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SEMI-MARKOV-MODULATED INFINITE-SERVER QUEUES:
APPROXIMATIONS BY TIME-SCALING

Ton Hellings, Michel Mandjes, and Joke Blom

Centram Wiskunde and Information, Amsterdam, The Netherlands

� This article studies an infinite-server queue in a semi-Markov environment: the queue’s
input rate is modulated by a semi-Markovian background process, and the service times are
assumed to be exponentially distributed. The primary objective of this article is to propose
approximations for the queue-length distribution, based on time-scaling arguments. The analysis
starts with an explicit analysis of the cases in which the transition times of the modulating
semi-Markov process are either all deterministic or all exponential. We use these results to obtain
approximations under time-scalings; both a quasi-stationary regime (in which time is slowed
down) and a fluid-scaling regime (in which time is sped up) are considered. Notably, in the
latter regime, the limiting distribution of the number of customers present is Poisson, irrespective
of the distribution of the transition times. The accuracy of the resulting approximations is
illustrated by several numerical experiments, that moreover give an indication of the speed of
convergence in both regimes, for various distributions of the transition times. The last section
derives conditions under which the distribution of the number of customers present is Poisson
(in an exact sense, i.e., not in a limiting regime).

Keywords Infinite-server systems; Laplace transforms; Markov modulation; Queues.

Mathematics Subject Classification Primary 60K25, 60K37; Secondary 44A10.

1. INTRODUCTION

The infinite-server queue has proven to be an extremely useful model,
being applicable in many contexts. It describes units of work (‘customers’,
in queueing language) arriving at a resource, that stay present for some
random duration that is independent of other customers. In the special
case that these customers arrive according to a Poisson process with
rate �, and the sojourn times are i.i.d. random variables with mean 1/�
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Semi-Markov-Modulated Infinite-Server Queues 453

(the so-called M/G/∞ queue), it is known that the stationary number
of customers in the system has a Poisson distribution with mean �/�� In
fact, the transient behaviour of this M/G/∞ queue is well understood:
conditional on the number of customers present at time 0, the distribution
of the number of customers at time t > 0 is known[6].

The analysis complicates considerably if the model assumptions are
relaxed. If the arrival process is of the renewal type, for instance,
the steady-state distribution of the resulting GI/G/∞ queue cannot be
explicitly computed. Various limiting results are available though, in terms
of a central limit theorem under a specific scaling, see Ref.[4], as well as
large-deviations results, see Ref.[3].

Another relevant variant, on which we focus in the present article,
allows some ‘burstiness’ in the arrivals. The arrivals occur according to
a Poisson process, but the arrival rate is determined by the state of an
external semi-Markov process, which we also refer to as the ‘background
process.’ More precisely, with X (t) denoting an irreducible continuous-
time semi-Markov process defined on a finite state space �1, � � � , d�, the
arrival rate at time t is given by �X (t), where � ≡ (�1, � � � , �d) is a vector with
non-negative entries. Throughout it is assumed that the time a customer
remains in the system (the ‘service time’) has an exponential distribution.
Here ‘semi-Markov’ refers to the class of processes in which the transition
times (i.e., the sojourn times in the individual states of the background
process) can stem from any distribution on �+ (i.e., not necessarily the
exponential distribution), while the process jumps between these states in
a Markovian manner.

The resulting model could be called a semi-Markov-modulated M/M/∞
queue, or an infinite-server queue in a semi-Markov-modulated random
environment (for ease we often leave out ‘semi’ in the sequel). This type
of system can be used in several application domains. Suppose for instance
that users of a specific service in a communication network occupy one
unit of resource while being present (to be thought of as a telephone line,
or a given amount of bandwidth); if the arrival rate of these customers
alternates between various modes, which is typically the case, the model
presented could be used. Another example relates to biology: mRNA
strings are synthesized after transcription of the DNA and later degraded
in a cell, where the transcription typically tends to occur in a clustered
fashion. The proposed model therefore captures the key characteristics of
this mechanism well, as argued in Ref.[10].

There is surprisingly little literature on the Markov-modulated infinite-
server queue and its variants, compared to the huge literature on
Markov-modulated single- and many-server queues. Notably, in the case of
exponential transition times and a single server, the stationary distribution
of the number of customers in the system is of matrix-geometric form[8];
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454 Hellings et al.

in this sense that system can be viewed as a matrix generalization of
the normal M/M/1 queue where the stationary distribution is ‘scalar-
geometric.’ In Ref.[9] the case of exponential transition times and infinitely
many servers is considered; the results are in terms of the factorial
moments of the numbers of customers (and in addition, it is shown that
the corresponding distribution is not of matrix-Poisson type—in other
words: this system is not the matrix generalization of the M/M/∞, which
has a ‘scalar-Poisson’ distribution). A somewhat more general model (that
includes retrials) has been studied in Ref.[5].

The most general result is by D’Auria[1], who finds a recursion for
the factorial moments for general transition times, i.e., for the semi-
Markov-modulated M/M/∞ queue we introduced above. He relies on the
observation that the number of customers present has, in the stationary
regime, a Poisson distribution with random parameter—the computation of
this distribution requires a substantial amount of careful analysis though.
Fralix and Adan[2] also focus on the situation in which the service times are
not necessarily exponential, but rather Erlang or hyperexponential; this
can then be used to address the case with general service times.

As mentioned before, the results obtained so far are primarily in
terms of (factorial) moments of the queue-length distribution. To facilitate
practical use, however, one should get a handle on the distribution itself.

This article proposes approximations for the stationary distribution
of the number of clients present in the queueing system, based on two
limiting time-scaling regimes. This is done for general transition time
distributions, and we furthermore present exact results for deterministic
and exponential distributions. The first two sections introduce the
problem. In Section 2 the model is defined. Section 3 starts by considering
the special case in which the transition times are state-specific but
deterministic. A very elementary argument provides the factorial moments of
the stationary number of customers present; this means that for this special
case we do not have to go through the procedure followed in Ref.[1] to get
to the same results. Later we also address the case of exponential transition
times. This leads to explicit formulae for the factorial moments, in line
with those presented in Ref.[9]. Phase-type transition times can be dealt with
analogously. The major contributions of the article are the following.

