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Chapter 1 

Introduction 

1.1 Background 

1.1.1 The network description 

In the eighteenth century in the Prussian city of Königsberg (now 

Kaliningrad, Russia), seven bridges connected the two sides of the Pregel 

River and two islands in its midst. A popular riddle among the people 

became known as the Königsberg bridge problem: is it possible to find a 

round trip that crosses each bridge exactly once? In 1736, the famous 

mathematician Leonard Euler invented a so-called ‘graph theory’ to prove 

that such a path did not exist. A graph, or network, is a generic 

mathematical object where nodes (or points) are connected by edges (or 

links). Though the concept of networks may seem trivial today, Euler’s 

proof is one of the first known examples where a network description is 

used to solve a real problem. Nowadays it is one of the most powerful 

modeling techniques to study a wide variety of complex systems, such as 

cellular regulatory systems, brains, human behavior in social communities, 

spreading of epidemics, and financial trading markets. 

In the 1950s, researchers studied the topological properties of ‘random 

graphs’, i.e., networks in which the edges are placed randomly between two 

nodes. The focus was a purely mathematical description of such random 

networks, with predictions such as the lengths of connected paths (1), the 

existence of cyclic paths (1), the sizes of connected clusters (1, 2), how 

many nodes should be removed to disconnect a network (3), and the 

probability that each node in the network is reachable by each other node 

(2). Suggested applications included brain networks (neurons connected by 

synapses), epidemic spreading (humans infecting other humans), and 



6 

 

transport networks (geographic locations connected by roads or rails). 

Although these works were a marked step forward in ‘network thinking’, 

the idealized random-mixing topology would later turn out to be an 

unrealistic description of real networks.  

Near the end of the 1960s, empirical evidence of real-world networks started 

to be gathered and characterized, aided by the advent of the Internet and an 

ever-increasing computing power. The topology of real networks turned out 

to be quite different from the purely random networks in many respects. 

One of the first large networks to be characterized were citation networks 

among scientific publications in 1965 by Price (4–6). Price found that the 

number of edges (citations) that a research paper either contained or 

received was not sharply distributed around a mean value, as random 

networks would predict, but were distributed ‘fairly flat’. That is, there are 

many more highly-cited papers than expected, and the number of papers that 

are cited k  times eventually decreases to zero as ak  . Price wondered 

whether ‘the more a paper is cited, the more likely it is to be cited 

thereafter’. Three decades later, this ‘heavy-tailed’ distribution of 

connectivity and the ‘rich get richer’ organizing principle had been found in 

many other real networks, such as the World Wide Web, autonomous 

system networks, metabolic networks, telephone call graphs, and even 

networks of human sexual contacts. Many additional non-random 

characteristics of real network topologies were found around the same time, 

including assortativity, node centrality, clustering, and community structure. 

See References (7–9) for extensive reviews of network characteristics and 

relevant references. 

The take-home message is that many real networks have a complicated 

structure. The study of how the network’s structure shapes its function, and 

how its function in turn shapes the network structure, is now known as 

complex networks research. 
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1.1.2 From local processes to global behavior 

So far we have only described real systems by the topology of interactions 

between the nodes. The scientific literature is rich with statistical analyses of 

such topologies owing to the availability of large and detailed datasets (10). 

Nonetheless, a second crucial ingredient is needed to understand the 

behavior of complex networks: the dynamical processes that govern the 

nodes. The two ingredients, structure and function, are intimately connected, 

but poorly understood. 

Even if a simple process is placed in every node, the network of node-to-

node interactions can lead to a complex behavior of the system as a whole. 

One of the first demonstrations was presented by Hopfield in 1982 (11) in 

the context of neural networks. He showed that a network of 100 identical 

nodes which have a certain ‘on-off’ dynamics (12) is capable of 

implementing error-tolerant content-addressable memory. Even today his 

concept is used as a model for understanding (human) memory (13). He also 

suggested a mechanism how the network can learn new information and 

forget what was learned before. Since then, researchers have documented a 

wide variety of emergent complex phenomena in brain networks, such as 

scale-free avalanches of neural activity and sudden spontaneous transitions 

in neuromagnetic field patterns (14). Often, such large-scale network 

patterns in turn feed back into the small-scale individual neuronal 

interactions which created them, making it difficult to tease out which 

dynamics take place at which spatiotemporal scale (15, 16). A neural 

network is one of the canonical systems where small-scale interactions 

among simple nodes somehow translate into large-scale complex behavior, 

without any leader node or a signal from the environment.  

