Genes and environment in Graves’ hyperthyroidism: A prospective cohort study

Vos, X.G.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Chapter 8

Summary & Nederlandse samenvatting
SUMMARY

Graves’ hyperthyroidism is caused by stimulating thyrotropin receptor autoantibodies which bind to and activate the TSH receptor on thyroid epithelial cells, resulting in hyperthyroidism. Graves’ disease is considered to be a complex disease in which the interplay between various predisposing genetic and environmental factors results in the development of Graves’ disease. Twin studies have shown that about 75% of the susceptibility to develop Graves’ disease can be attributed to genetic factors, leaving 25% for environmental factors. Exposure to stress, cigarette smoke, iodine excess and several drugs have all been identified as relevant environmental factors in the pathogenesis of Graves’ hyperthyroidism. As a consequence of the multifactorial etiology, there is marked variation in phenotypic appearance of Graves’ disease. Little is known about the determinants of different phenotypes. In the present thesis we report the effect of environmental and genetic factors on phenotypic appearance and the risk of recurrence after a course of antithyroid drugs in a prospective multicenter observational study of 263 newly diagnosed patients with a first episode of Graves’ hyperthyroidism.

Chapter 1 contains a general introduction and outline of the thesis, including a short overview of the pathogenesis of Graves’ disease, clinical presentation and treatment options. The effects of known polymorphisms in susceptibility genes and environmental factors on phenotypic appearance are described.

In chapter 2 we tested the sensitivity of a second generation thyrotropin-binding inhibitory immunoglobulin (TBII) assays for the diagnosis of Graves’ hyperthyroidism. The prevalence of TBII-seronegativity in our cohort of untreated patients with a first episode of Graves’ hyperthyroidism is 5.4%. We found that TBII-seronegative patients have biochemically and clinically less severe thyrotoxicosis. There was a direct correlation between serum TBII with both serum freeT3-index and freeT4-index. We also observed increasing goiter size and higher prevalence of Graves’ orbitopathy with increasing serum TBII concentrations. The absence of TBII in serum does not exclude the diagnosis of Graves’ hyperthyroidism.

In chapter 3 we tested our hypothesis that less severe Graves’ hyperthyroidism with advancing age is causally associated with less exposure to stress. We found that advancing age is indeed associated with less severe Graves’ hyperthyroidism as evident from lower serum thyroid hormone levels, lower thyroid autoantibodies serum concentrations, and smaller goiter size. Advancing age is also associated with less stress exposure. Because no direct relationship existed between stress exposure and serum thyroid hormones and thyroid autoantibodies, we had to reject our hypothesis that less stress exposure in old age is causally related to less severe Graves’ hyperthyroidism in elderly people.

Chapter 4 describes the effect of a positive familial history for autoimmune thyroid disease (AITD) and duration of complaints on phenotypic appearance of Graves’ hyperthyroidism. The peak incidence for the diagnosis of Graves’ hyperthyroidism was 2–3 months after...
onset of symptoms (32% of patients). Duration of symptoms was negatively associated with age. Longer duration of symptoms until diagnosis was associated with larger goiter size and higher serum thyroid autoantibodies concentrations. A positive family history for AITD was present in 43%. Patients with the highest familial predisposition (as assessed from a constructed family history score) were more often male and were younger compared to patients with a low familial predisposition. Otherwise, no differences were found in exposure to environmental factors and in clinical or biochemical severity of hyperthyroidism between patients with a positive or negative family history for AITD. We found support for the existence of genetic anticipation in Graves’ disease as evident from a lower age of onset in the group with the highest familial predisposition for AITD.

