The effect of observational learning on students' performance, processes and motivation in two creative domains.

Groenendijk, T.; Janssen, T.M.; van den Bergh, H.; Rijlaarsdam, G.C.W.

Published in:
British Journal of Educational Psychology

DOI:
10.1111/j.2044-8279.2011.02052.x

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The effect of observational learning on students’ performance, processes, and motivation in two creative domains

Talita Groenendijk1*, Tanja Janssen1, Gert Rijlaarsdam1 and Huub van den Bergh2

1Research Institute of Child Development and Education, University of Amsterdam, The Netherlands
2University of Utrecht, The Netherlands

Background. Previous research has shown that observation can be effective for learning in various domains, for example, argumentative writing and mathematics. The question in this paper is whether observational learning can also be beneficial when learning to perform creative tasks in visual and verbal arts.

Aims. We hypothesized that observation has a positive effect on performance, process, and motivation. We expected similarity in competence between the model and the observer to influence the effectiveness of observation.

Sample. A total of 131 Dutch students (10th grade, 15 years old) participated.

Method. Two experiments were carried out (one for visual and one for verbal arts). Participants were randomly assigned to one of three conditions; two observational learning conditions and a control condition (learning by practising). The observational learning conditions differed in instructional focus (on the weaker or the more competent model of a pair to be observed).

Results. We found positive effects of observation on creative products, creative processes, and motivation in the visual domain. In the verbal domain, observation seemed to affect the creative process, but not the other variables. The model similarity hypothesis was not confirmed.

Conclusions. Results suggest that observation may foster learning in creative domains, especially in the visual arts.

Before the introduction of formal schooling, apprenticeship was the most common means of learning. Apprenticeship includes modelling: the apprentice observes the expert at work. Observational learning, as examined in the present study, is also triggered by a form of modelling; students learn by watching, interpreting, and evaluating peers

*Correspondence should be addressed to Talita Groenendijk, University of Amsterdam. Spinozastraat 55, 1018 HJ Amsterdam, The Netherlands (e-mail: T.Groenendijk@uva.nl).

DOI:10.1111/j.2044-8279.2011.02052.x
carrying out a task. In formal education, observational learning proved to be an effective learning activity in various domains, such as mathematics (e.g., Schunk & Hanson, 1985), reading (Couzijn & Rijlaarsdam, 2004), argumentative writing (Braaksma, Rijlaarsdam, & Van den Bergh, 2002; Couzijn, 1999; Raedts, Rijlaarsdam, Van Waes, & Daems, 2007; Rijlaarsdam et al., 2008; Van Steendam, Rijlaarsdam, Sercu, & Van den Bergh, 2010; Zimmerman & Kitsantas, 2002), learning to collaborate (Rummel & Spada, 2005), and learning argumentation skills (Schworm & Renkl, 2007).

Creative skills are generally seen as something that should be nurtured in the classroom. We expect secondary school students to display creative and independent thinking when working on projects, writing papers, or participating in classroom discussions. In arts education, teachers aim to stimulate students’ creative processes. As far as we know, there are no experimental studies examining the effectiveness of interventions that aim at enhancing creative processes in secondary arts education. Implementing observational learning tasks may be an effective approach for stimulating students’ creative processes and improving their creative products. In the following sections, we will describe the potential for learning from observation for creative tasks.

Observational learning

The rationale of observational learning is based on Bandura’s (1986) social learning theory. It explains learning as a continuous interaction between cognitive, behavioural, and environmental influences. For effective modelling, several conditions need to be fulfilled; students need to pay attention to relevant elements in the learning environment; to store and transform information in memory; to be able to translate mental conceptions into actions and be motivated to do so. Schunk and Zimmerman (1997) elaborated Bandura’s theory into a social cognitive model of self-regulation in reading and writing. According to this model, learning of a new task occurs in four phases: observation, emulation, self-control, and self-regulation. Observation is a first step in the learning process. Then the learner emulates the model’s general style. Encouraged by feedback, the learner can internalize the skill and finally use the strategy independently and in various contexts. Here, we focus on the first phase: observation.

Observational learning is closely related to cognitive apprenticeship. In cognitive apprenticeship, an expert model externalizes internal processes. Collins, Brown, and Newman (1986) describe how observation, as an element of cognitive apprenticeship, provides strategic knowledge to the learner, and also changes students’ conception of what the modelled skill involves. For example, in writing students may be unaware that expert writing involves organizing one’s ideas about a topic, elaborating goals to be achieved, and thinking about what the audience is likely to know or believe about the subject. Observation may enhance this awareness.