A second and even earlier demonstration was the ‘random genetic net’ 

introduced by Stuart A. Kauffman in 1969 (17). In this early work he 

constructed random networks of a few hundred ‘binary on-off devices’ and 

interpreted the emergent dynamics as a model of the gene regulation process 

inside a cell. In his computer model, links denote chemical reactions where 

genes activate or deactivate other genes. Kauffman found that the random 
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genetic nets behave with remarkable order and stability, which are 

characteristics of real cells. Another observation was that the system goes 

through “behavior cycles whose length predicts cell replication time as a 

function of the number of genes per cell”. Since then, the model has been 

applied to other processes as well (18). Nowadays such networks are called 

random Boolean networks or Kauffman networks, which are still studied in 

various forms. 

The notion that the nodes are ‘simple’ in these examples is relative: even 

though, say, neurons are themselves intricate elements, the complexity of 

their collective dynamical behavior cannot be anticipated from the dynamics 

of individual neurons alone. Emergent complex behavior from networks of 

‘simple’, uncoordinated nodes is not only found in brain networks but in a 

wide variety of other natural phenomena, such as gene regulatory networks 

(19, 20), socio-technical networks (21, 22), financial trading markets (23), 

and coupled oscillator networks which model various biological 

synchronization phenomena (24, 25). Colloquially speaking, “the whole is 

more than the sum of the parts.” (26) 

The problem that complex network researchers face today is that the set of 

dynamical processes that describe the nodes is endless. In brain networks, 

neurons have ion pumps and channels to create electric potentials within 

them, and occasionally send ion concentrations through their axon. In 

protein-protein interaction networks, each protein is a chain of amino acids 

which non-trivially folds into a lump: the reachable binding sites on the 

outside define the protein’s function. In the ultimate case, techno-social 

networks consist of humans whose behavior still defies our understanding. 

Nowadays, a common approach to model such systems is to replace the 

node dynamics with a simple, prototypical node dynamics. The implications 

of network topologies are often modeled using one of a small number of 

prototypical node dynamics. Prominent prototypes of dynamics to place on 

the nodes are the following. 



9 

 

 Percolation of particles. The classical percolation theory (27) is 

concerned with the movement of particles through porous media, 

such as water molecules seeping through cracks in rocks, also called 

‘soil physics’. The voids in the porous media are somehow linked 

together, lending itself naturally to a networks description (28). 

There are two main variants of how percolation is used as a tool to 

characterize complex networks. In the first variant it is assumed that 

an abundance of particles move so fast that the only limit is the 

connectedness of the network, so these studies are concerned with 

network characteristics such as the size of the big component and the 

redundancy of paths. This variant is typically used to estimate the 

robustness of networks (29–32). The second variant assumes a 

smaller number of slow-moving particles, which become random 

walkers (Brownian motion particles) over the network topology. One 

application of this variant is to measure the so-called 

‘communicability’ of networks (33), that is, their ability to support 

communication. A second application is to find the most influential 

nodes in a given network topology, termed the ‘influence 

maximization problem’ (34, 35). Other applications include the 

study how information transfers through networks the presence of 

noise (36) and the community detection problem (37). 

 Spreading phenomena. The most prominent application of the 

spreading phenomenon is the study of how infectious diseases 

spread through a population (38–43), and how to prevent it (44). The 

basic idea is that nodes with the ‘infected’ status attempt to infect 

their direct neighbors in the network, thus spreading the ‘infection’ 

like an oil stain. This prototype has been used to describe the 

adoption of innovation and behavior in social contexts (45–49), the 

spreading of rumors (50, 51), the dissemination of routing 

information in communication networks (52–55), the flow of 

information and topics (45, 56–60) in e.g. blog networks, the 

spreading of financial distress among banks and funds (61), the 
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resilience of networks to spreading phenomena (62, 63), and the 

identification of influential nodes (60), among others. 

