Amplified vibrational circular dichroism

Rosa Domingos, S.M.

Citation for published version (APA):
CONTENTS

1 INTRODUCTION 1
 1.1 The Difference Between Left and Right 1
 1.2 Homochiral Biochemistry and the Drug Industry 4
 1.3 Mirror Image Asymmetry and Optical Activity 5
 1.4 Vibrational Circular Dichroism 5
 1.5 From Theory to Practice 7

2 THEORY 9
 2.1 Rotational Strength 10
 2.1.1 Transitions between molecular states 10
 2.1.2 Interaction with a circularly polarized electromagnetic field 10
 2.1.3 VCD intensity 12
 2.1.4 Symmetry Breaking 13
 2.2 Theoretical framework of VCD 14
 2.2.1 Born-Oppenheimer Approximation 14
 2.2.2 Beyond the Born-Oppenheimer Approximation 17
 2.3 VCD calculations using Density Functional Theory 20
 2.4 VCD calculations using the coupled-oscillator model 21

3 EXPERIMENTAL METHODS 23
 3.1 Vibrational Circular Dichroism Measurements 24
 3.1.1 Fourier Transform Spectroscopy 24
 3.1.2 Fourier Transform VCD Spectroscopy 25
 3.1.3 Calibration Measurement 28
 3.1.4 Baseline correction 29
 3.2 OTTLE cell for VCD 31
 3.2.1 Introduction 31
 3.2.2 Practical considerations for spectroelectrochemical measurements 32
4 Elucidating the Conformation of Foldamers Using VCD 39
 4.1 Introduction 40
 4.2 Materials and methods 41
 4.3 Mode assignment 42
 4.4 N=N-stretch VCD spectra 43
 4.4.1 Coupled-oscillator model for the NN oscillators 43
 4.4.2 147 azo-foldamer 46
 4.4.3 Photo-induced 147 unfolding 49
 4.5 Conclusion 50
5 Amplifying VCD by Manipulation of the Electronic Manifold 51
 5.1 Introduction 52
 5.2 Synthetic methods and experimental procedures 53
 5.3 Results and Discussion 54
 5.3.1 VCD enhancement in electrochemically generated radical anions 54
 5.3.2 Low-lying electronically excited states 56
 5.3.3 Conformational analysis 59
 5.4 Final Remarks 63
6 Enhanced VCD and NLO in Crystalline Architectures 65
 6.1 Introduction 66
 6.2 Experimental Methods 68
 6.2.1 Synthesis 68
 6.2.2 X-ray Diffraction Studies 68
 6.2.3 Kurtz and Perry Powder Method 70
 6.2.4 IR and VCD Spectroscopy 70
 6.3 Theoretical Methods 70
 6.3.1 Microscopic Optical Properties 70
CONTENTS vii

6.3.2 Macroscopic Nonlinear Optical Properties 71
6.3.3 Theoretical approach for VCD 72

6.4 Results and Discussion 72
6.4.1 Crystal Structure 72
6.4.2 Powder Diffraction Data 75
6.4.3 Nonlinear Optical Properties 76
6.4.4 VCD response 81

6.5 Conclusions 84

7 AMPLIFIED VCD AS A PROBE OF LOCAL BIOMOLECULAR STRUCTURE 87
7.1 Introduction 88
7.2 VCD of amino acids nearby cobalt ions 90
7.3 Enhanced VCD as a local probe in biological systems 95
 7.3.1 Deriving the coordination geometry from the amplified VCD signals 95
7.4 Final remarks 98
7.5 Configuration analysis of the amino acids binding pockets 98
7.6 Time-dependent DFT study of the binding pockets 103
7.7 Synthesis and characterization of the complexes 104
 7.7.1 Co\nII(L-prolinate)\textsubscript{2}(H\textsubscript{2}O)\textsubscript{2} 104
 7.7.2 Co\nII(L-alaninate)\textsubscript{2}(H\textsubscript{2}O)\textsubscript{2} 105
 7.7.3 Co\nII(L-valinate)\textsubscript{2}(H\textsubscript{2}O)\textsubscript{2} 105
 7.7.4 Co\nII(L-valinate-valinate)\textsubscript{2}(H\textsubscript{2}O)\textsubscript{2} 105
 7.7.5 Magnetic Susceptibility Measurements 106
 7.7.6 Sample Preparation and Methods 106

8 LOCAL VCD ENHANCEMENT IN SWITCHABLE FC-LINKED PEPTIDES 107
8.1 Introduction 108
8.2 Experimental Methods 110
 8.2.1 Synthesis and Characterization 110
 8.2.2 Spectroelectrochemical VCD measurements 112
8.3 Theoretical Methods 113
8.4 Results 113
8.5 Fc-Ala-Ala 113
8.6 Fc-Ala-Pro-Ala 116
8.7 Low-lying Electronically Excited States 120
 8.7.1 Fc-Ala-Ala, Fc-Ala-Pro-Ala 120
8.8 Conclusions and Outlook 123

BIBLIOGRAPHY 125
SUMMARY / RESUMO / SAMENVATTING 135
PUBLICATIONS 147
ACKNOWLEDGEMENTS 149