Instruction sequence expressions for the secure hash algorithm SHA-256
Bergstra, J.A.; Middelburg, C.A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Instruction Sequence Expressions for the Secure Hash Algorithm SHA-256

J.A. Bergstra and C.A. Middelburg

Informatics Institute, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
J.A.Bergstra@uva.nl,C.A.Middelburg@uva.nl

Abstract. The secure hash function SHA-256 is a function on bit strings. This means that its restriction to the bit strings of any given length can be computed by a finite instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. We describe such instruction sequences for the restrictions to bit strings of the different possible lengths by means of uniform terms from an algebraic theory.

Keywords: SHA-256, secure hash algorithm, secure hash function, single-pass instruction sequence.

1 Introduction

SHA-256 is one of the hash functions defined in the Secure Hash Standard of the U.S. National Institute of Standards and Technology [20]. To phrase it more precisely, the standard describes an algorithm that computes the hash function SHA-256 by means of pseudo-code. In this paper, unlike the standard, an algorithm that computes a function is distinguished from the computed function. SHA-256 is called a secure hash function because it is a hash function for which it is expected to be computationally infeasible to find an input with a given hash value and to find two different inputs with the same hash value. SHA-256 is implemented in some widely used security applications and protocols, including Bitcoin [15], S/MIME [17], TLS [8], SSH [19], and IPsec [11].

To our knowledge, the starting point of studies of the security of SHA-256 keeps being the above-mentioned pseudo-code description of an algorithm that computes it (see e.g. [10,12,13,14,16,18]). SHA-256 restricted to the bit strings of a given length can be computed by a finite single-pass instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction (see [6]). In this paper, we describe such instruction sequences for the restrictions to bit strings of the different possible lengths by means of uniform terms from an algebraic theory of single-pass instruction sequences. Thus, we provide a mathematically precise alternative to the pseudo-code description from the standard.
In computer science, the meaning of programs usually plays a prominent part in the explanation of many issues concerning programs. Moreover, what is taken for the meaning of programs is mathematical by nature. Yet, it is customary that practitioners do not fall back on the mathematical meaning of programs in case explanation of issues concerning programs is needed. They phrase their explanations from an empirical perspective. An attempt to approach the semantics of programming languages from the empirical perspective that a program is in essence an instruction sequence is made in [1]. The groundwork for the approach is an algebraic theory of single-pass instruction sequences, called program algebra, and an algebraic theory of mathematical objects that represent the behaviours produced by instruction sequences under execution, called basic thread algebra.

As a continuation of the work on the approach to programming language semantics followed in [1], (a) the notion of an instruction sequence was subjected to systematic and precise analysis using the groundwork laid earlier and (b) selected issues relating to well-known subjects from the theory of computation and the area of computer architecture were rigorously investigated thinking in terms of instruction sequences. This led among other things to expressiveness results about the instruction sequences considered, variations of the instruction sequences considered, an analysis of the autosolvability requirement implicit in Turing’s result regarding the undecidability of the halting problem, and an analysis of the effects of the presence of indirect jump instructions in the instruction set of a computer on points such as instruction sequence size and instruction sequence performance (see e.g. [2,3,5,7]).

The general aim of the above-mentioned continuation of the work on the approach to programming language semantics followed in [1] is to bring instruction sequences as a theme in computer science better into the picture. This is the general aim of the work presented in the current paper as well. Different from usual in the work referred to above, the accent is this time on a practical problem, viz. devising instruction sequences that compute the restrictions of SHA-256 to the bit strings of the different possible lengths. As in the work referred to above, this work is carried out in the setting of program algebra.

This paper is organized as follows. First, we survey program algebra and the particular fragment and instantiation of it that is used in this paper (Section 2). Next, we describe how we deal with 32-bit words by means of Boolean registers (Section 3) and how we compute the basic and derived operations on 32-bit words that are used in the standard to define SHA-256 (Section 4). Then, we give the description of instruction sequences that define SHA-256 (Section 5). Finally, we make some concluding remarks (Section 6).

2 Program Algebra

In this section, we present a brief outline of PGA (ProGram Algebra) and the particular fragment and instantiation of it that is used in the remainder of this paper. A mathematically precise treatment can be found in [6].
The starting-point of PGA is the simple and appealing perception of a sequential program as a single-pass instruction sequence, i.e. a finite or infinite sequence of instructions of which each instruction is executed at most once and can be dropped after it has been executed or jumped over.