 Dynamical oscillators. In 1948, Wiener (64) wondered: “How is it 

that thousands of neurons or fireflies or crickets can suddenly fall 

into step with one another, all firing or flashing or chirping at the 

same time, without any leader or signal from the environment?” 

Such self-organized synchronization is a widespread phenomenon, 

including the electrically synchronous pulsation of pacemaker cells; 

cooperative behavior of insects, animals, and even humans; 

metabolic processes in our cells; and the synchronous firing activity 

of neurons in the brain. In order to model the phenomenon, each 

node is modeled as an innately oscillatory device which is weakly 

coupled with other nodes in a network (24, 42, 65–70). Depending 

on the network structure of the interactions, the nodes (oscillators) 

may synchronize their frequencies or not. Different topological 

features, such as the network diameter and the betweenness 

centrality of nodes, lead to a different ‘synchronizability’ of the 

network (71, 72). 

 Magnetic spins. Whereas oscillators are used to describe 

spontaneous synchronization, spin models are used to describe the 

spontaneous emergence of order. The inspiration of the model comes 

from the physics of magnets, which consist of a regular structure 

(crystal) of spinning charged particles (spins) whose orientation is 

variable. Each spin induces a small local magnetic field to which 

neighboring spins tend to align, and vice versa. Magnetization 

emerges if a majority of the spins are aligned, which is an ordered 

state. The most popular mathematical spin model is the Ising model, 

where each node can be in one of only two states: ‘up’ or ‘down’. 

The spin-spin interactions tend the system towards an ordered state, 

and a global temperature tends the system towards an unordered 

state. One of the characteristics of the topology of interactions is the 

‘critical temperature’ (or its non-existence) that it induces, which is 

the temperature that is needed to move the system from order into 
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disorder. Not only is the spin model is used to assign dynamical 

properties to networks (42, 73, 74), it is also used to model diverse 

phenomena such as social opinion forming (75–77), protein folding 

(78–81), and the collective behavior of neural networks (11, 12, 82, 

83). 

The main reason for such reductionism is to make modeling and analysis 

tractable, rather than their realism. Another reason is that a large body of 

theory had already been accumulated about each of these prototypes in 

physics before they were applied to networks. The underlying assumption 

seems reasonable, namely given a network topology, certain aspects of node 

dynamics are likely more relevant than others in order to model the system 

faithfully. Still, a formal framework to select these aspects is missing, not 

least because it is unknown how a network of small-scale interactions 

combines into collective behavior. 

The task for the coming years seems to be to gather data of node dynamics 

in real complex networks. After all, it was the sudden availability of large-

scale data of the structure of real networks that spurred network theory in 

the past two decades. As Barabasi conjectures (10), “if data of similar detail 

capturing the dynamics of processes taking place on networks were to 

emerge in the coming years, our imagination will be the only limitation to 

progress.” 

1.1.3 Information processing 

Clearly, a unifying framework is needed that reveals how a (microscopic) 

change of one node’s state influences other nodes to change their state, vice 

versa, and so on, somehow creating the (macroscopic) behavior of the 

network. It should prevent the need to characterize dynamics on a case-by-

case basis, and it should enable comparing the dynamics of disparate 

systems. We believe that one possible way to implement such a framework 

is to describe how a system inherently processes information, in the sense of 

Shannon’s information theory (84). In this interpretation, information is 

inherently stored in the state of each node. This information transfers from 
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one node to another through the interactions, and becomes stored in the 

other node’s state. Information is also lost due to randomness or thermal 

noise, where some of the stored information is replaced by random values. 

Information processing is an inherent process, generated by the dynamics 

that the network is executing. 

This idea existed before, albeit in colloquial phrases and predominantly in 

the quantum computing literature. In his search for the ultimate quantum 

computer, Seth Lloyd looks at the nature around us (85): “Every physical 

system registers information, and just by evolving in time, by doing its 

thing, it changes that information, transforms that information, or, if you 

like, processes that information.” Slightly more specific, each particle in an 

isolated gas ‘knows’ something about the momenta of neighboring particles 

due to the transfer of momentum during collisions. That is, the momentum 

of a particle is the result of its recent collisions with other particles. This 

information is in turn transferred to other particles in subsequent collisions, 

and so on. This is also true at larger scale. For instance, if these particles are 

placed in a piston then the piston exerts force on the gas, and at the same 

time the particles create a pressure that counters the piston’s movement. Or 

as Wiesner (86) phrases it in her attempt to quantify the intrinsic 

computation of quantum systems, “a quantum finite-state automaton in its 

most general form takes in classical information, processes it using quantum 

mechanical resources, and outputs classical information.” 