In Section 4 generally distributed transition times are analysed using
time-scaling. Both the so-called quasi-stationary and fluid-scaling regimes
are considered. In the former regime, the transition times are divided
by a factor n, and then the limiting system corresponding to n → 0 is
considered. Our findings indicate that the stationary distribution of the
number of customers is ‘mixed Poisson’, i.e., it is Poisson with mean �i/�

with some probability �i , where �i is the steady-state probability that the

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 0
7:

00
 2

2 
Ja

nu
ar

y 
20

13
 



Semi-Markov-Modulated Infinite-Server Queues 455

modulating Markov chain is in state i . Notice that this is a conceivable
property, as, due to the time scaling enforced in the quasi-stationary
regime, while being in state i the system looks like an ordinary M/M/∞
queue with arrival rate �i .
In the latter regime (fluid scaling), the transition times are sped up by a
factor n, and n is sent to ∞. The limiting arrival process then turns out to
be a Poisson process, with a rate �∞ that is a weighted combination of the
�i . Importantly, this result can be regarded as an insensitivity property, as
it holds for arbitrary transition time distributions (only the mean transition
times end up in the expression for �∞).
The next section contains a series of numerical experiments for the above
regimes. The experiments indicate that there is a rapid convergence to
the quasi-stationary and fluid-scaling limits for various distributions of the
transition times.
As mentioned above, in Ref.[1] it is shown that the number of customers
in the system has, in the stationary regime, a Poisson distribution with
random mean. We also mentioned that we obtain a Poisson distribution
in the fluid-scaling regime, and this is also the case when d = 1. This
raises the question: under what conditions is the steady-state distribution
Poisson? It is observed that, with X being some non-negative random
variable, under the assumption that the random variable Z has a Poisson
distribution with (random) mean X ,

�ar �Z � = �
[
X 2

] + � �X � − � �X �2 = �ar �X � + � �X � ≥ � �X � = � �Z � ,

with equality only when X is deterministic. This inequality indicates that
approximating the distribution by a Poisson distribution tends to be too
optimistic (as it underestimates the variance). In Section 6 we identify
conditions under which the Poisson distribution is indeed justified, in
that the number of customers has exactly a Poisson distribution (i.e., not
in a limiting regime, like in the fluid-scaling studied in Section 4).

2. MODEL DESCRIPTION

In this article we consider an infinite-server queue with semi-Markov-
modulated Poisson arrivals and exponential service times. More precisely,
the model can be described as follows.

Consider an irreducible semi-Markov process X (t) on a finite state
space �1, � � � , d�, with d ∈ �. Its transition matrix is given by P = (

pij
)d
i ,j=1

,
where pii need not necessarily be zero. The time spent in state i is
distributed as a non-negative random variable Ti (to be referred to as a
transition time). The subsequent transition times in state i , say (Ti ,j)j∈�,
constitute a sequence of i.i.d. random variables; in addition the sequences
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456 Hellings et al.

(Ti ,j)j∈�, for various i ∈ �1, � � � , d�, are assumed independent. There is also
independence between the jumps of the semi-Markov process and the
transition times. While the process X (t), often referred to as the background
process, is in state i , customers arrive according to a Poisson process with
rate �i ≥ 0. The service times are assumed to be exponentially distributed
with mean 1/�, irrespective of the state of the background process.

We use bold fonts to denote vectors; for instance � ≡ (�1, � � � , �d). We
denote the invariant distribution corresponding to the transition matrix P
by ��

In the sequel, we let Mi denote the random variable describing the
stationary number of customers present when the background process
enters state i . The primary objective of this article is to analyze the
distribution of Mi for i = 1, � � � , d , and in particular after time-scaling
has taken place. For d = 1 it will immediately be seen that the process
described is actually a classical M/M/∞-queue, and hence M1 has a
Poisson distribution with mean �1/�� In our analysis, special attention
is paid to the case that the Tis equal a deterministic number ti >
0 (Section 3); these results are then used to also tackle the case of
exponential transition times, while they also facilitate analysis of the quasi-
stationary and fluid-scaling regimes for general transition times.

3. FIXED-POINT RELATIONS FOR DETERMINISTIC AND
EXPONENTIAL TRANSITION TIMES

In this section the probability generating function (PGF) of the Mi ,
for i = 1, � � � , d , is first analyzed for deterministic transition times; recall
that the time the background process spends in state j is tj � This is done
by expressing the PGF of Mi in terms of the PGFs of Mj with j = 1, � � � , d ,
conditioning on the state from which the background process jumped to
state i . This leads to a fixed-point equation that enables the calculation
of all moments. Later on in this section the PGF of Mj with exponential
transition times will be derived from the deterministic case.

To find the PGF of Mj , we need the probabilities of coming from
state j , given that the process just jumped to state i ; these are the transition
probabilities of the time-reversed process, denoted by p̃ij = pji�j/�i � Let Y
denote the state the semi-Markov process was in prior to its visit to state i .
This leads to

	i(z) := �
[
zMi

] =
d∑

j=1

p̃ij�
[
zMi |Y = j

]

=
d∑

j=1

∞∑
n=0

p̃ij�
[
zNj |Mj = n

]
�

[
Mj = n

]
; (1)
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Semi-Markov-Modulated Infinite-Server Queues 457

here �
[
zNj |Mj = n

]
is the pgf associated with the number of customers

present in a birth-death process with arrival rate �j and service rate � (per
customer), after a time interval of length tj , conditional on n customers
being present at the start of this interval.

Lemma 1. With hj(z) := 1 − e−�tj (1 − z) and gj(z) := e−�j
1−e

−�tj
� (1−z), we have

�
[
zNj |Mj = n

] = (hj(z))ngj(z)�

Proof. First observe that (Nj |Mj = n) can be written as the sum of two
independent components: Nj ,1, i.e., the number of the initial n customers
that is still present after tj units of time, and Nj ,2, i.e., the number of
arrivals during the period of length tj that are still in service at the end of
this time period. Note that Nj ,2 obviously does not depend on the initial
population n.

It is elementary that (Nj ,1 |Mj = n) has a binomial distribution with
parameters n and e−�tj , so that

�
[
zNj ,1 |Mj = n

] = (hj(z))n �

We now focus on Nj ,2. First recall that the number of arrivals in the
interval has a Poisson distribution with mean �j tj � Conditional on the
number of arrivals, each of them arrives at an epoch uniformly distributed
on the interval of length tj ; hence the probability that a given customer is
still present at time tj equals q(tj), with

q(t) :=
∫ t

0

1
t
e−�(t−u)du = 1 − e−�t

�t
�

It now follows that

�
[
zNj ,2

] =
∞∑
k=0

e−�j tj
(
�j tj

)k
k!

k∑
m=0

zm
(
k
m

) (
q(tj)

)m (
1 − q(tj)

)k−m
;

basic computations show that this equals gj(z)� �

We observe that the pgf �
[
zNj ,2

] = gj(z) corresponds to a Poisson
random variable with mean �j tj q(tj), which can be understood as follows.
The arrival process is a Poisson process with rate �j , so that over a period
of length tj the number of arrivals is Poisson distributed with mean �j tj .
However, each of these arrivals is still present after a time interval of length
tj with probability q(tj). This results in an ‘effective mean’ of �j tj q(tj).