It is assumed that a fixed but arbitrary set \(\mathfrak{A} \) of \textit{basic instructions} has been given. The intuition is that the execution of a basic instruction may modify a state and produces a reply at its completion. The possible replies are 0 and 1. The actual reply is generally state-dependent. Therefore, successive executions of the same basic instruction may produce different replies. The set \(\mathfrak{A} \) is the basis for the set of instructions that may occur in the instruction sequences considered in PGA. The elements of the latter set are called \textit{primitive instructions}. There are five kinds of primitive instructions, which are listed below:

- for each \(a \in \mathfrak{A} \), a \textit{plain basic instruction} \(a \);
- for each \(a \in \mathfrak{A} \), a \textit{positive test instruction} \(+a \);
- for each \(a \in \mathfrak{A} \), a \textit{negative test instruction} \(-a \);
- for each \(l \in \mathbb{N} \), a \textit{forward jump instruction} \(\#l \);
- a \textit{termination instruction} \(! \).

We write \(\mathcal{I} \) for the set of all primitive instructions.

On execution of an instruction sequence, these primitive instructions have the following effects:

- the effect of a positive test instruction \(+a \) is that basic instruction \(a \) is executed and execution proceeds with the next primitive instruction if 1 is produced and otherwise the next primitive instruction is skipped and execution proceeds with the primitive instruction following the skipped one — if there is no primitive instruction to proceed with, inaction occurs;
- the effect of a negative test instruction \(-a \) is the same as the effect of \(+a \), but with the role of the value produced reversed;
- the effect of a plain basic instruction \(a \) is the same as the effect of \(+a \), but execution always proceeds as if 1 is produced;
- the effect of a forward jump instruction \(\#l \) is that execution proceeds with the \(l \)th next primitive instruction of the instruction sequence concerned — if \(l \) equals 0 or there is no primitive instruction to proceed with, inaction occurs;
- the effect of the termination instruction \(! \) is that execution terminates.

To build terms, PGA has a constant for each primitive instruction and two operators. These operators are: the binary concatenation operator \(; \) and the unary repetition operator \(\omega \). We use the notation \(\gamma_{i=0}^{n} P_i \), where \(P_0, \ldots, P_n \) are PGA terms, for the PGA term \(P_0; \ldots; P_n \).

The instruction sequences that concern us in the remainder of this paper are the finite ones, i.e. the ones that can be denoted by closed PGA terms in which the repetition operator does not occur. Moreover, the basic instructions that concern us are instructions to set and get the content of Boolean registers.
More precisely, we take the set
\[
\{\text{in} : i \in \mathbb{N}^+\} \cup \{\text{out} : i : b \mid i \in \mathbb{N}^+ \land b \in \{0, 1\}\} \\
\cup \{\text{aux} : i : \text{get} \mid i \in \mathbb{N}^+\} \cup \{\text{aux} : i : \text{set} : b \mid i \in \mathbb{N}^+ \land b \in \{0, 1\}\}
\]
as the set \(\mathcal{A}\) of basic instructions.

Each basic instruction consists of two parts separated by a dot. The part on the left-hand side of the dot plays the role of the name of a Boolean register and the part on the right-hand side of the dot plays the role of a command to be carried out on the named Boolean register. For each \(i \in \mathbb{N}^+\):
- \text{in} : \(i\) serves as the name of the Boolean register that is used as \(i\)th input register in instruction sequences;
- \text{out} : \(i\) serves as the name of the Boolean register that is used as \(i\)th output register in instruction sequences;
- \text{aux} : \(i\) serves as the name of the Boolean register that is used as \(i\)th auxiliary register in instruction sequences.

On execution of a basic instruction, the commands have the following effects:
- the effect of \text{get} is that nothing changes and the reply is the content of the named Boolean register;
- the effect of \text{set} : 0 is that the content of the named Boolean register becomes 0 and the reply is 0;
- the effect of \text{set} : 1 is that the content of the named Boolean register becomes 1 and the reply is 1.