Couzijn (1999), Braaksma et al. (2002), and Raedts et al. (2007) found that observation is effective for writing argumentative or synthesis texts. In these studies, a multimedia learning environment was used; students watched videos of peer models performing a writing task while thinking aloud. Students who observed peer models performing a learning-to-write task, wrote better texts afterwards than students who practised this learning-to-write task. Rummel and Spada (2005) proved the effectiveness of observation for learning to collaborate in computer-mediated settings, Schworm and Renkl (2007) found beneficial effects in the domain of argumentation, and Van Steendam et al. (2010) for cooperative revision tasks. Thus, for various types of tasks modelling appears to be beneficial.
Several elements may influence the effectiveness of observational learning, such as the competence level of the models. Zimmerman and Kitsantas (2002) found that college students who observed a coping model who gradually improved her writing technique on a sentence-combining task, surpassed students who had observed a mastery model. In Braaksma et al.’s study (2002), the models in the videos performed short tasks about argumentation structures in writing. All students watched the same videos, but Braaksma asked students either to focus on the weaker model or on the more competent model of the pair (‘which model did best and why?’ vs. ‘who did worst, and why?’). Evidence in support of the similarity hypothesis was found: when confronted with a new task, weaker writers learned more from focusing on the weaker model of a pair, while better writers learned more from focusing on the more competent model.

Observation should include evaluation. Braaksma, Rijlaarsdam, Van den Bergh, and Van Hout-Wolters (2006) analysed students’ observation processes and found that evaluation and elaboration are essential for the effectiveness of learning from observation. Sonnenschein and Whitehurst (1984) studied the additional effect of evaluation compared to observation only and emphasized the importance of evaluation for increasing learning effects of observation. Therefore, it can be recommended to stimulate students to evaluate a model after observation and to elaborate on the models’ behaviour.

All in all it appears that observational learning is an effective approach in various domains. Attributes of the model (such as initial performance level) and students’ thinking activities (evaluation and elaboration during and after observation) may influence the effect of observational learning.

Creative tasks and modelling
From the preceding section, it can be concluded that observational learning is effective for relatively structured tasks, such as mathematics, as well as for ill-structured tasks, such as writing. The question arises whether it can also be effective for creative tasks, which involve divergent thinking skills. High performance on artistic creative tasks requires original and novel responses. This means that the problem space in creative tasks is relatively large; there are many possible solutions. Artists even have to discover their own task, the artistic problem, before they can start solving it (for example, finding out what to draw) (Getzels & Csikszentmihalyi, 1976). Therefore creative tasks are extremely ill defined.

Few studies have focused on modelling in a domain which requires students to formulate their own original problem. One explanation may be that using observation of models to enhance students’ creativity may seem paradoxical. Creative work involves the generation of original ideas, while observing models may lead to imitation of products (the ‘conformity effect’; Finke, Ward, & Smith, 1992). However, observation of cognitive models is directed at developing a clear idea of how a task can be performed as demonstrated by Braaksma, Rijlaarsdam, Van den Bergh, and Van Hout-Wolters (2004). In their study, the observation of peer models affected students’ writing processes; students who had learned to write by observing more often engaged in metacognitive activities during writing, such as planning, analysing, and goal orientation, than students who had learned by practising writing. Therefore, we expect that observation of someone who is thinking aloud while engaged in creative work affects the observer’s future activities.

Studies in the area of worked examples have examined the effect of examples for learning in ill-defined domains (e.g. Rourke & Sweller, 2009; Van Gog, Paas, & Van Merriënboer, 2004; 2006; 2008). Worked examples differ from modelling examples (e.g.,
observational learning), since they involve ‘ideal’ solution steps presented as text. The underlying mechanisms, however, seem to be similar: students learn new procedures for problem solving and abstract general rules from the examples (Van Gog & Rummel, 2010). Rourke and Sweller (2009) found that students who studied worked examples of a task about recognizing designers’ styles perform better than students who practised this task themselves. They conclude that process examples are as effective in ill-defined domains as they are in well-structured domains.

But what kind of knowledge should students acquire from observing and evaluating models in ill-defined domains? Hilbert, Renkl, Kessler, and Reiss (2008) introduced heuristic (worked) examples for ill-defined tasks, which demonstrate heuristic steps towards a solution. They studied mathematical proving skills, which include discovery behaviour. Heuristic knowledge was presented explicitly and self-explanation prompts were directed at the heuristic level. This approach proved to foster learning. Van Gog et al. (2004, 2006, 2008) argue that experts’ ‘how’ and ‘why’ process information enables students to deepen their understanding of solution steps in ill-structured domains. For tasks that have a large problem space, learners need strategies to narrow the search space and select those operators that are most likely to lead to a solution. Students need to know why certain solution steps are taken. Van Gog et al. (2008) show that process information is indeed effective in the first phase of learning in electrical circuit troubleshooting.