This input/output description at the macroscopic scale is the underlying idea 

of most previous work to quantify the information processing of dynamical 

systems. If a system of coupled units
1
 is influenced by a time-varying input 

signal, then the system can be thought of as storing information about the 

past signals and inherently computing nonlinear functions of them (87–89). 

In this view, the system is usually treated as a black-box which produces a 

                                                 
1
 In this dissertation, the terms ‘unit’ and ‘node’ are used interchangeably to refer to the 

connected entities in a network. The word ‘unit’ is used to imply that it performs some local 

dynamics, such as a neuron in a brain network; the word ‘unit’ is used to refer only to a 

topological entity. 
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time series of system states (a list of the node states), which are interpreted 

as the results of the computation that the system performed. A notable 

operationalization of this idea is the decade-old ‘reservoir computing’ (90–

92), which is a neural networks-inspired approach to exploit this intrinsic 

computing of dynamical systems to perform useful tasks such as machine 

learning. In effect, this line of research addresses the question of what a 

dynamical system computes, rather than how it is computed. 

As a first step to address the how, Crutchfield et al. (93–96) take a slightly 

‘less macroscopic’ viewpoint. Instead of processing external signals, they 

interpret a system to process its own information. Still a black box, the time 

series of a system’s state is used to compute information and complexity 

measures of the underlying process. The most prominent quantities are 

entropy rate, statistical complexity, and excess entropy, which characterize 

the process’ inherent randomness, its structural complexity, and how much 

information is transmitted from previous states to future states. One of the 

main goals of this line of research is to quantify how difficult it is to learn a 

process’ hidden organization from observations. A related goal is to 

determine how ordered or chaotic the dynamical behavior of a system is, in 

a model-independent manner. The complexity measures used here can be 

considered as a variation on the classical algorithmic (Kolmogorov-Chaitin) 

complexity (97), where random output is considered ‘simple’ instead of 

‘complex’. 

As a first step to characterize the information processing inside a system, 

Crutchfield et al. exploit the equivalence between a one-dimensional time 

series of system states and a one-dimensional array of node states with 

nearest-neighbor interactions. In doing so they quantified for a one-

dimensional lattice of Ising spins the total amount of information that passes 

through a single node from its left side to the right, and vice versa. 

Unfortunately, as Wiesner observed (86) in 2010, “the analysis so far is 

confined to time sequences or, equivalently, one-dimensional spatial 

sequences.” This is exemplified by an attempt to generalize the approach to 
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a two-dimensional lattice of Ising spins (98), which they show is not trivial 

and they present three possible methods which are not equivalent. 

It is clear that a system’s state somehow stores information about external 

signals and its own past states, part of which is transferred to future states. 

But how does a system do it? A system consists of dynamical nodes, so the 

information must be stored in the states of individual nodes. As these nodes 

update their state, this information is transferred among the nodes both in 

space and in time. 

We are not aware of previous work that takes such a microscopic standpoint 

in the context of information processing. Yet we believe that it may lead to a 

unifying framework to translate small-scale interactions to large-scale 

behavior. It is the primary subject of this dissertation. In the remainder of 

this section we explain our interpretation of information processing in 

complex networks. First we review the key concepts from Shannon’s 

information theory; then we calculate how information is stored and 

partially transferred in the simple example of an array of coin flips. 

Information theory 

The amount of information that is stored in a variable is the minimum 

number of yes/no questions that is needed to determine a value for the 

variable (84). The value of a variable that encodes the result of a fair 50%-

50% coin toss can be uniquely identified by at least one yes/no question, 

namely ‘did the coin toss result in heads?’ We say that it stores 1 bit of 

information. More generally, a variable with N  equally probable values 

stores 2log N  bits. This is the maximum amount of information that a 

variable with N  possible values can store. 

