From Ecological Stoichiometry to Biochemical Composition: Variation in N and P Supply Alters Key Biosynthetic Rates in Marine Phytoplankton

Grosse, J.; Burson, A.; Stomp, M.; Huisman, J.; Boschker, H.T S.

Published in:
Frontiers in Microbiology

DOI:
10.3389/fmicb.2017.01299

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Supplementary Material

From Ecological Stoichiometry to Biochemical Composition: Variation in N and P Supply Alters Key Biosynthetic Rates in Marine Phytoplankton

Julia Grosse*, Amanda Burson, Maayke Stomp, Jef Huisman, Henricus T. S. Boschker

*Correspondence: Julia Grosse: jgrosse@geomar.de
1 Material & Methods

Calculation of biosynthesis rates

Biosynthesis rates of the different molecules were calculated from 13C incorporation according to Grosse et al. (2015). In short, carbon stable isotope ratios are expressed in the δ^{13}C notation:

$$\delta^{13}\text{C}_{\text{sample}}(\%) = ((R_{\text{sample}}/R_{\text{VPDB}}) - 1) \times 1000,$$

where R_{sample} and R_{VPDB} denote the 13C/12C ratio in the sample and the international standard, Vienna Pee Dee Belemnite (for carbon $R_{\text{VPDB}} = 0.0111802 \pm 0.0000009$), respectively.

Incorporation of 13C into bulk carbon as well as individual compounds is reflected as excess (above background) 13C in equation 1:

$$\text{Excess }^{13}\text{C}_{\text{sample}} = \left(1 - \frac{\delta^{13}\text{C}_{\text{sample}} / 1000 + 1}{\delta^{13}\text{C}_{\text{background}} / 1000 + 1}\right) \times \text{concentration}_{\text{sample}}(1),$$

where $\delta^{13}\text{C}_{\text{sample}}$ refers to the δ^{13}C value of bulk material (POC) or the compound of interest at the end of the incubation, $\delta^{13}\text{C}_{\text{background}}$ denotes the δ^{13}C value of the unlabeled POC or compounds before the addition of 13C-DIC, concentration$_{\text{sample}}$ denotes the concentration of POC or compound in nmol of carbon per liter (nmol C L$^{-1}$) at the end of the incubation.

Similarly, the enrichment of the DIC pool with 13C has to be calculated (Equation 2) in order to determine total carbon incorporation.

$$\text{Incorporation of }^{13}\text{C-DIC} = \left(1 - \frac{(\delta^{13}\text{C}_{\text{DICsample}} / 1000 + 1) \times R_{\text{VPDB}}}{(\delta^{13}\text{C}_{\text{DICbackground}} / 1000 + 1) \times R_{\text{VPDB}} + 1}\right) \times \text{concentration}_{\text{DIC}}(2),$$

where $\delta^{13}\text{C}_{\text{DICsample}}$ refers δ^{13}C of DIC in culture flasks at the end of the incubation and $\delta^{13}\text{C}_{\text{DICbackground}}$ denotes δ^{13}C of DIC before the addition of 13C-DIC.

Biosynthesis rates (nmol C (µmol POC)$^{-1}$ d$^{-1}$) are calculated as followed:

$$\text{Biosynthesis rate} = \left(\frac{\text{Excess }^{13}\text{C}_{\text{sample}}}{\text{Enrichment }^{13}\text{C}_{\text{DIC}}} \right) / \text{POC}_\text{concentration} / \Delta t \times 24$$

where $\text{POC}_\text{concentration}$ is the concentration of POC (µmol L$^{-1}$) at the end of the incubation and Δt is the incubation time in hours. A multiplication with 24 results in daily rates. A normalization of rates to biomass allows comparison between different phytoplankton communities and chemostats.

Concentrations and biosynthesis rates were calculated for each individual compound. Concentrations and biosynthesis rates of subgroups (e.g. essential/non-essential AA, storage/structural CH/FA) or total macromolecule groups (total fatty acids, amino acids and carbohydrates) were obtained by summing all individual biosynthesis rates within that group.
2 Supplementary Table

Supplementary Table 1: Contributions of individual amino acids to total amino acid concentration (% AA conc.) and total amino acid synthesis (% AA synth.) in each chemostat, separated by non-essential and essential amino acids [aspartate/asparagine (Aspx), glutamate/glutamine (Glux), alanine (Ala), serine (Ser), glycine (Gly), tyrosine (Tyr), proline (Pro), phenylalanine (Phe), lysine (Lys), threonine (Thr), isoleucine (Ile), leucine (Leu), valine (Val), histidine (His), argin (Arg)].