Eq. (1) and Lemma 1 immediately lead to the following system of fixed-
point equations for the 	i(z)�
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458 Hellings et al.

Theorem 2. For i = 1, � � � , d,

	i(z) =
d∑

j=1

p̃ij gj(z)	j
(
hj(z)

)
�

Proof. Observe that

	i(z) =
d∑

j=1

p̃ij
∞∑
n=0

gj(z)
(
hj(z)

)n
�

[
Mj = n

]
,

and the stated follows directly. �

The means of the Mi can be found by differentiating the fixed-point
equation of Theorem 2 and inserting z = 1. We obtain the following linear
system:

� �Mi� =
d∑

j=1

p̃ij

(
e−�tj�

[
Mj

] + (
1 − e−�tj

) �j
�

)
�

In fact all moments can be derived in this manner. Relying on the standard
identity

dk

dxk

(
f (x)g (x)

) =
k∑

m=0

(
k
m

)
f (m)(x)g (k−m)(x)�

and

dk

dzk
	j

(
hj(z)

) = 	(k)j

(
hj(z)

) (
h ′
j(z)

)k

(where it is used that h(2)
j (z) = 0), it follows that

	(k)i (z) =
d∑

j=1

p̃ij

(
k∑

m=0

(
k
m

)
g (m)
j (z)	(k−m)

j

(
hj(z)

) (
h ′
j(z)

)k−m
)
�

We thus obtain

	(k)i (1) =
d∑

j=1

p̃ij e−k�tj

k∑
m=0

(
k
m

) (
�j

�

(
e�tj − 1

))m

	(k−m)
j (1)�
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Abbreviating

b(k)ij := p̃ij e−k�tj , a(k)
i :=

d∑
j=1

b(k)ij

k∑
m=1

(
k
m

) (
�j

�

(
e�tj − 1

))m

	(k−m)
j (1),

the value of the factorial moment

M (k)
i := 	(k)i (1) = � �Mi(Mi − 1) · · · (Mi − k + 1)� = �

[
Mi !

(Mi − k)!
]

can be computed through M (k)
i = a(k)

i + ∑N
j=1 b

(k)
ij M (k)

j � This leads to a
procedure that enables the computation of M (k) recursively from M (1) up
to M (m−1), based on the relation (in self-evident notation)

M (k) = (
Id − B(k)

)−1
a(k)� (2)

Using Stirling’s numbers of the second kind, denoted as �(n, k), the raw
moments can be found from factorial moments:

� �Mn
i � =

n∑
k=0

�(n, k)�
[

Mi !
(Mi − k)!

]
, with�(n, k) := 1

k!
k∑

j=0

(−1)k−j

(
k
j

)
j n �

Remark 3. The service rate � can easily be made state-dependent,
by writing �j instead of �, so that hj(t) = 1 − e−�j t(1 − z) and gj(t) =
exp(−�i/�i(1 − exp(−�i t))(1 − z)).

Below, the results for deterministic transition times will be used to
analyse the case where the background process is a Markov process,
meaning that the transition times are exponentially distributed. The
following classical result, featuring the notion of characteristic function
(cf), is needed, see Ref.[12]; ‘

d→’ means convergence in distribution.

Proposition 4 (Lévy’s Convergence Theorem). Consider a sequence of
random variables X1,X2, � � � , with cfs 
1(s),
2(s), � � � , so that 
n(s) =
�[e isXn ]. If

lim
n→∞


n(s) = 
(s)

for some function 
(s) for all s ∈ �, and furthermore 
(s) is continuous at s = 0,
then

lim
n→∞

Xn
d−→X ,

where X has cf 
(s).
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460 Hellings et al.

Observe that the exponential distribution can be approximated by
a geometric number of ‘short’ deterministic times, where the success
probability of this geometric distribution is ‘small.’ This idea is formalized
in the following well-known lemma.

Lemma 5. Let Gt have a geometric distribution with success probability (1 − pt),
that is, � �Gt = i� = (1 − pt)i−1pt � Then tGt

d→ H as t ↓ 0, where H has an
exponential distribution with mean 1/p�

This way the Markov process (with d states) can be discretized; we use
the transition probabilities

pij =


rij t for i �= j

1 −
∑
j �=i

rij t for i = j �

Here rij is the transition rate from state i to j of the Markov process; t <
(maxi

∑
j �=i rij)

−1. When the intervals between the transitions (which are
possibly self-transitions) are of length t (deterministically) and taking t ↓ 0,
the resulting discrete-time Markov chain matches with the original Markov
process, according to Lemma 5.

However, it has to be noted that the random variables Mi (with
i = 1, � � � ,N ) denote the population at epochs that a state is entered,
but entering happens increasingly often when t ↓ 0. Since self-transitions
are allowed (and occur each time with probability close to 1), the
corresponding discrete process re-enters this state continuously during an
exponential staying time in a state. Therefore, the variable Mi denotes the
stationary distribution of the population at arbitrary moments in which the
system is in state i (rather than the stationary distribution at the epoch
the Markov process enters i).

Bearing in mind Eq. (2), we now consider subsequently Id − B(k) and
a(k) at t ↓ 0�

First the entries of the matrix Id − B(k) will be analysed at t ↓ 0� First
consider i �= j . Using the definition, it is immediately seen that

(
Id − B(k)

)
ij = p̃ij e−k�t = −rji

�j

�i
t(1 − k�t + O(t 2)) = −rji

�j

�i
t + O(t 2)�

For
(
Id − B(k)

)
ii something similar can be done:

(
Id − B(k)

)
ii = p̃ii e−k�t = 1 −


1 −

∑
j �=i

rji t


 (1 − k�t + O(t 2))
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=

∑

j �=i

rji + k�


 t + O(t 2)�

The analysis of a(k) requires a few more calculations:

a(k)
i =

d∑
j=1

b(k)ij

k∑
m=1

(
k
m

) (
�j

�

(
e�t − 1

))m

	(k−m)
j (1)

=
d∑

j=1

b(k)ij

k∑
m=1

(
k
m

)
�mj

(
t + O(t 2)

)m
	(k−m)
j (1)

=
d∑

j=1

b(k)ij

k∑
m=1

((
k
m

)
(�j t)m	

(k−m)
j (1) + O

(
tm+1

))

=
∑
j �=i

(
rji
�j

�i
t + O(t 2)

) k∑
m=1

((
k
m

)
(�j t)m	

(k−m)
j (1) + O

(
tm+1

))

+

1 −


∑

j �=i

rji + k�


 t + O(t 2)




×
k∑

m=1

((
k
m

)
(�i t)m	

(k−m)
i (1) + O

(
tm+1

))

= O
(
t 2

) + (1 + O(t))
(
k�i t	

(k−1)
i (1) + O

(
t 2

))
=

(
k�i	

(k−1)
i (1)

)
t + O

(
t 2

)
�

It is concluded that both Id − B(k) and a(k) have a linear term in t in all
coefficients and no constant term, as t ↓ 0. Since the matrix is inverted in
(2), they cancel each other out, and the terms with O(t 2) vanish as t ↓ 0.
It follows that

M (k) = k C−1
k �M (k−1),

with � = diag(�1, � � � , �N ), and Ck = (
cij(k)

)N
i ,j=1

, in which

cij(k) :=




−rji
�j

�i
if i �= j ,

∑
h �=i

rhi + k� else.
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462 Hellings et al.