Few studies examined the effect of modelling examples and artistic creative tasks. Teyken (1988) examined the effects of focused reflection on creative design. He incorporated observational learning tasks into an experimental curriculum for art teachers-in-training. Students watched videos of designers at work. Teyken found that the students’ design processes changed as a result of focused reflection, although the quality of their design products was not higher in the experimental condition than in the control condition. Anderson and Yates (1999) examined the effect of modelling on young children’s clay works. They found that modelling by the teacher resulted in higher quality clay works than making clay works without modelling. In both studies, observation was examined as a part of an experimental curriculum. It remains unclear which learning activity in the curriculum caused the effects measured.

To conclude: no experimental studies have examined the effect of observation on artistic creativity and no studies have examined the effect of peer modelling in arts education for secondary education students. Therefore, in the present study we focus on creative process modelling through observational learning with peer models.

Creative processes

Which creative processes should be modelled in observational learning videos? Amabile (1996) proposed a componential model that encompasses three basic components necessary for creativity: (1) domain-relevant skills, (2) creativity-relevant skills, and (3) intrinsic task motivation. Domain-relevant skills include basic skills (factual knowledge, technical skills, talent) relevant in a given domain. Creativity-relevant skills refer to an appropriate cognitive style and knowledge of heuristics for generating novel ideas. Intrinsic task motivation refers to motivation related to the task. Based on this model, we assume that observational learning videos should include heuristic strategies and cognitive style independent from the artistic domain. Subsequently, these heuristics are applied to the artistic domains: verbal (poetry writing) and visual (collage making).
Based on the literature available, we choose four activities relevant in creative processes to be modelled in observational learning videos: (1) initial and ongoing problem finding activities, (2) generating (large, deep) strings of ideas, (3) exploring generated ideas, and (4) critically evaluating work produced thus far (see Method section and Table 1 for operationalizations).

Traditionally, the creative process is described as consisting of four stages; preparation, incubation, illumination, and verification (Wallas, 1926). During preparation the creator absorbs information and engages in problem finding and definition. During incubation the person is taking a step away from the creative process. During illumination a solution or great idea suddenly comes to mind and during verification the final product is created and edited. However, from recent research of artists and designers at work, it appears that creative processes co-occur throughout the work recursively. Finke et al. (1992) proposed a model of creative cognition called ‘geneplore’, emphasizing generative and exploratory cognitive processes. Generative processes involve the initial creation of an idea (or in fact a premature idea or ‘preinventive structure’), whereas in the exploratory processes this preinventive structure is examined and interpreted in various ways (examined for emergent properties and implications). After the exploratory stage, preinventive structures may be refined and the process may repeat until a final product/idea has been developed. These two processes interact in cyclical sequences leading to creative products.

Runco (2003) describes creativity as the interaction of divergent (generative) and convergent (evaluative, critical) processes. Generating many ideas and many different types of ideas is called ‘divergent thinking’. Divergent thinking has been linked to creativity: those who produce many, diverse and original ideas are thought to be more creative. Divergent thinking can be stimulated through various brainstorming techniques, based on the idea that more ideas implies more original ideas since original ideas are remote, at the end of a chain of associations (Mednick, 1962). Creativity also involves convergent processes, making choices from the wealth of options generated.

Getzels and Csikszentmihalyi (1976) observed that initial problem finding and ongoing exploration throughout the work process appear to be important characteristics of creative production. They observed fine art students’ still-life drawing activities under experimental conditions (think alouds and videotapes). Students first had to compose a still-life arrangement before drawing it. Students who engaged in an extended problem finding process, exploring many of the still-life objects in detail, produced work that was evaluated as more creative and original compared to students who quickly took some objects and started drawing. Problem finding takes place in the preparation stage, but also during the production or editing phases (Getzels & Csikszentmihalyi, 1976). Students who produced more original work, kept on exploring (e.g., by sketching) and redefining their artistic problem (operationalized as many changes to the work-in-progress), whereas students who produced less creative work hardly changed their initial idea of the final product.

Research questions
The aim of the present study is to develop and test a learning arrangement for creative tasks based on the principles of observational learning. We include two artistic domains in the study for reasons of generalizability (visual art, verbal arts). The control condition consisted of learning by practising.
The research questions are:

(1) Is observational learning more effective than learning by practising for students’ creative products, creative processes, and motivation?
(2) Does ‘model similarity’ influence the effect of observational learning?

To test the model similarity hypothesis, two observation conditions were included; observation with a focus on a relatively competent model (observationstrong model condition) and observation with a focus on a less-competent model (observationweak model condition). Participants in both conditions watched the same videos with pairs of models engaged in creative work: one competent model and one weak model. What we varied was the focus during evaluation and elaboration; students were asked to focus either on the weaker or on the more competent model of the pair.