Let \(n, m \in \mathbb{N}\), let \(f : \{0, 1\}^n \to \{0, 1\}^m\), and let \(X\) be a finite instruction sequence that can be denoted by a closed PGA term in the case that \(\mathcal{A}\) is taken as specified above. Then \(X\) computes \(f\) if there exists a \(k \in \mathbb{N}\) such that for all \(b_1, \ldots, b_n \in \{0, 1\}\): if \(X\) is executed in an environment with \(n\) input registers, \(m\) output registers, and \(k\) auxiliary registers, the content of the input registers with names in:1, \ldots, in:\(n\) are \(b_1, \ldots, b_n\) when execution starts, and the content of the output registers with names out:1, \ldots, out:\(m\) are \(b'_1, \ldots, b'_m\) when execution terminates, then \(f(b_1, \ldots, b_n) = b'_1, \ldots, b'_m\).

3 Dealing with 32-Bit Words

This section is concerned with dealing with bit strings of length 32 by means of Boolean registers. It contains definitions which facilitate the description of instruction sequences that define SHA-256 in Section 5. In the sequel, bit strings of length 32 will mostly be called 32-bit words or shortly words.

Let \(\kappa \in \{\text{in}, \text{out}, \text{aux}\}\), let \(i \in \mathbb{N}^+\), and let \(\kappa : i\) be the name of a Boolean register. Then \(\kappa\) and \(i\) are called the kind and number of the Boolean register. Successive Boolean registers are Boolean registers of the same kind with successive numbers. Words are stored by means of Boolean registers such that the successive bits of a stored word are the content of successive Boolean registers and the first bit of the word is the content of a Boolean register whose number is in the set \(\{n \in \mathbb{N} \mid n \text{ mod } 32 = 1\}\).
The words that form a part of the message to which SHA-256 is to be applied are stored in advance of the computation in input registers, starting with the input register with number 1, the words that form a part of the message digest that results from applying SHA-256 are stored during the computation in output registers, starting with the output register with number 1, and the words that form a part of intermediate results that arise during the computation, such as message schedules, hash values, and working values, are stored in auxiliary registers.

It is convenient to have available the names used in the standard for the words of the message blocks, the message schedule, the hash value, the working values, and the temporary values in the current setting for the Boolean registers that contain the least significant bit of these words. It is also convenient to have available the names D_0, \ldots, D_7 for the Boolean registers that contain the least significant bit of the words of the message digest, the names $t_1, \ldots, t_6, t'_1, \ldots, t'_4$ for the Boolean registers that contain the least significant bit of the words of additional intermediate values that are temporarily stored, and the name cb for the Boolean register that contains the carry bit that is repeatedly stored when computing the addition operation. Therefore, we define:

$$M_{j}^{i} \triangleq \text{in}:k \quad \text{where} \quad k = 512 \cdot (i - 1) + 32 \cdot j + 1 \quad (1 \leq i \leq 2^{55}, 0 \leq j \leq 15),$$

$$W_{j} \triangleq \text{aux}:k \quad \text{where} \quad k = 32 \cdot j + 1 \quad (0 \leq j \leq 63),$$

$$H_{j} \triangleq \text{aux}:k \quad \text{where} \quad k = 32 \cdot j + 2049 \quad (0 \leq j \leq 7),$$

$$a \triangleq \text{aux:2305}, \quad b \triangleq \text{aux:2337}, \quad c \triangleq \text{aux:2369}, \quad d \triangleq \text{aux:2401}, \quad e \triangleq \text{aux:2433},$$

$$f \triangleq \text{aux:2465}, \quad g \triangleq \text{aux:2497}, \quad h \triangleq \text{aux:2529}, \quad T_1 \triangleq \text{aux:2561}, \quad T_2 \triangleq \text{aux:2593},$$

$$t_1 \triangleq \text{aux:2625}, \quad t_2 \triangleq \text{aux:2657}, \quad t_3 \triangleq \text{aux:2689}, \quad t_4 \triangleq \text{aux:2721}, \quad t_5 \triangleq \text{aux:2753},$$

$$t_6 \triangleq \text{aux:2785}, \quad t'_1 \triangleq \text{aux:2817}, \quad t'_2 \triangleq \text{aux:2849}, \quad t'_3 \triangleq \text{aux:2881}, \quad t'_4 \triangleq \text{aux:2913},$$

$$cb \triangleq \text{aux:2945},$$

$$D_{j} \triangleq \text{out}:k \quad \text{where} \quad k = 32 \cdot j + 1 \quad (0 \leq j \leq 7).$$