In chapter 5 we tested our hypothesis that subjects with genetic susceptibility to Graves’ disease are younger at time of diagnosis, present with more severe disease and require less exposure to environmental factors for contracting Graves’ hyperthyroidism. We found that G-alleles in *CTLA4 49A/G* and *CTLA4 CT60* SNPs were dose-dependently associated with younger age at time of diagnosis. G/G homozygotes were respectively 7 and 8 years younger at time of diagnosis. No relation with age at diagnosis was found for any of the HLA subtypes and PTPN22 C/T. In view of the female preponderance in AITD, gender-specific analyses were performed. Males (but not females) in HLA linkage disequilibrium had more severe (biochemical and immunological) hyperthyroidism and a tendency to younger age at diagnosis, compared with those not in linkage disequilibrium. Polymorphism *CTLA4 49A/G* was associated with less exposure to stress (number and total amount of daily hassles). This association was enhanced in men and attenuated in women. These data support our hypothesis that Graves’ hyperthyroidism occurs at a younger age with less exposure to environmental factors in subjects carrying susceptibility genotypes. The impact of genotypes seems to be greater in males than in females.

In chapter 6 we developed a predictive score to estimate the risk of recurrence after a course of antithyroid drugs, based on clinical and genetic parameters prior to the start of treatment. In our cohort of 178 Caucasian patients with a first episode of Graves’ hyperthyroidism, 37% of patients had recurrent Graves’ hyperthyroidism within two years after antithyroid drugs withdrawal. Assessed at time of diagnosis and before the start of therapy, lower age at diagnosis, higher serum fT4, higher serum TBII, larger goiter sizes, PTPN22 C/T polymorphism, and HLA subtypes DQB1*02, DQA1*05, and DRB1*03 were independent predictors for recurrence after antithyroid drug treatment. Two simplified predictive models for recurrence were calculated based on hazard ratios of the multivariate model; called the GREAT (Graves’ Recurrent Events After Therapy) score for clinical markers and the GREAT+ score for the combination of clinical and genetic markers. The GREAT and GREAT+ scores were divided into classes according to recurrence rates. Higher recurrence risk classes were observed in GREAT score Class III (68%) when compared with Class II (44%) or Class I (16%). The GREAT+ score showed much higher
rates of recurrence in the Class IV+ (84%), compared with Class III+ (49%), Class II+ (21%) and Class I+ (4%). In patients with GREAT score class III a course of antithyroid drugs should not be recommended in view of the high risk on recurrent hyperthyroidism, whereas antithyroid drugs might be a good option in GREAT score class I. In patients with GREAT score class II it is probable worthwhile to perform genotyping: the GREAT+ score may than result in a more accurate estimate of recurrence risk, enabling better counseling for selection of the most appropriate treatment modality. Our prediction model based on simple clinical assessment, supplemented with genotyping where necessary, can be very valuable in individualized treatment of newly diagnosed patients with Graves’ hyperthyroidism in routine clinical practice.

In chapter 7 we discussed the main findings of this thesis and indicate some directions for future research.
Graves’ hyperthyreoidie is een autoimmuunziekte waarbij het lichaam antistoffen maakt die binden aan de TSH-receptor van epitheliale schildkliercellen waardoor de schildklier aangezet wordt tot overmatige productie van schildklierhormoon (hyperthyreoidie). De etiologie van de ziekte van Graves’ is complex waarbij de interactie tussen verschillende predisponerende genetische polymorfismen en omgevingsfactoren leidt tot het ontwikkelen van de ziekte. Uit onderzoek bij tweeelingen is gebleken dat de bijdrage van genetische factoren aan het ontstaan van de ziekte van Graves ongeveer 75% is, zodat 25% toegeschreven kan worden aan omgevingsfactoren. Omgevingsfactoren waarvan is aangetoond dat ze bijdragen aan de pathogenese van Graves’ hyperthyreoidie zijn onder andere stress, roken, jodium inname en verschillende medicijnen. Als gevolg van de vele factoren die van invloed zijn op het ontstaan van de ziekte van Graves’, bestaat er ook een grote variatie in het fenotype (zoals in ernst van de klachten en klinische verschijnselen zoals strumagrootte en oogklachten). Echter, er is weinig bekend over de invloed van de afzonderlijke factoren op het fenotype. In dit proefschrift beschrijven we de invloed van verschillende omgevingsfactoren en genetische polymorfismen op het fenotype van Graves’ hyperthyreoidie en op het risico op recidiverende hyperthyreoidie na thyreostatica in een prospectief, multicenter, observationeel onderzoek bij 263 nieuw gediagnosticeerde patiënten met een eerste episode van Graves’ hyperthyreoidie.