Hypotheses

(1) We expect observational learning to be more effective than practising. Concerning student products, we expect that:

Participants in the observational learning conditions will produce more creative collages and poems than students in the control condition;

(2) We assume that observation will lead to more problem finding, generative, exploratory, and evaluative processes, indicated by longer processes and more reprocessing. So we expect that:

Participants in the observational learning conditions will spend more time and revise more than students in the control condition;

(3) We expect effects on motivation, we expect that:

Participants in the observation conditions will show higher levels of intrinsic motivation than students in the control condition;

(4) Considering the model similarity hypothesis, we expect the similarity between the competence level of the model and the observer to influence the effect of observational learning; students with a low pretest score will profit more from the condition with a focus on the weaker model, while students with a high pretest score will benefit more from focusing on competent models. This means that the treatment effect differs for students with different ability. We expect that:

Treatment effects will interact differently with learner characteristics in the two observation conditions: the higher the scores on the pretest, the more beneficial the observationstrong model condition (OSM); the lower the pretest scores, the more beneficial the observationweak model condition (OWM).

Figure 1 illustrates the results expected on product creativity for the different conditions based on students’ pretest scores.

Method

Research design

We conducted two experiments successively, one for poetry writing and one for collage making. A pre- and post-test control group design with three conditions was implemented: learning by observation with a focus on a relatively competent model (observationstrong model, OSM), learning by observation with a focus on a relatively weak model (OWM), and learning by doing (Practice). Students in the observation conditions observed the same videos, each showing two models in action, the difference being the
instructional focus during evaluation and elaboration of model behaviour. Students from each participating class were randomly assigned to one of the three conditions; they stayed in the same condition for both experiments (poetry writing and collage making).

Participants
Three schools, with two classes each, from different regions in The Netherlands participated. Five teachers volunteered in the experiments. Since the students were randomly assigned to the conditions, one teacher was responsible for all three conditions within the class. The participants were 153 15—16-year-old secondary school students (10th grade, pre-university and higher general secondary education; 56 boys and 97 girls). A total of 22 students were excluded from the data set, because they did not attend all lessons. In the final data set, 44 students participated in the OWM condition, 42 in the OSM condition, and 45 in the control condition. The students participated during their regular Cultural and Arts education\(^1\) classes.

Observational learning materials
We made observational learning videos focusing on various phases of the creative process. In the collage videos, the collage-in-progress and the model’s hands were visible on the screen, while learners heard the model’s thinking aloud as a voice over. In the poetry videos, the ‘poem-under-construction’ was seen on the screen and the student voice thinking aloud could be heard. We selected four domain independent processes and applied them to both domains: problem finding, generating, exploring, and evaluating ideas. In Table 1, we present the content of the observational learning videos for both domains. As shown in the table, the videos contained heuristic information, process

\(^1\)CKV is a compulsory subject in Dutch upper secondary education. It includes: visual art, music, dance, theatre, literature, architecture, etc. The focus is on art perception and reception, but CKV also includes a productive component.
Table 1. Content of the observational learning videos

<table>
<thead>
<tr>
<th>Domain independent processes</th>
<th>Content of video (collage)</th>
<th>Content of video (poetry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video 1 Problem finding vs. routine solution</td>
<td>Problem finding, generating various ideas before actual collage making vs. fixation on one first idea (4.23 min.).</td>
<td>Brainstorming and exploring before actual writing vs. directly writing a final version on the basis of first associations (4.09 min.).</td>
</tr>
<tr>
<td>Video 2 Generating and exploring many ideas (content) vs. generating just one idea</td>
<td>Trying out several ideas, evaluating vs. immediately carrying out first idea without evaluation (5.19 min.).</td>
<td>Using items from the brainstorm for further exploration, forming poetry lines vs. direct copying of the brainstorm into final text (3.23 min.).</td>
</tr>
<tr>
<td>Video 3 Exploration of form vs. blocking</td>
<td>Solving problems that arise with flexibility by exploration of chosen idea in several visualizations, exploring the material, vs. inflexible approach, inability to solve a problem in a satisfying way (5.21 min.).</td>
<td>Rereading and exploring written text (sound, meaning) vs. fixation on rhyme (3.42 min.).</td>
</tr>
<tr>
<td>Video 4 Critical evaluation and revision vs. no evaluation</td>
<td>Evaluation and revision of essential visual elements vs. revision on very detailed, less relevant level (5.46 min.).</td>
<td>Rereading, evaluation, and revision on large scale vs. no rereading, revision of spelling and punctuation (4.29 min.).</td>
</tr>
</tbody>
</table>

information (‘how’ and ‘why’ information), and attitudinal information (flexibility and motivation). Scripts for the videos were based on actual students’ processes, then written in scenario format, and role played from the scenario’s. We speeded up some parts of the actual student processes or exaggerated a little to make them more attractive learning materials.