It is also convenient to have available the names used in the standard for the words of the initial hash value:

$$H_{0}^{(0)} \triangleq 0110101000001001110110011001100111,$$

$$H_{1}^{(0)} \triangleq 10110110110011110101100100010101,$$

$$H_{2}^{(0)} \triangleq 00111100011011110111100011011101011,$$

$$H_{3}^{(0)} \triangleq 101001010100111111111110101001110111101,$$

$$H_{4}^{(0)} \triangleq 010100010001110011001010011101111,$$

$$H_{5}^{(0)} \triangleq 10011011100101101101001100011001,$$

$$H_{6}^{(0)} \triangleq 001111110000111110110110101011111,$$

$$H_{7}^{(0)} \triangleq 01011011111000110001110100110011011;$$

1 The Boolean registers with names t'_1, \ldots, t'_4 are reserved for the least significant bit of intermediate values that arise when computing one of the derived operations on bit strings introduced in Section 3.
and the names used in the standard for the “SHA-256 constants”:

\[
K_0 \triangleq 01000010100010100010111110011000, \\
K_1 \triangleq 011100010011011101001000100010001, \\
\vdots \\
K_{63} \triangleq 11000110001110001011110001110010. \quad 2
\]

4 Computing Operations on 32-Bit Words

This section is concerned with computing operations on bit strings of length 32. It contains definitions which facilitate the description of instruction sequences that define SHA-256 in Section 5.

The basic operations on bit strings that are relevant to SHA-256 are bitwise negation, bitwise conjunction, bitwise exclusive disjunction, shift right n positions, rotate right n positions (0 < n < 32), and addition. For these operations, we define parameterized instruction sequences computing them in case the parameters are properly instantiated (see below):

\[
\begin{align*}
\text{NOT}(s;k,d;l) & \triangleq \forall i \in 0^{31}(d;l+i.set:0; -s;k+i.get; d;l+i.set:1), \\
\text{AND}(s_1;k_1, s_2;k_2, d;l) & \triangleq \forall i \in 0^{31}(d;l+i.set:0; -s_1;k_1+i.get; #4; -s_2;k_2+i.get; #2; d;l+i.set:1), \\
\text{XOR}(s_1;k_1, s_2;k_2, d;l) & \triangleq \forall i \in 0^{31}(d;l+i.set:0; -s_1;k_1+i.get; #4; -s_2;k_2+i.get; #5; #3; +s_2;k_2+i.get; #2; d;l+i.set:1), \\
\text{SHR}^n(s;k,d;l) & \triangleq \forall i \in 0^{31-n}(d;l+i.set:0; +s;k+i+n.get; d;l+i.set:1); \\
& \forall i \in 0^{n-1}(d;l+i+32-n.set:0), \\
\text{ROTR}^n(s;k,d;l) & \triangleq \forall i \in 0^{31-n}(d;l+i.set:0; +s;k+i+n.get; d;l+i.set:1); \\
& \forall i \in 0^{n-1}(d;l+i+32-n.set:0; +s;k+i.get; d;l+i+32-n.set:1), \\
\text{ADD}(s_1;k_1, s_2;k_2, d;l) & \triangleq \forall i \in 0^{31}(d;l+i.set:0; -s_1;k_1+i.get; #7; -s_2;k_2+i.get; #10; -cb.get; #10; d;l+i.set:1; #8; -s_2;k_2+i.get; #8; -cb.get; #8; #3; -cb.get; #5; cb.set:1; #5; -cb.get; #2; d;l+i.set:1; cb.set:0),
\end{align*}
\]

\[2\text{ All 64 definitions have been put into an appendix.}\]
where \(s, s_1, s_2 \) range over \(\{ \text{in}, \text{aux} \} \), \(d \) ranges over \(\{ \text{aux, out} \} \), and \(k, k_1, k_2, l \) range over \(\{ n \in \mathbb{N} \mid n \mod 32 = 1 \} \). For each of these parameterized instruction sequences, all but the last parameter correspond to the operands of the operation concerned and the last parameter corresponds to the result of the operation concerned.

The intended operations are computed provided that the instantiation of the last parameter differs from the instantiation of each of the other parameters. We could have prevented this condition at the cost of longer instruction sequences. In this paper, the condition will always be satisfied.

