UvA-DARE (Digital Academic Repository)

Information processing in complex networks

Quax, R.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Table of contents

Introduction .. 5
 1.1 Background .. 5
 1.1.1 The network description ... 5
 1.1.2 From local processes to global behavior ... 7
 1.1.3 Information processing ... 11
 1.2 Our Thesis ... 23
 1.3 Outline of the Dissertation .. 23

The diminishing role of highly connected units in the dynamical behavior of complex systems .. 25
 2.1 Introduction .. 25
 2.2 Results .. 27
 2.2.1 Information dissipation time of a unit ... 27
 2.2.2 Diminishing IDT of hubs ... 35
 2.2.3 Numerical experiments with networks of Ising spins ... 39
 2.3 Empirical evidence .. 41
 2.4 Discussion .. 45

Information dissipation as an early-warning signal for the Lehman Brothers collapse in financial time series ... 49
 3.1 Introduction .. 49
 3.1.1 How information dissipation can lead to critical transitions 50
 3.1.2 The data .. 53
 3.2 Results and Discussion ... 54
 3.2.1 Evidence of IDL as an early-warning signal .. 54
 3.2.2 Comparison to critical slowing down and other indicators 56
 3.3 Perspectives .. 57

Inferring epidemiological parameters from phylogenetic information for the HIV-1 epidemic among MSM ... 60
 4.1 Introduction .. 60
 4.2 Materials and methods ... 63
 4.2.1 Current knowledge about the epidemiological parameters 63
 4.2.2 Simulating the HIV epidemic among MSM ... 65
 4.2.3 Phylogenetic data .. 68
 4.2.4 Calculating the likelihood of reproducing the cluster-size distribution 71
 4.3 Results .. 73