During the intervention, the students in the observation conditions did not engage in collage making or poetry writing. Instead, we asked them to watch the videos on the computer and to make notes. To direct students’ attention to the relevant processes and evoke a comparison process, contrasting approaches (rather weak and rather strong) were shown in the videos by two different models. As shown in Table 1, students watched both relatively competent and relatively weak peer models at work. The models in the videos were not labelled as ‘competent’ or ‘weak’, but after watching each video, we asked students to compare, evaluate, and elaborate on the behaviour of the models by answering a question. Following Braaksma et al. (2002), we asked the students in the OSM condition: ‘Which student did better in your opinion? Explain: what did this student do so well?’ The students in the OWM condition considered the question: ‘Which student
Observational learning in two creative domains

Did less well in your opinion? Explain: what did this student do not so well? Most of the students were able to point out which model did better and which model did not so well: on average 89% of the students ($SD = 5.58$) answered the questions as intended. This means that the students adhered to the instruction (and thus to the conditions they were assigned to). The students could replay the videos if they wanted.

In the control condition, students engaged in collage making and poetry writing, without watching models. The tasks were the same as shown in the observational learning videos. To ensure that only modelling of the work process made a difference between the conditions and not product modelling, students in the control conditions reflected on the same final products as were shown in the observational learning videos. We made sure that the total amount of time spent remained the same in both conditions. Students spent one lesson hour on poetry writing and one lesson hour on collage making.

Measures

The pre- and post-tests consisted of collage and poetry assignments. Amabile (1982) showed that collage tasks are very suitable for measuring creative behaviour since few technical skills are required. At the pretest, students were asked to make a collage of a human figure, consisting of geometrical shapes (30 min). At the post-test, the students were asked to make a collage of a ‘strange creature’ (60 min). For both tests, all students received an identical set of materials (scissors, glue, coloured paper, a set of magazines). The students were instructed to be as creative as possible.

The poetry pretest and post-test each consisted of two short tasks (10 min each). Since most students had never written poetry before, we used tasks that were short and structured (see Appendix A). Since the tasks were short, it was feasible to administer two tests and therefore raise validity. Pretest task 1 and post-test task 1 were used in previous research (Broekkamp, Janssen, & Van den Bergh, 2009; Ruscio, Whitney, & Amabile, 1998). Students were instructed to be as creative as possible.

Art students (collages) and students in linguistics (poems) scored all products holistically for creative performance on a 0–200 scale with the support of anchor products. These anchors were based on scores from other raters in previous scoring procedures (among others Broekkamp et al., 2009) and illustrated a non-creative, medium creative, and highly creative product with fixed scores of 50, 100, 150 (see Appendix B and C). First, we discussed the degree of creativity of the anchor products with the raters. Then raters spread the products over three piles (non-creative, medium creative, and highly creative) using the anchor products. Subsequently, the raters went through each pile separately, assigning a score to each product. Jury reliabilities for the collage tests were sufficient (pretest .77, post-test .72). For the poems, we used a design of overlapping rating teams (Van den Bergh & Eiting, 1989), because of the large number of products and the time required to assess these. We obtained four scores per poem. The estimated reliability for the rating of the poems was sufficient ($\rho = .91$ and $\rho = .74$ for the pretests tasks and $\rho = .83$ and $\rho = .74$ for post-tests tasks).

It was hypothesized that observation would lead to more problem finding, generative, exploratory, and evaluative processes. Since the classroom setting did not allow for large scale think aloud protocol collection, we collected secondary process measures. We focused on process time and revision behaviour as we assumed that exploration and problem finding activities would result in longer work processes and relatively more production. To capture traces of the collage making process, we counted the number
of images that students cut out of magazines but which they did not use in their final products. We regarded this as an indication of problem finding, exploration, and revision in the processes. Since nearly all students used all available time, process time was not used as a process variable for collage making.

For the poetry writing process, we used Inputlog, a keystroke logging programme, to register students’ processes (Leijten & Van Waes, 2005). Due to technical problems with the installation of the software at one school, processes of only two thirds of the students were recorded. From these keystroke logging data, we calculated the process times and revision ratios. Process time was defined as the total time spent on the task; revision ratio is the number of words in the final text as a percentage of the total number of words produced.