This leads to the explicit expression

M (k) = k! [C−1
k �C−1

k−1� · · ·C−1
2 �C−1

1 �
]
(1, � � � , 1)T� (3)

Note that this result is in line with Theorem 3.1 in Ref.[9].

Example 6. Consider the 2-state system with p11 = 1 − �1t , p12 = �1t ,
p21 = �2t , and p22 = 1 − �2t , where t < (max��1, �2�)

−1. It is readily verified
that this results in �i = �3−i/(�1 + �2) for i = 1, 2. Take t = (t , t) and l =
(�1, �2).

Now it turns out that p̃ij = pij (the matrix P corresponds to a reversible
discrete-time Markov chain). From (2) it can be found that

�t �Mi� = �i

�
· 1 − e−�t − �i t + (�1 + �2 − 2�1�2t)te−�t

1 − e−�t + (�1 + �2)te−�t

+ �3−i

�
· �i t(1 − 2e−�t + 2�3−i te−�t)

1 − e−�t + (�1 + �2)te−�t
�

Now taking the limit t ↓ 0, the Markov chain becomes equivalent to the
Markov process with rates r12 = �1 and r21 = �2. As we explained above, Mi

does not denote the population at the epoch of entering state i in this
case; instead it is the population found at a random moment while being
in state i . The mean is found to equal

� �Mi� = lim
t↓0

�t �Mi� = �i

�
· � + �3−i

� + �1 + �2
+ �3−i

�
· �i

� + �1 + �2
�

The average population over all time is now

� �M � = �1� �M1� + �2� �M2�

= �1

�
· �2

�1 + �2
+ �2

�
· �1

�1 + �2
= �1

�
�1 + �2

�
�2� (4)

The latter result can be obtained more easily from Little’s law, which says
that � �M � equals the product of the mean arrival rate and the expected
time spent in the system; the latter quantity is obviously 1/��

Using the Stirling numbers introduced in Section 3, the following
result is found for exponentially distributed transition times:

(
� �Mn

1 � , � � � ,� �Mn
d �

)T =
n∑

k=0

k∑
j=0

(−1)k−j

(
k
j

)
j n

× [
C−1
k �C−1

k−1� · · ·C−1
2 �C−1

1 �
]
(1, � � � , 1)T�
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4. GENERALLY DISTRIBUTED TRANSITION TIMES:
LIMITING REGIMES

In this section we study two well-known limiting regimes. In the first
one, all transition times are divided by n, and then n is sent to 0. As can be
expected, in this quasi-stationary regime the number of customers present is
a mixture of Poisson random variables: time-scaling makes sure that when
the modulating Markov process is in state i , the process locally behaves as
an M/M/∞ system with arrival rate �i .

In the second regime (the so-called fluid-scaling regime) time is sped up
by a factor n, and the behaviour for n → ∞ is considered. In this case, it
turns out that the limiting arrival process is a Poisson process with rate, say,
�∞. Remarkably, this property holds for transition times Ti (i = 1, � � � , d)
with arbitrary distributions, in the sense that �∞ depends on the transition
times only through (� �T1� , � � � ,� �Td �), see Corollary 9.

In Section 5 we show that the limiting regimes already yield reasonable
approximations for n relatively close to 1.

4.1. Quasi-Stationary Behavior

First we consider the situation that the transition times are slowed
down, that is, divided by a factor n, where n is then sent to 0.

Theorem 7. As n → 0, in the infinite-server system with transition times ti/n,
the random variable Mi has a ‘mixed Poisson distribution’, i.e., a Poisson
distribution with parameter �j/� with probability p̃ij for j = 1, � � � , d.

Proof. Note that taking transition times ti/n with n → 0, it formally
becomes problematic to speak about the system in steady state. Therefore,
instead of slowing down the transition process, we speed up the arrival and
departure processes, � 	→ �/n and � 	→ �/n, obviously resulting in exactly
the same distribution of Mi . Using Taylor expansions, the equivalents of
gj(z) and hj(z) obey

g (n)
j (z) = exp

(
−�j

�

(
1 − e−�tj /n

)
(1 − z)

)

= e− �j
� (1−z) (1 + O

(
e−�tj /n

))
;

h(n)
j (z) = 1 − e−�tj /n(1 − z)�

This leads for the corresponding pgf, say �(n)(z), to

	(n)i (z) =
d∑

j=1

p̃ij e
− �j

� (1−z)
(
1 + O

((
e−�tj

) 1
n
))

	(n)j

(
1 − e−�tj /n(1 − z)

)
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464 Hellings et al.

so that 	(n)i (z) converges, as n → 0, to

lim
n→0

d∑
j=1

p̃ij e
− �j

� (1−z)
(
1 + O

((
e−�tj

) 1
n
))

	(n)j

(
1 − e−�tj /n(1 − z)

) =
d∑

j=1

p̃ij e
− �j

� (1−z),

which concludes the proof. �

For the distribution of the number of customers at an arbitrary
transition epoch, say M , we obtain

�
[
zM

] =
d∑

i=1

�i�
[
zMi

] =
d∑

i=1

�i

d∑
j=1

p̃ij e
− �j

� (1−z) =
d∑

j=1

�j e
− �j

� (1−z)�

In other words: M has a Poisson distribution with parameter �j/� with
probability �j , as expected. This property will carry over to the case that
the Tis have an arbitrary distribution on �+�
In Section 5 we will use the symbol M 0 for this limiting variable M ,
while M∞ corresponds to the same quantity under the fluid scaling, to be
discussed in the next subsection.