In the standard, for SHA-256, six derived operations on bit strings are defined in terms of the above-mentioned basic operations. For these operations, we define parameterized instruction sequences computing them:

\[
CH(s_1:k_1, s_2:k_2, s_3:k_3, d,l) \triangleq
\]
\[
\text{NOT}(s_1:k_1, t'_1); \text{AND}(s_1:k_1, s_2:k_2, t'_2); \text{AND}(t'_1, s_3:k_3, t'_3); \]
\[
\text{XOR}(t'_2, t'_3, d,l),
\]
\[
MAJ(s_1:k_1, s_2:k_2, s_3:k_3, d,l) \triangleq
\]
\[
\text{AND}(s_1:k_1, s_2:k_2, t'_1); \text{AND}(s_1:k_1, s_3:k_3, t'_2); \text{AND}(s_2:k_2, s_3:k_3, t'_3);
\]
\[
\text{XOR}(t'_1, t'_2, t'_3); \text{XOR}(t'_3, t'_4, d,l),
\]
\[
\Sigma_0(s;k,d;l) \triangleq\]
\[
\text{ROTR}^2(s;k, t'_1); \text{ROTR}^{13}(s;k, t'_2); \text{ROTR}^{22}(s;k, t'_3);
\]
\[
\text{XOR}(t'_1, t'_2, t'_4); \text{XOR}(t'_3, t'_4, d,l),
\]
\[
\Sigma_1(s;k,d;l) \triangleq\]
\[
\text{ROTR}^6(s;k, t'_1); \text{ROTR}^{11}(s;k, t'_2); \text{ROTR}^{25}(s;k, t'_3);
\]
\[
\text{XOR}(t'_1, t'_2, t'_4); \text{XOR}(t'_3, t'_4, d,l),
\]
\[
\sigma_0(s;k,d;l) \triangleq\]
\[
\text{ROTR}^7(s;k, t'_1); \text{ROTR}^{18}(s;k, t'_2); \text{SHR}^3(s;k, t'_3);
\]
\[
\text{XOR}(t'_1, t'_2, t'_4); \text{XOR}(t'_3, t'_4, d,l),
\]
\[
\sigma_1(s;k,d;l) \triangleq\]
\[
\text{ROTR}^{17}(s;k, t'_1); \text{ROTR}^{19}(s;k, t'_2); \text{SHR}^{10}(s;k, t'_3);
\]
\[
\text{XOR}(t'_1, t'_2, t'_4); \text{XOR}(t'_3, t'_4, d,l),
\]

where \(s, s_1, s_2, s_3 \) range over \(\{ \text{in, aux} \} \), \(d \) ranges over \(\{ \text{aux, out} \} \), \(k, k_1, k_2, k_3, l \) range over \(\{ n \in \mathbb{N} \mid n \mod 32 = 1 \} \).

We also define a parameterized instruction sequence by which the successive bits in a constant 32-bit word become the content of 32 successive Boolean registers and a parameterized instruction sequence by which the successive bits

\[\text{In the standard, basic operations and derived operations are called operations and functions, respectively.}\]
in a 32-bit word that are the content of 32 successive Boolean registers become
the content of 32 other successive Boolean registers:

\[\text{SET}(b_0 \ldots b_{31}, d:l) \triangleq \bigwedge_{i=0}^{31} (d:l+i.\text{set}:b_i) , \]
\[\text{MOV}(s:k, d:l) \triangleq \bigwedge_{i=0}^{31} (d:l+i.\text{set}:0 ; +s:k+i.\text{get} ; d:l+i.\text{set}:1) , \]

where \(b_0, \ldots, b_{31} \) range over \{0, 1\}, \(s \) ranges over \{in, aux\}, \(d \) ranges over \{aux, out\}, and \(k, l \) range over \(\{n \in \mathbb{N} \mid n \mod 32 = 1\} \).

Moreover, we use the abbreviation

\[\text{CONC FOR } i = l \text{ TO } l' : \{P_i\} \text{ for } P_1 ; \ldots ; P_{l'} , \]

where \(l, l' \in \mathbb{N} \) are such that \(l < l' \), and \(P_1, \ldots, P_{l'} \) are instruction sequences. We write CONC FOR instead of FOR to emphasize that we have to do here with an abbreviation for the concatenation of two or more instruction sequences.