Hoofdstuk 1 bevat een korte algemene introductie over de huidige inzichten in de pathogenese van de ziekte van Graves’, de klinische presentatie en de verschillende behandelmogelijkheden. De invloed van diverse genetische polymorfismen en omgevingsfactoren op het ontstaan van de ziekte van Graves’ wordt beschreven.

In hoofdstuk 2 testen we de sensitiviteit van een tweede generatie bepaling van TSH-binding remmende immunoglobulines (TBII) in de diagnostiek van Graves’ hyperthyreoidie. In ons cohort van onbehandelde patiënten met een eerste episode van Graves’ hyperthyreoidie was bij 5.4% van de patiënten de TBII-bepaling negatief. De TBII-seronegatieve patiënten hadden een biochemisch en klinisch minder ernstige thyreotoxicose. De serum TBII concentratie was direct gecorreleerd aan zowel de serum vrij T3-index als de serum vrij T4-index. Tevens werd een toename van de schildkliergrootte en een hogere frequentie van Graves’ orbitopathie gevonden bij hogere serum TBII concentraties. De afwezigheid van TBII in het serum sluit de diagnose Graves’ hyperthyreoidie dus niet uit bij gebruik van deze bepaling.

In hoofdstuk 3 testen we de hypothese dat er een causaal verband bestaat tussen de minder ernstige Graves’ hyperthyreoidie op oudere leeftijd en minder blootstelling aan stress. We vonden inderdaad dat Graves’ hyperthyreoidie zich op oudere leeftijd minder ernstig presenteert, zich uitend in lagere serum schildklierhormoon waarden, lagere concentraties schildklierantistoffen en een kleiner struma. Eveneens vonden we dat hogere leeftijd geassocieerd is met minder blootstelling aan stress. Daarentegen werd geen
relatie gevonden tussen de mate van blootstelling aan stress en serum schildklierwaarden of schildklierautoautoantistoffen. De hypothese dat minder stress op oudere leeftijd een causaal verband vertoont met een minder ernstige Graves’ hyperthyreoidie, moet dus worden verworpen.

Hoofdstuk 4 beschrijft het effect van enerzijds een positieve familie anamnese voor autoimmuun schildklierziekten (AITD) en anderzijds de duur van de klachten op de ernst van de Graves’ hyperthyreoidie op het moment van diagnose. De diagnose Graves’ hyperthyreoidie werd meestal gesteld na een mediane klachtenduur van 2 – 3 maanden (32% van de patienten). De klachtenduur was negatief geassocieerd met de leeftijd. Een langere duur van de klachten was geassocieerd met een groter struma en hogere concentraties van schildklierautoantistoffen. Een positieve familie anamnese voor AITD werd bij 43% van de patiënten gevonden. Patiënten met de hoogste familiale predispositie zijn vaker man en zijn jonger bij het stellen van de diagnose ten opzichte van patiënten met een mindere familiale aanleg. Er werden geen verschillen gevonden in expositie aan omgevingsfactoren, noch in klinische of biochemische ernst van de hyperthyreoidie, tussen patiënten met een positieve en negatieve familie anamnese voor AITD. Er is dus sprake van genetische anticipatie in Graves’ hyperthyreoidie zich uitend in een lagere leeftijd op het moment van diagnose bij patiënten met een hoge familiale predispositie voor AITD.