The information stored in a variable can be less than 2log N  if its values 

have different probabilities. Suppose, for instance, that we toss a coin of 

which we know it results in heads 90% of the time.  Intuitively, the outcome 

of a toss is less informative because we already anticipate it in part. In the 

extreme case of a coin with two identical sides the outcome of a toss 

provides zero information because the question of its outcome is already 

completely answered beforehand. 
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In general, the number of bits that is stored in a variable s with possible 

outcomes 1 2{ , , , }nv v v  is the Shannon entropy 

( ) logi i

i

H s p p  , 

where ip
 
is the chance that the value of s  is 

iv . This quantity has two 

meanings. Firstly it is the number of bits that one must obtain, through 

measurement or inference, in order to identify the outcome of s . The 

second meaning is that s  is capable of storing ( )H s  bits of information 

about other variables, which we explain next. 

Let us interpret variable 
1s  to encode the state of one dynamical unit and 

variable 
2s  to encode the state of another dynamical unit. We refer to 

1s  and 

2s  as states and their values as instances. According to the second meaning 

of entropy, learning the instance of 
1s  can provide between zero and 1( )H s  

bits of information about the instance of 
2s . It is non-zero in case the states 

1s  and 
2s  are correlated or cause-and-consequence, such that the fact that 

1s  

is in a particular instance tells us something about the instance of 
2s . If 

1s  

and 
2s  are independent processes then this mutual information is zero. If, on 

the other hand, 
2s  encodes the state of a tossed coin that tends to be equal to 

the state of another tossed coin 
1s , then the more 

2s  depends on 
1s  the more 

information about 
1s  is stored in 

2s  (and vice versa). 

The amount of this mutual information is 

1 2 1 1 2( | ) ( ) ( | )I s s H s H s s  , (1) 

where 1 2( | )H s s  is the conditional variant of ( )H s . In words, knowing 
2s  

reduces the number of unknown bits about the outcome of 
1s  from 1( )H s  to 
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1 2( | )H s s . We can interpret 1 2( | )I s s  as the amount of information that the 

variable 
2s  stores about the variable 

1s .  

Information can be said to transfer between interacting states. Here, an 

interaction between two states means that one state (partly) depends on the 

other state, vice versa, or both.  Suppose that two interacting dynamical 

units 1s  and 2s  form a system, and suppose that both units are equally 

influenced by other factors outside this system. The information that is 

stored by the state 1s  about the other state 2s  now consists of two parts: an 

amount corrI  which both states have in common because they are subject to 

the same external influence (creating a correlation), and an additional intI  

which is due to the interaction between the states (creating additional 

correlation) (96).  The information intI  is present in the variable 
1s  at first 

and would not be in 
2s  if there would be no interaction, so we can say that 

information transfers through interactions from one state to another. 

Although corrI  did not transfer directly through the interaction between 1s  

and 2s , it did transfer through the external interactions in a similar way to 

how intI  transfers between 1s  and 2s . The reason that it creates mutual 

information between 1s  and 2s  is because both states store the same corrI  

bits of information about external factors, which make the stored 

information in both states overlap with each other. 

Information storage and transfer: an example 

Suppose that the outcomes of coin flips 1 2 3, , ,s s s  depend on each other 

such that 2s  tends to be equal to 1s , then 3s  tends to be equal to 2s , and so 

on. The question is how far the information from 1s  can travel in this one-

dimensional system. 

If the coin flips do not depend on each other, i.e., each is  reproduces 1is    
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with a 50% chance, then the outcome of a coin flip provides no information 

about the outcome of any other coin flip. Hence, information about 1s  is not 

transferred and remains local. See Figure 1a. 

 

Figure 1: Three different modes of information transfer in a one-dimensional 

sequence of coin tosses. (a) If a subsequent coin toss does not depend on the previous 

outcome, then information remains local and is not transferred. (b) If each coin toss 

tends to be equal to the previous outcome, then information about the first outcome 

transfers to subsequent coin flips, while its magnitude diminishes to zero. (c) If each 

coin toss is biased then each outcome provides the transferred information in addition 

to the constant prior information due to the bias. The dissipation time of information 

is not affected by the presence of prior information. 

Suppose now that each outcome is  is equal to 1is   with a 75% probability. 