4.2. Fluid-Scaling Behavior

In case all transition times are divided by a factor n, while � and �
remain unchanged, we show in this subsection that in the limit (n → ∞)
the inter-arrival times become exponential. This is first shown for the case
of deterministic transition times (as was discussed in Section 3), and then
we argue that the result carries over to general (finite-mean) transition
times.

Theorem 8. Consider the system with deterministic transition times ti/n. As
n → ∞, the time until the first arrival converges in distribution to an exponential
random variable M∞ with mean 1/�∞, where

�∞ :=
∑d

i=1 �i ti�i∑d
i=1 �i ti

� (5)

Proof. Let 
i(s) denote the cf of Xi (i = 1, � � � , d), where Xi is the time
until the next arrival when entering state i , in the limiting situation of
n → ∞ (assumed to exist); �(s) is the d -dimensional vector with entries

i(s) (i = 1, � � � , d). The counterparts of these notions in the pre-limit
situation are X(n) and �(n)(s). Our objective is to prove that the Xi have an
exponential distribution with mean 1/�∞, irrespective of i . As the proof is
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Semi-Markov-Modulated Infinite-Server Queues 465

rather lengthy, we have tried to make it more transparent by breaking it
up in a number of steps.

Step I. We first derive a fixed point equation for the cf of X(n).
Standard arguments yield that


(n)
i (s) = s�

[
e isX

(n)
i

]
= �

[
X (n)

i < ti/n
]
�

[
e isX (n)

i |X (n)
i < ti/n

]
+ �

[
X (n)

i > ti/n
]
�

[
e isX (n)

i |X (n)
i > ti/n

]
= (

1 − e−�i ti/n
) �i

�i − is
· 1 − e−(�i−is)ti/n

1 − e−�i ti/n

+ e−�i ti/ne isti/n
d∑

j=1

pij�
[
e isX (n)

j

]

= (
1 − e−(�i−is)ti/n

) �i

�i − is
+ e−(�i−is)ti/n

d∑
j=1

pij

(n)
j (s)� (6)

In vector notation, this is written as

�(n)(s) = (I − D)(� − isI )−1� + DP�(n)(s),

where D := diag
(
e−(�1−is)t1/n , � � � , e−(�d−is)td /n

)
, which depends on both n and

s, � := diag(�). Provided det(I − DP ) �= 0, this yields:

�(n)(s) = (I − DP )−1(I − D)(� − isI )−1�� (7)

Step II. We now ‘Taylorize’ expression (7). First define T = diag(t).
Using standard Taylor expansions, the elements of D can be rewritten as
dii = 1 − (�i − is)ti/n + O

(
n−2

)
, so that

D = I − 1
n
T (� − isI ) + 1

n2
R1,

for some matrix R1 with R1/n → 0 as n → ∞. With R2 being a matrix with
the same property as R1, expression (7) is rewritten as

�(n)(s) =
(
I − P + 1

n
T (� − isI )P − 1

n2
R1P

)−1 (
1
n
T + 1

n2
R2

)
��

Note that R1 and R2 are the only matrices that depend on s.
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466 Hellings et al.

The inverse of matrix I − P + T (� − isI )P/n + R1P/n2 = A + B/n is
to be determined now, with A := I − P and B = T (� − isI )P + O (1/n).
This equals (under the assumption det(I − DP ) �= 0)

inv
(
A + 1

n
B

)
= 1

det(A + 1
n B)

adj
(
A + 1

n
B

)
,

which is a direct result from Cramer’s rule[11]. Since P is a probability
matrix, we have that det(A) = det(I − P ) = 0. Hence, using the common
permutations description of the determinant,

det
(
A + 1

n
B

)
= det

(
A + 1

n
B

)
− det(A)

=
∑
∈Sd

sgn()

(
d∏

i=1

(
ai ,(i) + 1

n
bi ,(i)

)
−

d∏
i=1

ai ,(i)

)

=
∑
∈Sd

sgn()


 d∏

i=1

ai ,(i) + 1
n

d∑
i=1

bi ,(i)


 d∏

j=1,j �=i

aj ,(j)


 + O

(
1
n2

)
−

d∏
i=1

ai ,(i)




= 1
n

∑
∈Sd

sgn()
d∑

i=1

bi ,(i)


 d∏

j=1,j �=i

aj ,(j)


 + O

(
1
n2

)
,

with Sd denoting all permutations. As bi ,(i) = pi ,(i)ti(�i − is) + O (1/n), we
obtain

det(A + 1
n B) = 1

n

∑
∈SN

sgn()
d∑

i=1

pi ,(i)ti(�i − is)


 d∏

j=1,j �=i

aj ,(j)


 + O

(
1
n2

)

= 1
n
(q − irs) + O

(
1
n2

)
,

for a positive q and r , as we will show in the next step.

Step III. We now show that both q and r are positive. Observe that
with ci , for i = 1, � � � , d , defined suitably,

q =
∑
∈Sd

sgn()
d∑

i=1

pi ,(i)


 d∏

j=1,j �=i

aj ,(j)


 ti�i

=
d∑

i=1

∑
∈Sd

sgn()pi ,(i)


 d∏

j=1,j �=i

aj ,(j)


 ti�i =

d∑
i=1

ci ti�i ,
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Semi-Markov-Modulated Infinite-Server Queues 467

and likewise, r = ∑d
i=1 ci ti with the same coefficients ci . Here �i ≥ 0 for all

i with strict inequality for at least one i and ti > 0 for all i . Showing ci > 0
for all i = 1, 2, � � � , d is therefore sufficient to prove both q > 0 and r > 0.
Without loss of generality, we focus on i = 1.

Since

c1 =
∑
∈Sd

sgn()p1,(1)


 d∏

j=2

aj ,(j)


 ,

it is the determinant of a matrix of which the bottom d − 1 rows equal
those of A = I − P , while the upper row equals (p11, � � � , p1d). Standard
algebraic manipulations yield

c1 = −
∑
∈Sd

sgn()
(−p1,(1)

) 
 d∏

j=2

aj ,(j)




=
∑
∈Sd

sgn()�1,(1)


 d∏

j=2

aj ,(j)


 −

∑
∈Sd

sgn()


 d∏

j=1

aj ,(j)




= det(A(1,1)) − det(A) = det(A(1,1)); (8)

here A(i ,j) is the (d − 1) × (d − 1) submatrix of A with the ith row and
j th column omitted, of which the determinant is called the (i , j)th minor.
Since A = I − P with P a transition probability matrix for an irreducible
finite-state discrete-time Markov chain, A(1,1) is strictly diagonally dominant.
Indeed,

∣∣(A(1,1)
)
ii

∣∣ = 1 − pi+1,i+1 =
d∑

j=1,j �=i+1

pi+1,j

≥
d∑

j=2,j �=i+1

∣∣−pi+1,j

∣∣ =
d−1∑

j=1,j �=i

∣∣∣(A(1,1)
)
ij

∣∣∣ ,
with for at least some i the weak inequality sign being a strict inequality,
since pi ,1 > 0 for some i = 2, � � � , d . Strict diagonal dominance implies
that the determinant is non-zero. The fact that all diagonal elements
are positive entails all eigenvalues to be positive as well, which results in
det

(
A(1,1)

)
> 0, since the determinant is the product of the eigenvalues.