At pretest and post-test, the Motivated Strategies for Learning Questionnaire (Pintrich, Smith, Garcia, & McKeachie, 1991) was administered, adapted to poetry writing and collage making. The questionnaire consisted of 19 items for each of the two artistic domains; 38 questions in total. Likert scales for students’ perceptions on their intrinsic motivation (seven items), task value (five items), and self-efficacy (seven items) were used. The reliability of the scales varied between .86 and .93. Additionally, to acquire information about students’ capacity level, a verbal IQ test (DAT, 1984) was administered (Cronbach’s alpha, .72).

Procedure
During the observation sessions, students worked individually on the computer. For collage making, students in the control group worked in an adjacent room. During the pre- and post-test, students worked in one large room, creating a collage individually. For poetry writing, participants from all three conditions were present in the same classroom, guided by worksheets; either watching and evaluating videos or writing poems themselves. The students received a short instruction by the researcher, the teacher’s role was that of an organizer, since the materials were largely self-directing.

The students worked for six sessions of about 60 minutes. First, students filled in a questionnaire on motivation, task value and self-efficacy and completed the pretests on poetry writing (session1). Then they did the pretest on collage making and the first part of the verbal IQ test. The intervention (about 60 min) and the post-tests on poetry writing (about 20 min) were completed in session 3. Collage making was the content of the fourth session (about 60 min). During the fifth session the post-test on collage making was administered, and in the sixth session, students filled in the post-test questionnaire on motivation and the second part of the verbal IQ test. There were minor differences in procedure between schools due to different class schedules.

Analyses
We cannot test the learning effect from pretest to post-test, because the level of difficulty of the two tests is unknown and, therefore we cannot compare the outcomes. So, we can only examine the effect of condition on the post-test.

Figure 1 shows that we expect observational learning to be more effective than practising. It also shows that we expect weaker students to perform better in the OWM condition while stronger students would perform better in the OSM condition. Since we have multiple observations per individual (more than one test) a mixed
Table 2. Mean scores collages, z-scores (SD between brackets) (rating scale 0–200)

<table>
<thead>
<tr>
<th></th>
<th>Pretest M (SD)</th>
<th>Post-test M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>−0.05 (1.01)</td>
<td>0.18 (1.03)</td>
</tr>
<tr>
<td>Observationstrong model</td>
<td>−0.04 (0.98)</td>
<td>0.06 (0.99)</td>
</tr>
<tr>
<td>Observationweak model</td>
<td>−0.06 (1.04)</td>
<td>0.29 (1.06)</td>
</tr>
<tr>
<td>Control group</td>
<td>0.09 (0.99)</td>
<td>−0.31 (0.88)</td>
</tr>
</tbody>
</table>

model analysis was chosen, in which both the variance within students and between students are estimated simultaneously. Several models were tested. In the first model, the so-called empty model, we estimated an intercept (next to both variances). In the second model, we added differences between conditions, whereas in the third model we took initial differences into account as well. Hence, in this model, we assume that the relation between pretest and post-test would not vary between conditions. This assumption is relaxed in the fourth model which allows differences in means between conditions as well as differences in regression from post-test on pretest. The difference in fit between these (nested) models can be tested by means -2loglikelihood, as the difference -2loglikelihood in nested models is χ^2-distributed (with the difference in number of estimated parameters as degrees of freedom).

For poetry writing, two learner variables (pretest level of creativity in poetry writing and verbal IQ) were entered successively into the analysis. So, five models were tested; (1) a model without a covariate, (2) a model with pretest level as a covariate, (3) a model with pretest level as a covariate and allowing its effect to vary between the conditions, (4) a model with two covariates, and (5) a model allowing the influence of the second covariate to vary between the conditions. These models were subsequently applied for effects on products, processes and with motivation, task value, and self-efficacy.

Results

We will first report the effect of observation on the creativity of students’ products (collages and poems). Then, we report effects on processes, followed by the results for intrinsic motivation, task value, and self-efficacy.

Creativity of the collages

Table 2 provides the mean scores for the students’ collages, at pretest and post-test, for the three conditions. Pretest scores did not differ significantly ($p = .752$) between conditions.