<table>
<thead>
<tr>
<th>non-essential amino acids</th>
<th>Aspx</th>
<th>Glux</th>
<th>Ala</th>
<th>Ser</th>
<th>Gly</th>
<th>Tyr</th>
<th>Pro</th>
<th>Phe</th>
<th>Lys</th>
<th>Thr</th>
<th>Ile</th>
<th>Leu</th>
<th>Val</th>
<th>His</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td>% AA conc.</td>
<td>5.28</td>
<td>9.63</td>
<td>9.24</td>
<td>7.78</td>
<td>5.64</td>
<td>6.10</td>
<td>4.47</td>
<td>9.58</td>
<td>3.99</td>
<td>4.64</td>
<td>6.48</td>
<td>16.48</td>
<td>8.28</td>
<td>0.84</td>
<td>1.57</td>
</tr>
<tr>
<td>% AA synth.</td>
<td>5.05</td>
<td>8.16</td>
<td>9.49</td>
<td>8.39</td>
<td>8.96</td>
<td>7.92</td>
<td>4.52</td>
<td>7.00</td>
<td>11.59</td>
<td>7.52</td>
<td>4.12</td>
<td>18.37</td>
<td>9.46</td>
<td>0.79</td>
<td>2.01</td>
</tr>
<tr>
<td>MNHP</td>
<td>3.76</td>
<td>6.76</td>
<td>9.84</td>
<td>7.11</td>
<td>5.93</td>
<td>5.45</td>
<td>4.52</td>
<td>9.00</td>
<td>4.11</td>
<td>4.84</td>
<td>6.77</td>
<td>5.00</td>
<td>8.46</td>
<td>0.92</td>
<td>2.77</td>
</tr>
<tr>
<td>LNHP</td>
<td>4.19</td>
<td>8.55</td>
<td>9.49</td>
<td>6.38</td>
<td>6.10</td>
<td>6.43</td>
<td>5.61</td>
<td>7.06</td>
<td>5.32</td>
<td>4.89</td>
<td>7.55</td>
<td>15.81</td>
<td>8.00</td>
<td>1.06</td>
<td>3.13</td>
</tr>
<tr>
<td>MNMP</td>
<td>3.64</td>
<td>8.25</td>
<td>9.49</td>
<td>5.25</td>
<td>6.96</td>
<td>6.77</td>
<td>4.44</td>
<td>5.36</td>
<td>4.42</td>
<td>4.89</td>
<td>7.55</td>
<td>15.34</td>
<td>7.55</td>
<td>0.80</td>
<td>2.72</td>
</tr>
<tr>
<td>LNLHP</td>
<td>4.04</td>
<td>6.07</td>
<td>9.49</td>
<td>4.86</td>
<td>5.31</td>
<td>4.59</td>
<td>4.44</td>
<td>5.26</td>
<td>5.65</td>
<td>4.22</td>
<td>5.22</td>
<td>16.20</td>
<td>7.55</td>
<td>0.90</td>
<td>2.71</td>
</tr>
<tr>
<td>HNHP</td>
<td>5.85</td>
<td>19.36</td>
<td>9.49</td>
<td>5.01</td>
<td>5.15</td>
<td>5.35</td>
<td>4.57</td>
<td>8.51</td>
<td>4.11</td>
<td>5.03</td>
<td>5.72</td>
<td>15.84</td>
<td>7.58</td>
<td>0.68</td>
<td>4.08</td>
</tr>
<tr>
<td>HNMP</td>
<td>2.68</td>
<td>9.66</td>
<td>9.49</td>
<td>6.71</td>
<td>6.00</td>
<td>6.47</td>
<td>4.50</td>
<td>9.91</td>
<td>4.27</td>
<td>4.39</td>
<td>6.50</td>
<td>16.82</td>
<td>8.13</td>
<td>0.71</td>
<td>4.85</td>
</tr>
<tr>
<td>HNLPH</td>
<td></td>
</tr>
</tbody>
</table>