Therefore ci > 0 for all i = 1, � � � , d , and thus also q > 0 and r > 0. Note
that both constants q and r are independent of n and s. As expected,
det(A + B/n) → 0 as n → ∞.
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468 Hellings et al.

Step IV. Next, M [n] := adj(A + B/n) is determined as the transpose
of the matrix of cofactors of A + B/n. Since the only arithmetic operations
used to calculate the cofactor are addition, subtraction, and multiplication,
one concludes that if A has some non-zero cofactor, then limn→∞ M [n]

equals M := adj(A). Inspecting the diagonal immediately shows that this
claim holds, because the (1, 1)th cofactor equals c1 > 0 as was found in
(8), and likewise the (i , i)th cofactor equals ci > 0 for i = 2, � � � , d . This
entails that M is independent of s, and limn→∞ M [n] = M . The inverse is
now calculated as

inv(A + 1
n B) = n

q − irs + O
(
1
n

)M [n],

so that

�(n)(s) = n
q − irs + O

(
1
n

)M [n]
(
1
n
T + 1

n2
R2

)
�

= 1
q − irs + O

(
1
n

)M [n]
(
T + 1

n
R2

)
��

Now the limit n → ∞ can finally be taken:

�(s) = lim
n→∞

1
q − irs + O

(
1
n

)M [n]
(
T + 1

n
R2

)
�

= 1
q − irs

MT � = 1
q − irs

m,

for some d -dimensional vector m. From 
i(0) = 1 follows m = q1, where
1 is the all-one column vector of appropriate dimension, and thus 
(n)

i (s)
converges to the characteristic function of an exponential distribution with
parameter q/r , for every i = 1, 2, � � � , d . Since �(s) is continuous at s = 0,
Proposition 4 yields the desired convergence in distribution of X (n)

i to Xi ,
with Xi ∼ Exp(q/r ) for all i = 1, � � � , d .

Step V. It is left to show that �∞ is the only candidate for q/r . This
can be done by only looking at the first moment. For a Poisson process
Y (t) with rate �, the number of arrivals obeys

lim
t→∞

Y (t)
t

= �,

almost surely. On the long run the process spends �i ti/
∑

�j tj part of the
time in state i (independent of n), so the contribution to the number of
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arrivals done in state i , named Yi(t) will be

lim
t→∞

Yi(t)
t

= �i ti�i∑d
j=1 �j tj

,

almost surely. This implies

�∞ = lim
t→∞

Y (t)
t

= lim
t→∞

d∑
i=1

Yi(t)
t

=
d∑

i=1

�i ti�i∑d
j=1 �j tj

,

which is indeed (5). �

This theorem extends to systems with arbitrary transition times, where
the ti in (5) should be replaced by � �Ti�, the expected value of the
random transition time Ti , as shown in the following corollary.

Corollary 9. Consider the system with arbitrary transition times; assume
�[Ti] < ∞. As n → ∞, the time until the first arrival converges in distribution
to an exponential random variable with mean 1/�∞, where

�∞ =
∑d

i=1 �i� �Ti� �i∑d
i=1 �i� �Ti�

� (9)

Proof. Writing the time until the next arrival when switching to state i as
X (n)

i for finite n, the corresponding cf can be expressed as

�
[
e isX

(n)
i

]
= I1 + I2

d∑
j=1

pij�
[
e isX

(n)
j

]
�

with

I1 :=
∫ ∞

0

∫ t

0
fTi/n(u)�i e

−�i t e i su du dt ,

I2 :=
∫ ∞

0

∫ ∞

t
fTi/n(u)�i e

−�i t e ist du dt ;

here fX (·) denotes the density of some random variable X . Now these two
integrals I1 and I2 are evaluated separately. The first one reduces to

I1 =
∫ ∞

0

∫ t

0
fTi/n(u)�i e

−�i t e isu du dt

=
∫ ∞

0
e isu fTi/n(u)

∫ ∞

u
�i e−�i t dt du

=
∫ ∞

0
e−(�i−is)ufTi/n(u)du = �Ti/n(�i − is),
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470 Hellings et al.

whereas the second can be evaluated as

I2 =
∫ ∞

0

∫ ∞

t
fTi/n(u)�i e

−�i t e ist du dt

=
∫ ∞

0
fTi/n(u)

∫ ∞

u
�i e−(�i−is)t dt du

=
∫ ∞

0
fTi/n(u)

�i

�i − is

(
1 − e−(�i−is)u

)
du

= �i

�i − is

(
1 − �Ti/n(�i − is)

)
,

where �Ti/n(·) denotes the cf of Ti/n. Since

�Ti/n(�i − is) = 1 − 1
n
� �Ti� (�i − is) + O

(
1
n2

)
,

it follows that the calculations in the proof of Theorem 8 are identical
for the case of generally distributed transition times, since the Taylor
expansion of matrix D is the same after ti is replaced by � �Ti�. The rest of
the argument is identical. �

Remark 10. The technique that we used to prove Theorem 8 can be
adapted to show that not only the time till the first arrival is exponential
(with mean 1/�∞), but also that the limiting arrival process is a Poisson
process with rate �∞. We here sketch how this can be done; we focus
on deterministic transition times but this can be generalized to arbitrary
(finite-mean) distributions in the way described above. To this end, let
Z (n)
i (�1, �2) denote the number of arrivals in the time interval [�1, �2) (with

�1 < �2), given the background process just entered state i at time �1.
Define

�(n)
i (s; �1, �2) := �

[
e isZ

(n)
i (�1,�2)

]
,

and �i(s; �1, �2) the corresponding limiting value as n → ∞. For �2 − �1 >
ti/n,

�(n)
i (s; �1, �2) = exp

(
−�i

ti
n
(1 − e is)

) d∑
j=1

pij�
(n)
j (s; �1 + ti/n, �2)�

This system of equations can be regarded as the counterpart of (6).
Write

�(n)
j (s; �1 + ti/n, �2) = �(n)

j (s; �1, �2) + ti
n
(�(n)

j )′(s; �1, �2) + O
(

1
n2

)
,
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where the differentiation is with respect to �1. Where in the proof of
Theorem 8 the vector �(n)(s) could be found by solving a system of linear
equations, we now have to solve a system of linear differential equations to
identify �(n)(s; �1, �2). From that point on, we can follow precisely the same
steps as in the proof of Theorem 8. It eventually follows that (n → ∞)