Table 3 reports the five models analysing the effect of observation on the creativity of the collages. Model 1 (distinguishing between conditions) fits the data significantly better than model 0 (Intercept only). This is shown in the right column of Table 3 ($p = .02$). Therefore, we reject model 0 in favour of model 1. Subsequently, model 2, including pretest as a covariate, fits better than model 1 ($p = < .001$), so we must reject model 1 in favour of model 2. Since the difference between -2LL of model 3 and -2LL of model 2 is not significant ($p = .11$), we must choose model 2. According to this model, the effect of the pretest does not differ between the conditions. This implies that, in contrast to
Table 3. Comparison of models with creativity of collages as a dependent variable (−2LL)

<table>
<thead>
<tr>
<th>Model</th>
<th>−2LL</th>
<th>Models compared</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>331.0</td>
<td>Intercept only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>323.3</td>
<td>Condition as a factor</td>
<td>0 vs. 2</td>
<td>7.7</td>
<td>.02</td>
</tr>
<tr>
<td>2</td>
<td>303.7</td>
<td>Condition as a factor and pretest as a covariate</td>
<td>1 vs. 2</td>
<td>19.6</td>
<td>.001</td>
</tr>
<tr>
<td>3</td>
<td>301.2</td>
<td>Condition as a factor and the effect of pretest differs between the conditions.</td>
<td>2 vs. 3</td>
<td>2.5</td>
<td>.11</td>
</tr>
</tbody>
</table>

Figure 2. Regression lines for three conditions with z-score pretest predicting post-test score on collage creativity.

our expectation as presented in Figure 1, the regression lines for the predicted post-test scores are parallel (Figure 2). In other words; the slopes of the regression lines do not differ significantly between the conditions: the influence of pretest level is equal for the conditions. This means that we did not observe a model similarity effect.

Mixed models analyses with pretest as a covariate revealed that both observation conditions performed significantly better than the control condition (OSM vs. practice:
mean difference = 0.480, SE = 0.226, p = .036, OWM vs. practice: mean difference = 0.707, SE = 0.221, p = .002). This means that students who observed made significantly more creative collages than students in the control condition at post-test. Students in the OSM condition performed 0.48 standard deviations better than students in the control condition and students in the OWM condition performed 0.71 standard deviation better than students in the control condition. The OSM condition and OWM condition did not differ significantly from each other (p = .328).

Creativity of the poems

Table 4 reports the indices for the poems at pretest and post-test per condition. At the pretest, the creativity of students’ poems did not differ significantly between conditions (p = .369).

In Table 5, we compare five models for the effect of observation on the creativity of the poems. As shown in this table, model 1 (distinguishing between conditions) fits the data better than model 0 (only intercept). Therefore, we continued to compare model 1 and 2 (including pretest as a covariate). As $-2LL$ is significantly smaller for model 2,
we concluded that pretest is a significant covariate and that we therefore must reject model 1 in favour of model 2. Subsequently, we allowed the influence of the pretest to vary between the conditions (model 3). This did not lead to a significant improvement of the model, so we rejected model 3. Model 2 was compared to model 4 which takes the second covariate (verbal IQ) into account. Model 4 fits the data better than model 2. Finally, we compared model 4 to a fifth model, allowing the influence of verbal IQ to vary between the conditions, which did not lead to a significant improvement of the model. Therefore, model 4 was chosen.

Pretest and verbal IQ proved to be valid covariates, but in contrast to our expectation, their effect did not differ between the conditions. This means that the regression lines of the predicted post-test scores on the pretest scores are parallel (Figure 3), which implies that there is no model similarity effect.

According to our analysis, students in the OWM condition performed significantly better than students in the OSM condition (mean difference = 0.25, SE = 0.12, $p = .034$), but not better than the students in the control condition ($p = .109$). The control condition and OSM condition did not differ significantly ($p = .591$). This means that students in the OWM condition wrote the most creative poems.
Collage making processes

For the collage task, we examined whether students revised more after observation, compared to students in the control group. Table 6 presents the mean number of images that were cut out, but not used in the final product. No difference between conditions on the pretest ($p = .475$) was observed.

The same models as used for the collage product analyses were tested. (For a table comparing the different models, see Appendix [D1]). The model with pretest as a covariate was found to fit the data best (model 2). The influence of the pretest did not vary between the conditions, resulting in regression lines running parallel.

Students in the OWM condition had more unused shapes than students in the control condition (mean difference $= 0.532$, $SE = 0.222$, $p = .018$), while students in the OSM condition did not have significantly more unused images than students in the control condition ($p = .192$). The OSM and OWM condition did not differ significantly in this respect ($p = .318$). This indicates that students in OWM revised significantly (.53 standard deviation) more than students in the control condition.

Poetry writing processes

For poetry writing, we examined two process variables (process time and revision ratio) for differences between the conditions (see Table 7). At pretest, the conditions did not differ significantly in process time ($p = .410$, $p = .387$) or revision ratio ($p = 385$, $p = .638$).

