When the glacier left the volcano: Behaviour and fate of glaciovolcanic glass in different planetary environments

de Vet, S.J.

Citation for published version (APA):
de Vet, S. J. (2013). When the glacier left the volcano: Behaviour and fate of glaciovolcanic glass in different planetary environments

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Index

A
abstract chapters 29, 49, 67, 87
dissertation 133, 137, 141
aeolian processes
deflation 30, 34, 41, 45, 52, 112
detachment 33, 68, 69, 71, 83
glacial outburst flood. See jökulhlaup
granular avalanche 23, 63
glacial outburst model 88
global atmospheric circulation models 102
Grænagil 24, 26, 43, 58, 62
glaciostatic pressure 10, 18
high-pressure mercury intrusion 54, 57
Holocene flood-lavas 12
hyaloclastite 135
induration 115, 135
interstitial medium 30
isothe rms 75

B
BET-2 parameter fitting 75
Bláhnúkur 21, 22, 26, 31, 51, 52, 72
boundary layer 68, 71
Brennisteinsalda 26, 32
Brennisteinsöldukvísl 24, 34, 46

C
central volcano 21, 22
cross-polarised microscopy 90, 97, 101

D
dasymeter 85
dating
 crater counting 15
 optically stimulated luminescence 102
density 77
discharge event 93
dune migration 18, 88, 113

E
eCognition 91
EDX measurements 72, 75
eruption environment 12, 23, 24, 31
Eyjafjallajökull 12, 13, 64

F
fabric 90, 102
field site 10, 19, 21, 45
Fimmvörðuháls 12, 13
flank zone 11, 21, 51
frost heave 111

G
geomorphology
 maps 35, 38
 Gjálp 11
 glacier
 glaciostatic pressure 10, 62
 palaeothickness 52, 134
 glacioclastite
glaciovolcanism 14, 116, 150
glassy breccias. See hyaloclastite

H
health 14, 64
high-pressure mercury intrusion 54, 57
Holocene flood-lavas 12
hyaloclastite 135
colour 24
density 54, 72

I
ice
 lens 36, 40
 nucleation 50, 53, 61
 overburden pressure 10, 18, 69
 wedging 50
 ice-marginal valley 93, 102
 image segmentation 91, 92
 imbrication 88, 89, 92
 induration 115, 135
 interstitial medium 30
 ISO noise 97, 99

J
jökulhlaup 14, 16
Jungmoränenland 93
Jungmoränenlandschaft 93

K
kinematic sieving 39, 44, 55

L
Landmannalaugar 22, 24, 31, 37
Laugahraun 24, 31, 32, 51, 52
leaching 17
lithosphere unloading 12, 16, 23, 119
long-axis orientation 88, 92, 95, 100, 104, 108

M
magma-ice 9, 21, 50, 68
major element ratios 72, 75
Mars
 analogue material 9, 45, 68
 atmospheric pressure 69
 conditions for life 117
 geologic periods
 Amazonian 15, 16
 Hesperian 16
 Noachian 15

porosity 60, 61, 75
tensile strength 59
storm 69
surface feature
 Columbia Hills 89, 95, 97, 106
 El Dorado 97, 105, 106
 Home Plate 99, 103
 King George Island 97, 104
 northern lowlands 16, 112, 116
Microscope Imager 95, 98, 107
mineralogy
 albite 24, 75
 anorthite 24, 75
 huelandite 24
 mordenite 24
 zeolite 111
möberg 11, 50. See also hyalo-
clastite
multi-resolution segmentation 91, 102

N
near-surface flow 88, 107

O
object-based image analysis 72, 87, 89, 90, 98
Object-Based Image Analysis 91
orbital forcing 14
orientation 89

P
palagonite 11, 21
parabolic flight 119
periglacial conditions 43, 44, 50, 113
perlitisation 111
photometry 73
physico-mechanical properties 24, 72, 111, 115
pillow lava 10
preferred orientation 88, 89, 99, 100, 103, 107
preferred orientations 92
pycnometry 72

Q
quenching 12, 13, 23, 69

R
region-growing algorithm 91
research question 18
respiratory hazards 52
particle size 52, 64
rift zone 11, 21
rind 17, 117
rock
disk 30, 34
particle fall 30, 34
rotating drum 55, 63

S
sand
size distribution 43, 61, 100, 104
scale parameter 92, 97, 101
Schöbendorf 93
sediment
 concave tailing 42
 segmentation 155
 shape parameter 92
 skeletal density 58, 71, 77, 155
 slope angle 30, 35, 39, 43
sol 95
statistics
 AIC value 83
 ANOVA 54
 frequency analysis 56, 59
 model fitting 69, 80, 83, 119
 Pearson's X2 test 34, 42, 56
 stratification 30, 39, 42
 stratigraphic column 37, 39

T
table mountain 50. See also tuya
tholeiitic basalt 15, 21, 23
tindar 10, 12, 17, 50, 68, 112, 151
Torfajökull 11, 21, 22, 24, 26, 31, 62, 72
tuya 10, 23, 50, 52, 68
 basic units 10, 16
 exposure age 12
 glacial reconstruction 11, 79

U
uniaxial compression test.
 See tensile strength
uniaxial loading 134
UV/VIS spectrometry 25

V
ventifacts 97
vesicularity 21, 72, 76
volcanic glass. See hyaloclastite
volcanic zone 11, 12, 22, 51

W
wind
 speed 37, 79, 82
 topography effects 24, 45, 112
wind tunnel
 carousel type 119
 low pressure 73
 simulations 33, 72

X
X-Ray 91
XRD powder diffraction 24, 72, 78

Y
yield strength 61

Z