�(n)
i (s; �1, �2) → exp

(−�∞(�2 − �1)(1 − e is)
)
,

proving that the limiting distribution of Z (n)
i (�1, �2) is Poisson with mean

�∞(�2 − �1). Likewise, the bivariate cf of the number of arrivals in
[�1, �2) and the number of arrivals in [�3, �4) (with �1 < �2 < �3 < �4)
converges to

exp
(−�∞(�2 − �1)(1 − e is1)

)
exp

(−�∞(�4 − �3)(1 − e is2)
)
,

irrespective of the state of the background process at time �1� We have
then shown that the number of arrivals in non-overlapping intervals follow
independent Poisson distributions, from which it follows that the limiting
arrival process is a Poisson process. (As an aside we mention that that last
argument was also used by Khinchine[7] to prove that the superposition
of n renewal processes, after a time-scaling by a factor n, converges to a
Poisson process.) We eventually find the following result.

Theorem 11. Consider the system with arbitrary transition times; assume
� �Ti� < ∞. As n → ∞, the arrival process converges to a Poisson process with
rate �∞.

Remark 12. One of the referees suggested an alternative proof for the
property that, in the fluid scaling regime, Z (n)

i (0, t) converges for n → ∞
to a Poisson random variable with mean �∞, irrespective of i . In this
alternative proof the cf of Z (n)

i (0, t) is first written in terms of an integral
over the arrival rate, that is

∫ t
0 �Xn (s)ds, with Xn(·) the background process

in the n-scaled model. Relying on the renewal reward theorem and
elementary properties of Markov chains, it is shown that the cf of interest
converges to the postulated one.

5. TIME SCALING SIMULATIONS

In the previous section results have been found for limiting regimes,
in which time was either sped up or slowed down. In this section we
numerically study how fast these regimes are reached.

We have chosen various simulation settings which all gave similar
results. One representative example will be shown in detail below.
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472 Hellings et al.

The simulation setting was chosen to be a 3-STATE Markov chain with
transition matrix

P =

1/5 2/5 2/5

0 1/5 4/5
1 0 0


 ,

which results in the steady-state distribution � = 1
23(10, 5, 8) and thus

P̃ =

1/5 0 4/5
4/5 1/5 0
1/2 1/2 0


 �

Now take � = (1, 3, 8), � = 1, and let the random variables T be generally
distributed with means � �T � = (2, 7, 1). When dividing the transition
times by a factor n, where n → 0, and given � �Ti > 0� = 1 for all i , the
distributions turn out to be

M 0
1 ∼ (A1�ois(1) + (1 − A1)�ois(8)) ,

M 0
2 ∼ (A2�ois(1) + (1 − A2)�ois(3)) ,

M 0
3 ∼ (A3�ois(1) + (1 − A3)�ois(3)) ,

where (A1,A2,A3) ∼ (�er(1/5),�er(4/5),�er(1/2)), where �er(p)
denotes a Bernouilli random variable with success probability p, i.e.,
�[�er(p) = 1] = 1 − �[�er(p) = 0] = p. For speeding up the transition
times the outcome distribution is �ois(�∞) with rate �∞ = 3, using the
notation of (5). Denote these limiting random variables as M∞

i , with
i = 1, 2, 3.

With n chosen to be the acceleration of the process, meaning
T 	→ T/n, the simulation is first run for deterministic transition times
and n = 10−4, 0�5, 1, 2, 104, so that two cases with only small changes
in transition times are covered, as well as both limiting cases. The
outcome distributions are shown in Figure 1. As expected the steady-
state distributions for n = 10−4 and n = 104 closely follow the limiting
distributions, which are shown in the figures as dotted lines. It is clearly
visible that small accelerations and slow-downs already lead to close
approximations of the limiting processes.

This is further examined in Figures 2 through 4, where the Kullback–
Leibler divergences with respect to the limiting distributions are shown
for both exponentially and uniformly distributed transition times and for
deterministic transition times, all having the same mean. The Kullback–
Leibler divergence between the random variables X and Y is given by

KL(X ,Y ) =
∑
n

� �X = n� log
(
� �X = n�
� �Y = n�

)
�
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Semi-Markov-Modulated Infinite-Server Queues 473

FIGURE 1 Steady-state distributions of Mi , i = 1, 2, 3, with deterministic transition times ti/n for
different values of n. The dotted lines depict the expected limiting distributions, for either the
quasi-stationary or the fluid-scaling regime (color figure available online).

Informally, the smaller the KL-divergence is, the closer the distributions
are to each other. In Figures 2 and 4 the 	nif(0, 2� �Ti�) distributions, with
mean � �Ti� and 0 as the infinum of the support, are chosen to represent
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474 Hellings et al.

FIGURE 2 Kullback–Leibler divergences of Mn
i and M 0

i , i = 1, 2, 3, for different values of n ≤ 1.
For the uniform distribution 	nif(0, 2� �Ti �) has been chosen (color figure available online).

FIGURE 3 Kullback–Leibler divergences of Mn
i and M 0

i , i = 1, 2, 3, for different values of n ≤ 1
and various values of � in � �Ti � · 	nif(�, 2 − �) (color figure available online).

the uniform case, while in Figure 3 multiple uniform distributions with
mean � �Ti� are evaluated.

The largest difference between the transition time distributions is seen
in Figure 2, which shows the quasi-stationary regime. The transition time
distribution has a significant influence on the convergence speed. The
exponential distribution appears to be the slowest, followed by the uniform
distribution, and the deterministic one has the fastest convergence rate.
This is also the descending order of variance for these three distributions.
This can be explained intuitively since the higher variance also implies
the higher probability of the transition time being close to zero. For the
quasi-stationary case the length of the previous intervals is important. Say
the order of visiting states has been k → j → i at a certain instance, then
for the quasi-stationary case Mi ∼ �ois(�j/�). However, if the probability
of having spent a very short time in j is significant, Mi is still too strongly
influenced by the time spent in state k.

This effect is further analysed in Figure 3, where multiple uniform
distributions have been simulated, namely � �Ti� · 	nif(�, 2 − �) for
� = 0, 1/8, 1/4, 1/2, 3/4, 1, where 	nif(1, 1) reduces evidently to the

FIGURE 4 Kullback–Leibler divergences of Mn
i and M∞

i , i = 1, 2, 3, for different values of n ≥ 1.
For the uniform distribution 	nif(0, 2� �Ti �) has been chosen (color figure available online).
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Semi-Markov-Modulated Infinite-Server Queues 475

deterministic case. The biggest difference is between for � = 0 and
� = 1/8, since the infinum of the support is suddenly greater than 0.