The calculation of the lengths of the parameterized instruction sequences defined above is a matter of simple additions and multiplications. The lengths of the instruction sequences corresponding to the basic operations on bit strings relevant to SHA-256 are as follows:

\[\text{len}(\text{NOT}(s:k, d:l)) = 96 , \]
\[\text{len}(\text{AND}(s_1:k_1, s_2:k_2, d:l)) = 192 , \]
\[\text{len}(\text{XOR}(s_1:k_1, s_2:k_2, d:l)) = 288 , \]
\[\text{len}(\text{SHR}^n(s:k, d:l)) = 96 - 2 \cdot n , \]
\[\text{len}(\text{ROTR}^n(s:k, d:l)) = 96 , \]
\[\text{len}(\text{ADD}(s_1:k_1, s_2:k_2, d:l)) = 705 ; \]

the lengths of the instruction sequences corresponding to the derived operations on bit strings defined in the standard are as follows:

\[\text{len}(\text{CH}(s_1:k_1, s_2:k_2, s_3:k_3, d:l)) = 768 , \]
\[\text{len}(\text{MAJ}(s_1:k_1, s_2:k_2, s_3:k_3, d:l)) = 1152 , \]
\[\text{len}(\Sigma_0(s:k, d:l)) = 864 , \]
\[\text{len}(\Sigma_1(s:k, d:l)) = 864 , \]
\[\text{len}(\sigma_0(s:k, d:l)) = 858 , \]
\[\text{len}(\sigma_1(s:k, d:l)) = 844 ; \]

and the lengths of the SET and MOV instruction sequences are as follows:

\[\text{len}(\text{SET}(b_0 \ldots b_{31}, d:l)) = 32 , \]
\[\text{len}(\text{MOV}(s:k, d:l)) = 96 . \]
5 SHA-256 Hash Computation

In this section, we give the description of instruction sequences that define SHA-256 using the definitions given in Sections 3 and 4.

The padding of messages to a bit length that is a multiple of 512 is left out. It is assumed that messages are already padded. Thus, the bit length of a message is always a multiple of 512. Suppose that \(N \) is the bit length of a message divided by 512. Because the maximum bit length of a message is \(2^{64} \), we have that \(1 \leq N \leq 2^{55} \).

We write \(\mathcal{M}_N \), where \(1 \leq N \leq 2^{55} \), for \(\{0,1\}^{512\cdot N} \), and we write \(\mathcal{M} \) for \(\bigcup \{ \mathcal{M}_N \mid 1 \leq N \leq 2^{55} \} \). Moreover, we write \(\mathcal{D} \) for \(\{0,1\}^{256} \). SHA-256 is a function from \(\mathcal{M} \) to \(\mathcal{D} \). We write SHA-256\(_N\) for the restriction of SHA-256 to \(\mathcal{M}_N \).

Clearly, SHA-256 is the unique function from \(\mathcal{M} \) to \(\mathcal{D} \) such that, for each \(N \) with \(1 \leq N \leq 2^{55} \), for each \(w \in \mathcal{M}_N \), SHA-256\(_N\)(w) = SHA-256\(_N\)(w).

In Table 1 an instruction sequence IS\(_{SHA-256_N}\) is uniformly described for all \(N \) with \(1 \leq N \leq 2^{55} \).

Claim. For each \(N \) with \(1 \leq N \leq 2^{55} \), the instruction sequence IS\(_{SHA-256_N}\) computes the function SHA-256\(_N\).

Because SHA-256 is not formally defined in the standard, we cannot formally prove this claim. However, we follow the standard so precisely in the description of IS\(_{SHA-256_N}\) that the claim is unlikely to be wrong unless the pseudo code from the standard should not be interpreted as to be expected.

An easy calculation leads to the following result.

Fact. For each \(N \) with \(1 \leq N \leq 2^{55} \), the length of the instruction sequence IS\(_{SHA-256_N}\) is \(780152 \cdot N + 1025 \).

The calculation is a matter of simple additions and multiplications, using the lengths of the parameterized instruction sequences defined in Section 4.

\[
8 \cdot 32 + \\
N \cdot (16 \cdot 96 + \\
48 \cdot (844 + 858 + 3 \cdot 705) + \\
8 \cdot 96 + \\
64 \cdot (864 + 768 + 32 + 4 \cdot 705 + \\
864 + 1152 + 705 + \\
3 \cdot 96 + 705 + 3 \cdot 96 + 705) + \\
8 \cdot (96 + 705)) + \\
8 \cdot 96 + \\
1 \\
= \\
780152 \cdot N + 1025 .
\]
Table 1. The instruction sequence ISHA-256

CONC FOR $j = 0$ TO 7 :

\{
 SET($H_i^{(0)}$, H_i)
\};

CONC FOR $i = 1$ TO N :

\{
 CONC FOR $j = 0$ TO 15 :