In **hoofdstuk 5** hebben we onderzocht of personen met een bewezen genetische aanleg voor de ziekte van Graves’ (polymorfismen in “susceptibility genes”), de ziekte op een jongere leeftijd krijgen en of deze zich dan uit in een ernstiger vorm waarbij minder blootstelling aan omgevingsfactoren nodig is geweest om de ziekte te ontwikkelen. Uit deze studie bleek dat er een dosis afhankelijke relatie bestaat tussen het aantal G-allelen in de polymorfismen CTLA4 49A/G en CTLA4 CT60 SNP’s en de leeftijd op het moment van diagnose. G/G homozygoten waren respectievelijk 7 en 8 jaar jonger op het moment van de diagnose. Er werd geen relatie gevonden tussen leeftijd bij het stellen van de diagnose en HLA subtypes of het polymorfisme PTPN22 C/T. Met het oog op de hogere prevalentie van AITD bij vrouwen werd een geslachtsspecifieke analyse uitgevoerd. Bij mannen (niet bij vrouwen) met HLA in linkage disequilibrium werd een biochemisch en immunologisch ernstiger hyperthyreoidie gevonden, met een tendens naar een jongere leeftijd op het moment van diagnose, vergeleken met mannen zonder HLA linkage disequilibrium. Het polymorfisme CTLA A/G was eveneens geassocieerd met minder blootstelling aan stress (gemeten aan de hand van aantal en totale hoeveelheid aan dagelijkse problemen). Deze associatie is versterkt aanwezig bij mannen en verminderd aanwezig bij vrouwen. Deze data ondersteunen onze hypothese dat bij patiënten die genetisch vatbaar zijn voor Graves’ hyperthyreoidie de ziekte zich op een jongere leeftijd uit, waarbij de invloed van omgevingsfactoren minder is. De invloed van genetische factoren lijkt groter te zijn bij mannen dan bij vrouwen.
In hoofdstuk 6 hebben we een predictieve score ontwikkeld om het risico op het krijgen van een recidief van Graves’ hyperthyreoidie na het staken van medicamenteuze behandeling te kunnen voorspellen. De predictieve score is gebaseerd op klinische en genetische parameters voor de start van de behandeling. Bij 37% van de Kaukasische patienten met een eerste episode van Graves’ hyperthyreoidie in ons cohort werd een relapse van de ziekte binnen twee jaar na het staken van de thyreostatica vastgesteld. Wij vonden de volgende onafhankelijke voorspellers op het moment van diagnose voor het krijgen van een relapse na medicamenteuze therapie: jongere leeftijd, hoger serum fT4, hoger serum TBII, grotere schildklier, PTPN22 C/T polymorfisme en HLA DQB1*02, DQA1*05 en DRB1*03 subtypes. Op basis van de hazard ratios van het multivariate model werden twee modellen gemaakt om het risico op relapse na het staken van thyreostatische behandeling te voorspellen; de GREAT (Graves’ Recurrent Events After Therapy) score gebaseerd op klinische parameters, en de GREAT+ score gebaseerd op een combinatie van klinische en genetische parameters. De GREAT en GREAT+ scores werden op hun beurt opgesplitst in klassen op basis van het aantal recidieven. Er werd een hogere recidiefkans gevonden in de GREAT score klasse III (68%) vergeleken met klasse II (44%) en klasse I (16%). In de GREAT + klasse IV werd een veel hogere recidiefkans gevonden (84%) vergeleken met klasse III (49%), klasse II (21%) en klasse I (4%). In patiënten met GREAT score klasse III lijkt behandeling met thyreostatica niet aangewezen gezien het hoge risico op een recidief hyperthyreoidie, terwijl thyreostatica een goede behandelingsoptie lijkt voor patienten in GREAT score klasse I. In geval van GREAT score II valt genotypering te overwegen: de GREAT+ score kan dan resulteren in een meer accurate schatting van het risico op een recidief, wat bij het kiezen van de meest geëigende behandeling behulpzaam kan zijn. Ons voorspellingsmodel, gebaseerd op eenvoudige klinische bepalingen, zo nodig aangevuld met genetische parameters, kan van grote waarde zijn bij de individuele behandeling van nieuw gediagnostiseerde patiënten met Graves’ hyperthyreoidie in de dagelijkse praktijk. Tot slot worden de belangrijkste bevindingen uit dit proefschrift en aanbevelingen voor toekomstig onderzoek besproken in hoofdstuk 7.