Figure 4 shows the Kullback–Leibler divergence between M∞
i ∼

�ois(3) and the steady-state distributions of Mi for various values of n ≥ 1,
i.e., the fluid-scaling regime. It is seen that the transition time distribution
has little influence on the convergence speed, compared to the quasi-
stationary regime. It seems that queue lengths for deterministic transition
times converge slightly faster than uniformly distributed transition times,
with exponential just behind these two. This is the same order as found for
quasi-stationary scaling. It is seen that among states 1, 2, 3 the convergence
rate is comparable but the off-set varies.

6. CONDITIONS FOR Mi HAVING A POISSON DISTRIBUTION

In the standard M/M/∞-queue, the stationary number of customers
present has a Poisson distribution. This corresponds to our case with d = 1.
Also, in Section 4 it has been shown that Mi admits to a Poisson distribution
in several limiting cases. Both when transition times tend to infinity and
when transition times tend to zero, the steady-state distribution of Mi

follows a (combination of) Poisson distribution(s). This raises the following
question: under what conditions does the steady-state population (exactly)
obey a Poisson distribution? In this section explicit conditions are identified.

In Ref.[1] it has been shown that the number Mi follows a Poisson
distribution, but with a possibly random parameter. We briefly sketch the
distribution of this parameter; for details we refer to Ref.[1]. Denoting the
random arrival rate by �(t) := �X (t), for t ∈ �, as the mapping from time to
rate �, with as before X (t) the state of the Markov chain at time t , we have

Mi ∼ �ois
(∣∣A�

∣∣
�

)
, (10)

where∣∣A�

∣∣
�

:=
∑
h<0

� �Exp(�)>−uh | � with a transition to i happening at t = 0� �

Here uh are all the (random) arrival epochs that happened before time 0,
so that

∣∣A�

∣∣
�

equals the sum of the probabilities for every individual
customer to still be present at time 0. It is concluded that this parameter
depends on � , and is therefore random for all distributions of � , except
the deterministic one. In that case �(t) corresponds to a deterministic cycle
through the states, and knowledge of a realization � would not contribute
anything.

In other words: if the rate � is non-random at all times, then the random
variables Mi , with i = 1, 2, � � � ,N , have a Poisson distribution. Recalling that
we have taken the service rate � to be state-independent, we conclude
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that the information about the arrival rate is effectively the only factor of
importance of random environment �(t), t ∈ �. The process in[10] is of this
type with two states and p12 = p21 = 1, and thus results in a Poisson process.

However, this does not imply that we only have a Poisson distribution
in case of cyclic routing through the d states. For example, consider the
case with three states so that �2 = �3 and t2 = t3, and p12 = p13 = 1/2, and
p21 = p31 = 1. The Markov chain will alternate between state 1 (having �1
for a time t1), and either state 2 or 3 (having �2 = �3 for a time t2 = t3),
so that the function �(t) will still be deterministic, given that the Markov-
chain enters some state i at time 0. Note, however, that this expansion of
the state space results essentially in the same sample path behaviour.

This idea is formalized in the following theorem, where we recall the
model description from Section 2. In this theorem a partition of the states
of the background process is demanded such that (1) every element of the
partition has the same arrival rate �, (2) the routing through the elements
of this partition is cyclic, and (3) the time the Markov chain spends each
of these elements is fixed.

Theorem 13. Consider the Markov chain comprising d states with transition
probabilities pij . Denote P+

i = �j | pij > 0� and P−
i = �j | pji > 0� for all i =

1, 2, � � � , d. Then every Mi has a Poisson steady-state distribution, if and only if a
partition N1, � � � ,Nk of the d states can be made so that

(1) �i = �j for all i , j ∈ Nn with n = 1, � � � , k. Call these rates �1, � � � ,�k .
(2) For all i ∈ Nn, P+

i /Nn ⊂ Nn+1, with n = 1, � � � , k.
(3) For every sequence i1, i2, � � � , im ∈ Nn so that ij+1 ∈ P+

ij for all j =
1, 2, � � � ,m − 1 and P−

i1 ∩ Nn−1 �= ∅ and P+
im ∩ Nn+1 �= ∅, ∑m

j=1 tij = Tn for
some constant Tn.

Note that indices Nn are to be understood modulo k.

Proof. First it will be shown that the three criteria result in a
deterministic �(t) for all t . After that, the reverse will be proven.

• For k = 1, by virtue of the first point the same �1 holds for every vertex,
so that �(t) = �1 for all t and is consequently deterministic.
Now let k ≥ 2. Recall that we assumed the Markov chain to be
irreducible and positive recurrent. Then, since k ≥ 2, no class of states
can be absorbing. By the second point the order of going through the
classes is determined, namely from n to n + 1, not skipping any class.
This also means �(t) has a cyclic pattern of �1, � � � ,�k .
Every sequence i1, i2, � � � , im ∈ Nn as described in the third point of the
theorem is a possible way to travel through the states of Nn . If Nn is
entered at some time T0, then it must be left at time T0 + Tn . This is due
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to the third point, which tells us that the total time spent in a class of
states is always fixed. Therefore �(t) is always deterministic.

• Now assume �(t) is deterministic. In case �(t) = �1 is constant for all
t , take k = 1 and group all states into one class. Then the first point is
satisfied and the second and third are trivial.
In the other case �(t) does not always hold the same value. Without loss
of generality, assume that it jumps to �1 at time 0. Since �(t) depends on
the state of a finite-state Markov chain, it must go through a fixed cyclic
pattern with period T , by virtue of the Markov property. This means
�(t) = �1 for all 0 < t < T1 for some T1, then �(t) = �2 for all T1 <
t < T1 + T2 for some T2, and so on until �(t) = �k for all

∑k−1
n=1 Tn <

t <
∑k

n=1 Tn =: T , after which the cycle is repeated. Regardless of the
structure of the Markov chain, it starts at time 0 at some state with rate
�1 and after time T1 it switches to a state with rate �2. Group together all
states it can be in at times t with 0 < t (mod T ) < T1 as N1, the ones for
0 < (t − T1) (mod T ) < T2 as N2, and so on. The first point is satisfied.
The third point is then satisfied since every path through the Nn takes
time Tn . The second point is also satisfied since from Nn one must travel
to another state within Nn (maintaining rate �n) or switch to a state in
Nn+1, which will have rate �n+1. �
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