 \{
 MOV($M_j^{(i)}$, W_j)
 \};

 CONC FOR $j = 16$ TO 63 :

 \{
 \sigma_1(W_{j-2}, t_1) ; \sigma_0(W_{j-15}, t_2) ;
 ADD(t_1, W_{j-7}, t_3) ; ADD(t_2, W_{j-16}, t_4) ; ADD(t_3, t_4, W_j)
 \}

 MOV(H_0, a) ; MOV(H_1, b) ; MOV(H_2, c) ; MOV(H_3, d) ;
 MOV(H_4, e) ; MOV(H_5, f) ; MOV(H_6, g) ; MOV(H_7, h) ;

 CONC FOR $j = 0$ TO 63 :

 \{
 \Sigma_1(e, t_1) ; CH(e, f, g, t_2) ; SET(K_j, t_3) ;
 ADD(t_1, h, t_4) ; ADD(t_2, t_3, t_5) ; ADD(t_5, W_j, t_6) ; ADD(t_4, t_6, T_1) ;
 \Sigma_0(a, t_1) ; MAJ(a, b, c, t_2) ; ADD(t_1, t_2, T_2) ;
 MOV(g, h) ; MOV(f, g) ; MOV(e, f) ; ADD(d, T_1, e) ;
 MOV(c, d) ; MOV(b, c) ; MOV(a, b) ; ADD(T_1, T_2, a)
 \}

 MOV(H_0, t_1) ; ADD(a, t_1, H_0) ; MOV(H_1, t_1) ; ADD(b, t_1, H_1) ;
 MOV(H_2, t_1) ; ADD(c, t_1, H_2) ; MOV(H_3, t_1) ; ADD(d, t_1, H_3) ;
 MOV(H_4, t_1) ; ADD(e, t_1, H_4) ; MOV(H_5, t_1) ; ADD(f, t_1, H_5) ;
 MOV(H_6, t_1) ; ADD(g, t_1, H_6) ; MOV(H_7, t_1) ; ADD(h, t_1, H_7)
 \};

 CONC FOR $j = 0$ TO 7 :

 \{
 MOV(H_j, D_j)
 \};
The left-hand side of this equation is laid out in such a way that the structure of the description in Table 1 is clearly reflected.

Recall that the instruction sequence IS$_{SHA-256_N}$ ($1 \leq N \leq 2^{55}$) contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. It is shown in [6] that, in the case of instruction sequences of this kind, instruction sequence length is a computational complexity measure closely related to non-uniform time complexity. Notice that, if the message has the maximum bit length ($\pm 1.8 \cdot 10^{19}$), the length of the instruction sequence is $\pm 2.8 \cdot 10^{22}$.

The maximum number of input registers needed is 2^{64} and the number of output registers needed is 256. The number of auxiliary registers used is 2945. We expect that number of auxiliary registers used by instruction sequence is a computational complexity measure closely related to non-uniform space complexity. Notice that the number of auxiliary registers used here does not depend on the length of the message.

6 Concluding Remarks

We have described instruction sequences that compute the restrictions of the secure hash function SHA-256 to the bit strings of the different possible lengths by means of uniform terms from the algebraic theory of single-pass instruction sequences known as PGA. Thus, we have provided a mathematically precise alternative to the pseudo-code description of an algorithm that computes SHA-256 found in the standard.

In previous work that is carried out in the setting of PGA, the work always concerns rigorous investigation of theoretical issues thinking in terms of instruction sequences (see e.g. [4]). This may give the impression that PGA is only suitable for such work. The use of PGA in the work presented in this paper shows that it is more versatile. However, this work has also shown that scalability calls for extension of PGA to an instruction sequence calculus that includes among other things a variable binding generalized concatenation operator and a suitable definition mechanism.

It is shown in [6] that, in the case of instruction sequences of the kind that we have dealt with in this paper, instruction sequence length is a computational complexity measure closely related to non-uniform time complexity. An option for future work is investigating the possible role of this complexity measure in issues concerning the complexity of the different kinds of attack on secure hash functions like SHA-256.