The second coin flip 2s  can infer the probability distribution of the outcome 

1s  by using Bayes’ theorem 1 1 1( | ) ( ) ( | ) ( )i i i i i ip s s p s p s s p s     , which in 

this example means simply that 1s  is distributed 75%-25% over its two 

possible states. Using Eq. (1) we find that 2s  stores 0.19 bits about 1s , or in 

other words, 19% of the state 2s  is actually a reflection of the state 1s . The 

remainder 81% of its state is still randomness or noise, as before.  Similarly, 

3s  can use Bayes’ theorem to find that its state is equal to 1s  with 

probability 2 20.75 0.25 68%  , so according to Eq. (1) it received 0.046 

bits of information from 1s . Clearly, the 1 bit of information about 1s  is 

imperfectly transferred through the system and eventually vanishes. See 

Figure 1b. 
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In the more general case there can be prior information about 1s  already 

stored in the system. This information is not transferred through dynamics 

but can be due to an external force. For instance, let 1s  be the outcome of an 

unfair coin flip that is distributed 75%-25%. Even in the absence of 

interactions, each subsequent outcome is  can already infer 0.19 bits of the 

state 1s . Information received due to interactions will be additional to this 

‘baseline’ information, see Figure 1c. 

Information dissipation length 

Clearly, there is a simultaneous transfer and decay of the information that 

was initially stored in the state 1s . The more information about 1s  becomes 

stored in another state is , the more is  is influenced by 1s . The distance that 

this information can travel before it disappears, therefore, is a measure of 

the extent that 1s  influences the global system state: if it is low then its 

effects remain local, whereas if it is high it may lead to a system-wide 

change of state.   

We name this distance the information dissipation length (IDL). Along with 

its temporal variant, the information dissipation time (IDT), it is a central 

quantity in this dissertation. The IDT is further explored on networks in 

Chapter 2; the IDL is explored in real data in Chapter 3. 

We can calculate the IDL of the first coin exactly in this example. All coins 

and their interactions are equivalent, so we expect a constant rate 1/ f  of 

losing information at each subsequent coin flip: 
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Here, the logarithm has base 2 so that the unit of information is bits. The 

substitution 1 2q p   was applied to fit the equation on the page. For the 

conditional probability function 1( | )xp s s  we used 

1

1 1

1
( | ) ( )

2

x

x x

q
p s s p s s


   . 

That is, for xs  to infer the probabilities of the two states of 1s  it is, in this 

case, equivalent to calculating the probabilities of 1s  being equal to xs . The 

order of the two probabilities does not matter, because Shannon’s entropy is 

symmetric about 1 2 . The probability 1( )xp s s  is equal to the probability 

that, out of the 1x  coin flips, the number of ‘failures’ (the outcomes of 

coin flips that are not equal to their predecessor) is an even number. The 

above relation can be verified by induction, i.e., verifying the relation for 

1 1( )p s s  and then for 1( )xp s s  given that it is valid for 1 1( )xp s s  . 

An initial numerical exploration suggests that f  is indeed a constant rate, 

except for a small deviation for the lowest n . Therefore we calculate the 

limit of f  as x , as follows. Since 0 1,p   all terms xq  and 1xq   go 

to zero, which makes both the numerator and the denominator go to zero. 

Applying L’Hôpital’s rule instead, lim
x

f


 becomes 
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Taking this limit would lead to 0 0  again, so we apply L’Hôpital’s rule for 

the second time: 
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As the last step we use the constraint 1 1q    and substitute q  back to 

arrive at the expression 
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For the example of 0.75p   used in Figure 1, this evaluates to 4. 

In words, each subsequent coin flip is  stores one quarter of the information 

that its predecessor 1is   stores. We can define the information dissipation 

length as the characteristic halftime of information, so that 

coins 1

3

4

2

2log (1 2

1 1
IDL log

2

1
.

2

)f

p

p



 







 (2) 

Finally we illustrate how the IDL of the system of coins depends on the 

‘copy’ probability p  in Figure 2. Note that replacing x  by a temporal 

coordinate, e.g., letting a single coin depend on its own previous outcome, 

would lead to an analogous expression for IDT. 
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Figure 2: The information dissipation length (IDL) of a sequence of conditional coin 

flips, where each coin flip has the same outcome as the previous coin flip with 

probability p . As 0p   or 1p   the IDL diverges to infinity; as 1 2p   the 

IDL goes to zero, as expected.  

