UvA-DARE (Digital Academic Repository)

When the glacier left the volcano: Behaviour and fate of glaciovolcanic glass in different planetary environments

de Vet, S.J.

Citation for published version (APA):
de Vet, S. J. (2013). When the glacier left the volcano: Behaviour and fate of glaciovolcanic glass in different planetary environments

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 15 Dec 2018
Index

A
abstract chapters 29, 49, 67, 87
dissertation 133, 137, 141
eaolian processes deflation 30, 34, 41, 45, 52, 112
detachment 33, 68, 69, 71, 83
glacial outburst flood.

B
BET-2 parameter fitting 75
Bláhnúkur 21, 22, 26, 31, 51, 52, 72
boundary layer 68, 71
Brennisteinsalda 26, 32
Brennisteinsöldukvísl 24, 34, 46

cross-polarised microscopy 90, 97, 101

D
Dasymeter 85
dating
- crater counting 15
- optically stimulated luminescence 102
density 77
discharge event 93
dune migration 18, 88, 113

E
eCognition 91
EDX measurements 72, 75
eruption environment 12, 23, 24, 31
Eyjafjallajökull 12, 13, 64

F
fabric 90, 102
fabric strength 99, 103, 105
field site 10, 19, 21, 45
Fimmvörðuháls 12, 13
fissure swarm 22, 52
Fjallabak Nature Reserve 23, 31, 52
flank zone 11, 21, 51
fluvial erosion 24
fracturing
- boussinesq fractures 52, 63
- hertzian fractures 52
- pseudo-conchoidal fractures 52, 63
freeze-thaw cycles 30, 36, 44, 50, 56, 111
frost heave 111

G
geomorphology
- maps 35, 38
Gjálp 11
glaciers
- jökulhlaup
- glacier
- glaciostatic pressure 10, 62
- palaeothickness 52, 134
- glaciostatic pressure 18
- glaciovolcanic glass. See hyaloclastite
- glaciovolcanism 14, 116, 150
- glassy breccias. See hyaloclastite
- global atmospheric circulation models 88
- global circulation models 102
- Grænagil 24, 26, 43, 58, 62
- granular avalanche 23, 63
- gravity 33, 45, 71, 115, 119
- Grimsvötn 12, 64

H
health 14, 64
high-pressure mercury intrusion 54, 57
Holocene flood-lavas 12
hyaloclastite 135
- colour 24
- density 54, 72

I
ice
- lens 36, 40
- nuclearation 50, 53, 61
- overburden pressure 10, 18, 69
- wedging 50
- ice-marginal valley 93, 102
- image segmentation 91, 92
- imbrication 88, 89, 92
- induration 115, 135
- interstitial medium 30
- ISO noise 97, 99
- isotherm 75

J
jökulhlaup 14, 16
Jungmoränenland 93
Jungmoränenlandschaft 93

K
kinematic sieving 39, 44, 55

L
Landmannalaugar 22, 24, 31, 37
Laugahraun 24, 31, 32, 51, 52
leaching 17
lithosphere unloading 12, 16, 23, 119
long-axis orientation 88, 92, 95, 100, 104, 108

M
magma-ice 9, 21, 50, 68
major element ratios 72, 75
Mars
- analogue material 9, 45, 68
- atmospheric pressure 69
- conditions for live 117
- geologic periods
- Amazonian 15, 16
- Hesperian 16
- Noachian 15


porosity 60, 61, 75
specific surface area 75, 77
tensile strength 59
storm 69
surface feature
Columbia Hills 89, 95, 97, 106
El Dorado 97, 105, 106
Home Plate 99, 103
King George Island 97, 104
northern lowlands 16, 112, 116
Microscope Imager 95, 98, 107
mineralogy
albite 24, 75
anorthite 24, 75
huelandite 24
mordenite 24
zeolite 111
möberg 11, 50. See also hyaloclastite
multi-resolution segmentation 91, 102

N
near-surface flow 88, 107

O
object-based image analysis 72, 87, 89, 90, 98
Object-Based Image Analysis 91
orbital forcing 14
orientation 89

P
palagonite 11, 21
parabolic flight 119
periglacial conditions 43, 44, 50, 113
perlitisation 111
photometry 73
physico-mechanical properties 24, 72, 111, 115
pillow lava 10
preferred orientation 88, 89, 99, 100, 103, 107
preferred orientations 92
pycnometry 72

Q
quenching 12, 13, 23, 69

R
region-growing algorithm 91
research question 18
respiratory hazards 52
particle size 52, 64
rift zone 11, 21
rind 17, 117
rock
fall 30, 34
particle fall 30, 34
rotating drum 55, 63

S
sand
size distribution 43, 61, 100, 104
scale parameter 92, 97, 101
Schöbendorf 93
sediment
concave tailing 42
segmentation 155
shape parameter 92
skeletal density 58, 71, 77, 155
slope angle 30, 35, 39, 43
sol 95
statistics
AIC value 83
ANOVA 54
frequency analysis 56, 59
model fitting 69, 80, 83, 119
Pearson’s X2 test 34, 42, 56
stratification 30, 39, 42
stratigraphic column 37, 39

T
table mountain 50. See also tuya
tholeiitic basalt 15, 21, 23
tindar 10, 12, 17, 50, 68, 112, 151
Torfajökull 11, 21, 22, 24, 26, 31, 62, 72
tuya 10, 23, 50, 52, 68
basic units 10, 16
exposure age 12
glacial reconstruction 11, 79

U
uniaxial compression test.
See tensile strength
uniaxial loading 134
UV/VIS spectrometry 25

V
ventifacts 97
vesicularity 21, 72, 76
volcanic glass. See hyaloclastite
volcanic zone 11, 12, 22, 51

W
wind
speed 37, 79, 82
topography effects 24, 45, 112
wind tunnel
carousel type 119
low pressure 73
simulations 33, 72

X
X-Ray 91
XRD powder diffraction 24, 72, 78

Y
yield strength 61

Z