer (median and interquartile range, IQR), respectively 45,305 (21,410 – 63,456) versus 14,381 (934 – 20,002) IOD/mm² (P = 0.005) and the synovial sublining 44,941 (30,687 – 106,183) versus 8,022 (2,484 – 70,439) IOD/mm² (P = 0.014). Fn14 was expressed in both the intimal lining layer and the perivascular regions of the synovial sublining (Figure 2). Fn14 expression was not significantly different between RA and PsA. Quantitative analysis of the synovial expression of TWEAK and Fn14 in RA vs. PsA is shown in Figure 3.

Immunofluorescent double staining revealed frequent TWEAK (65%) and Fn14 (46%) expression in CD55+ RA FLS. CD68+ macrophages also frequently expressed TWEAK (46%) and Fn14 (20%). In contrast, CD3+ T cells hardly expressed any TWEAK or Fn14.

Figure 1. Representative photographs showing TWEAK expression (reddish-brown staining) in RA synovial tissue (a-c) and PsA synovial tissue (d-f): overview of RA ST (a)(original magnification 100 x), and close up of the intimal lining layer (b), and the synovial sublining with (peri-)vascular staining (c)(magnification 200x); overview of PsA ST (d), and close up of the intimal lining layer (e), and the synovial sublining with (peri-)vascular staining (f)
A second cohort of 13 RA patients underwent arthroscopy before and 4 weeks after initiation of infliximab infusions. Patients had longstanding disease (mean disease duration 127 months, range 10 – 311), all were treated with MTX (mean dose 15 mg/week, range 5 – 30) and 10/13 with prednisolone (mean dose 9 mg/day, range 2.5 – 15). The disease activity score evaluated in 28 joints (DAS28) was significantly reduced following 4 weeks of infliximab therapy: DAS28 (median and IQR) at baseline, 6.25 (5.57 – 7.04); after 4 weeks, 4.48 (3.82 – 5.98) (P < 0.01). However, there was persistent TWEAK expression after TNF blockade without any significant changes in ST TWEAK or Fn14 expression following infliximab therapy.

To rule out the possibility that the expression of TWEAK and Fn14 had been influenced considerably by disease duration or DMARD treatment in the above mentioned cohorts, ST samples from a third cohort of 6 recently diagnosed RA patients who had not yet been treated with DMARDs was studied and compared to the 13 RA patients from the second cohort. The expression of TWEAK and Fn14 was comparable between this group with early disease and the abovementioned group with longstanding disease before start of infliximab therapy, indicating that TWEAK and its receptor are expressed in early RA.

Figure 2. Representative photographs showing TWEAK receptor Fn14 expression (reddish-brown staining) in RA synovial tissue (a-c) and PsA synovial tissue (d-f): overview of RA ST (a) (original magnification 100 x), and close up of the intimal lining layer (b), and the synovial sublining (c)(magnification 200x); overview of PsA ST (d), and close up of the intimal lining layer (e), and the synovial sublining (f)
Chapter 3

Discussion

TWEAK and Fn14 are both abundantly expressed in the inflamed synovium of patients with (early) RA and PsA, where they may promote synovial inflammation and joint destruction. Of importance, there is persistent expression of TWEAK and its receptor after TNF blockade. TWEAK expression in the intimal lining layer and synovial sublining is significantly higher in RA compared to PsA, while Fn14 expression is similar. TWEAK and Fn14 are mainly expressed by FLS and, to a lesser extent, macrophages, suggesting that both effector cells may participate in TWEAK responses in patients with arthritis. The TWEAK/Fn14 pathway appears to have a physiological role in the regulation of tissue repair after injury. TWEAK may initially be produced by tissue cells, and by invading
inflammatory cells such as monocytes. The TWEAK-Fn14 pathway might then drive chemokine and cytokine production, resulting in additional infiltration of pro-inflammatory cells, and facilitate angiogenesis and the proliferation of progenitor cells, needed for tissue repair. Chronic expression of TWEAK and Fn14 in inflammatory arthritis may subvert processes beneficial in acute tissue repair to pathogenic contributions. The expression of TWEAK and Fn14 in chronic synovitis could contribute to persistent inflammation and progressive destruction of the joint tissue by the production of chemokines, cytokines, and MMPs, and promotion of cell proliferation and angiogenesis. Because the TWEAK/Fn14 pathway does not appear to be involved in the regulation of adaptive immunity, it has been suggested that blocking TWEAK/Fn14 activation would potentially have a favourable safety profile. Further studies are needed to identify the contributions of TWEAK/Fn14 to inflammatory arthritis, and the therapeutic potential of targeting this pathway.

Acknowledgements

The authors wish to thank Dr. Tom JM Smeets and Dion Groot for their work on the immunohistochemical staining and immunofluorescent double staining.
Chapter 3

Reference list