Information dissipation in networks 

In a general system of interacting units we can let t

is  correspond to the state 

of unit i  at time t . The more random is the interaction among connected 

units, the less information is transmitted between the states and therefore the 

lower the correlation between the states of the units. These connections form 

a network in which information about a unit s  is transmitted to its 

neighbors, which store it in their state. Each neighbor subsequently 

transmits information about their own state, which partly consists of the 

information from unit s , and so on, inducing the percolation and mixing of 

many different pieces of information through the system.  

The concept of information dissipation is a first characterization of how 

information is processed among the nodes in a network. It is the primary 

conceptual contribution of this dissertation. 
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1.2 Our Thesis 

Our Thesis is that the ability to quantify the inherent information processing 

in networks of dynamical nodes leads to a unifying framework for a better 

understanding of the behavior of complex adaptive systems. This Thesis 

consists of two parts: 

1. The information processing concept provides a set of analytical tools 

to translate the microscopic node dynamics into the macroscopic 

network’s behavior. 

2. The information processing concept provides a single language to 

characterize the dynamical behavior of disparate systems. 

1.3 Outline of the Dissertation 

In Chapter 2 we formulate the time it takes for information about a single 

unit to dissipate through the network. We name this quantity the information 

dissipation time of the node and relate it to the dynamical importance of the 

node, i.e., the impact that the node has on the dynamical behavior of the 

network as a whole. This quantity is derived as a function of a node’s 

connectivity (degree) for large networks with any degree distribution. We 

find counter intuitively that the information dissipation time (i.e., dynamical 

importance) diminishes for highly connected nodes. We validate this finding 

in computer simulations of networks of Ising spins with a heavy-tailed 

degree distribution. The finding is consistent with empirical evidence from 

the literature of a social viral marketing network, a network of human 

proteins, and neuronal activity in in vitro neural networks. Each source of 

empirical evidence left the phenomenon unexplained. We are able to 

provide an alternative explanation for all three cases based on the 

dissipation of information of individual nodes. 

In Chapter 3 we formulate the spatial variant of the measure used in the 

previous Chapter, namely the information dissipation length of a node. We 

relate this quantity to the capability of the network as a whole to undergo a 

self-organized systemic change, i.e., the event where the majority of nodes 

change their state in a synchronous manner. We estimate this measure using 
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real data of daily prices of interest-rate swaps in the USD and EUR financial 

derivatives markets and demonstrate that it could have provided an early 

warning signal to the bankruptcy of Lehmann Brothers. Their bankruptcy 

was a pivotal financial event that marks the beginning of the recent banking 

crisis. We also demonstrate that previously introduced leading indicators 

would not have provided such a clear advance warning, as well as widely 

used financial indices such as the onset of a so-called swap basis and 

changes in the spread levels. These results show that the information 

dissipation time measures a characteristic of the financial market that is not 

adequately captured by other leading indicators. In addition it substantiates 

the concept that the dissipation of information can be used to characterize 

the network’s collective behavior, in this case its capability to self-organize 

towards a systemic crash. 

The previous two Chapters were concerned with translating the local 

dynamics into the global dynamics. In Chapter 3 we study how the global 

dynamics of the HIV epidemic contain information about the local 

dynamics of men-who-have-sex-with-men (MSM), which constitute the 

majority of the HIV spreading network. The epidemiological process of 

HIV among individual MSM, each with his own immune system and 

promiscuity, shapes the phylogeny of the virus population. This phylogeny 

is the (anonymized) set of genetic sequences of patients available in hospital 

databases, combined with a measure of similarity of each pair of sequences. 

Phylogenetic data is inherently ambiguous and incomplete. Nevertheless we 

show in this Chapter that phylogenetic data, consisting of 14560 subtype-B 

sequences from 2001 through 2007 from the UK HIV Drug Resistance 

Database, indeed contains information about key epidemiological 

parameters, both at the population-scale and at the individual scale. We use 

computer simulations of the HIV epidemic among individual MSM where 

infections occur over a dynamic network with a heavy-tailed degree 

distribution. All parameter values and their confidence intervals are taken 

from literature.  

 