Acknowledgements

We thank Bob Diertens from the University of Amsterdam for carefully reading an earlier version of this paper, pointing out annoying errors in it, and developing programs by which the description of IS$_{SHA-256_N}$ given in this paper can be transformed into an instruction sequence that can be executed by means of the PGA toolset [9].
References

A Definitions of the SHA-256 constants

\begin{align*}
K_0 & \triangleq 01000010100010100010111110011000, \\
K_1 & \triangleq 01110001001111010001001000100001, \\
K_2 & \triangleq 1011011110000001111111011011110111, \\
K_3 & \triangleq 11101001101011011101101110110011001, \\
K_4 & \triangleq 00111001010110100110000100101100001, \\
K_5 & \triangleq 010110011111000100011001111100000001, \\
K_6 & \triangleq 100100100111011011000101111010001011100, \\
K_7 & \triangleq 0110101100011001101101101101101011000011, \\
K_8 & \triangleq 11010000000001111110110101101001100001, \\
K_9 & \triangleq 00011100100000011011111010110100000001, \\
K_{10} & \triangleq 0101001000000111011010111111101101000101, \\
K_{11} & \triangleq 0111011010111101011111101011011010000001, \\
K_{12} & \triangleq 01110010101111010011011011011010000001, \\
K_{13} & \triangleq 1000000001011110101101010001111111, \\
K_{14} & \triangleq 10011100111101111000000011011000111, \\
K_{15} & \triangleq 11000000100110111001100000111110001, \\
K_{16} & \triangleq 1110000100110100111001000111111100, \\
K_{17} & \triangleq 1111000111111010111000011000000010, \\
K_{18} & \triangleq 0000111011000000101111101111000100, \\
K_{19} & \triangleq 001111100010011111011111011001001100, \\
K_{20} & \triangleq 0001111110111101000101110000111000, \\
K_{21} & \triangleq 001101001101100000000000010111000001, \\
K_{22} & \triangleq 0101010010100011011110101110110000111, \\
K_{23} & \triangleq 0011101011011111101110010000011010000000, \\
K_{24} & \triangleq 0101110000011110110101010001110000000001, \\
K_{25} & \triangleq 101010000011001100011000011001101101, \\
K_{26} & \triangleq 1011000000000111111111001111000000001, \\
K_{27} & \triangleq 1011111101111111111111111111111111111, \\
K_{28} & \triangleq 1100001011110000000000001111111111111, \\
K_{29} & \triangleq 11010101101010110101111010010010001111111, \\
K_{30} & \triangleq 000001101010100010001100011010011101, \\
K_{31} & \triangleq 00010100001010100101111111101101001000111, \\
K_{32} & \triangleq 001011111011110000011010001100011111111, \\
K_{33} & \triangleq 001001101001111000001101011111111111111, \\
K_{34} & \triangleq 01001101001100011111111111111111111.
\[K_{35} \triangleq 01010011001110000001110100010011, \\
K_{36} \triangleq 01100101000010100111001110101010, \\
K_{37} \triangleq 01110110011010100000101010111111, \\
K_{38} \triangleq 10000001110000101100100101011110, \\
K_{39} \triangleq 1001001001110010011010000101, \\
K_{40} \triangleq 101000101011011111111111001010000001, \\
K_{41} \triangleq 1010100000101001100100100010111, \\
K_{42} \triangleq 110000100100101110001101111110000, \\
K_{43} \triangleq 110001110110100101000011011110011, \\
K_{44} \triangleq 11010001100010111011000000011001, \\
K_{45} \triangleq 11010110100110000100100001011001, \\
K_{46} \triangleq 111010000011111001011000101, \\
K_{47} \triangleq 0001000000101010100000111110000, \\
K_{48} \triangleq 001100001101001100000100010110, \\
K_{49} \triangleq 0011110001100001100000001100001000, \\
K_{50} \triangleq 0010000100000111101111001101111000, \\
K_{51} \triangleq 001101110100110101111001011100101, \\
K_{52} \triangleq 001110001100000011000110110011, \\
K_{53} \triangleq 01001111011010001010100101, \\
K_{54} \triangleq 0100111010011000010110011001010111, \\
K_{55} \triangleq 011010000010110110111111000111111111, \\
K_{56} \triangleq 011101001111111100000101110111110, \\
K_{57} \triangleq 0111000101001101010111100111111111, \\
K_{58} \triangleq 100000100011011111110000010100, \\
K_{59} \triangleq 1000111000110001000010000010001000, \\
K_{60} \triangleq 100010001000111111111111111111110, \\
K_{61} \triangleq 1010001000110000011100111011101011, \\
K_{62} \triangleq 1010011011111000101000111111111101, \\
K_{63} \triangleq 11000111001100010111100011111111010. \]