For both process variables, the fourth model was found to fit the data best: the model with pretest and verbal IQ as covariates (see Appendix D2 and D3). The effect of the covariates did not differ between the conditions. So again, parallel regression lines must be assumed. For process time, it was found that OWM differed significantly from the control condition (mean difference $= 0.529$, $SE = 0.196$, $p = .008$), but OSM did not differ significantly from the control condition ($p = .475$). Also OWM and OSM differed
Table 8. Observed pretest and post-test means, z-scores (standard deviations between brackets): intrinsic motivation, task value, and self-efficacy for collage making and poetry writing (seven-point scale: $1 = \text{strongly disagree}$, $7 = \text{strongly agree}$)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Condition</th>
<th>Collages</th>
<th>Poems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pretest M (SD)</td>
<td>Post-test M (SD)</td>
</tr>
<tr>
<td>Intrinsic motivation</td>
<td>Observation $strong$ model</td>
<td>0.09 (1.06) 0.05 (1.02)</td>
<td>0.13 (0.97) 0.15 (0.90)</td>
</tr>
<tr>
<td></td>
<td>Observation $weak$ model</td>
<td>0.01 (0.96) 0.19 (0.79)</td>
<td>0.02 (0.93) 0.09 (0.88)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>−0.09 (0.99) −0.24 (1.13)</td>
<td>−0.14 (1.09) −0.25 (1.17)</td>
</tr>
<tr>
<td>Task value</td>
<td>Observation $strong$ model</td>
<td>−0.07 (1.04) 0.11 (1.05)</td>
<td>0.13 (1.00) 0.24 (0.95)</td>
</tr>
<tr>
<td></td>
<td>Observation $weak$ model</td>
<td>0.22 (0.98) 0.15 (0.87)</td>
<td>−0.14 (0.88) −0.10 (0.91)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>−0.12 (0.97) −0.28 (1.02)</td>
<td>0.01 (1.10) −0.17 (1.09)</td>
</tr>
<tr>
<td>Self-efficacy</td>
<td>Observation $strong$ model</td>
<td>0.01 (0.99) 0.03 (1.06)</td>
<td>0.11 (1.14) 0.18 (1.02)</td>
</tr>
<tr>
<td></td>
<td>Observation $weak$ model</td>
<td>−0.01 (1.00) 0.22 (0.81)</td>
<td>−0.05 (0.84) −0.05 (0.85)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>−0.00 (1.03) −0.25 (1.08)</td>
<td>−0.05 (1.01) −0.15 (1.09)</td>
</tr>
</tbody>
</table>

significantly (mean difference $= 0.392$, $SE = 0.195$, $p = .047$). This means that students in the OWM condition had longest process times of all three conditions.

For revision OWM and OSM differed significantly from the control condition (mean difference $= −0.576$, $SE = 0.186$, $p = .003$ and mean difference $= −0.567$, $SE = 0.181$, $p = .002$). Students from both observation conditions revised significantly more at post-test than students in the control group. The observation conditions did not differ significantly from each other in this respect ($p = .961$): students who observed revised more than students who did not observe. We conclude that the writing processes of students who observed differed from the processes of students who did not observe.

Motivation, task value, and self-efficacy

Table 8 presents the mean scores on intrinsic motivation, task value, and self-efficacy. At pretest, there were no significant differences between the conditions (collage making: intrinsic motivation: $p = .736$; task value: $p = .302$; self-efficacy: $p = .997$; poetry writing: intrinsic motivation: $p = .459$; task value: $p = .484$; self-efficacy: $p = .715$).

For collage making, the model with pretest as a covariate fits best (see Appendix D4–D6) for intrinsic motivation, task value, and self-efficacy. We found that for intrinsic motivation and self-efficacy, students in OWM had significantly higher scores than students from the control condition (intrinsic motivation: mean difference $= 0.528$, $SE = 0.209$, $p = .013$; self-efficacy: mean difference $= 0.573$, $SE = 0.205$, $p = .006$). Students in OSM did not differ significantly from students in the control condition (intrinsic motivation: $p = .134$; self-efficacy: $p = .129$). Scores between both observation conditions did not differ significantly either (intrinsic motivation: $p = .338$; self-efficacy: $p = .234$). For task value, both observation conditions differed significantly from the control condition (OSM: mean difference $= 0.446$, $SE = 0.208$, $p = .034$; OWM: mean difference $= 0.528$, $SE = 0.203$, $p = .010$), but not from each other ($p = .693$). Task value proved to be higher for students who observed than for students who did not. Only students who focused on the weaker model had higher intrinsic motivation and self-efficacy scores.

For poetry writing, the model with pretest and verbal IQ as covariates (see Appendix D7–D9) was applicable for intrinsic motivation and task value. For self-efficacy, condition
as a factor did not improve the model significantly. In other words, we observed no effects of condition on self-efficacy. Closer examination of the results on intrinsic motivation and task value did not reveal any significant difference between the conditions (intrinsic motivation: OSM vs. control: $p = .250$, OWM vs. control: $p = .562$; task value: OSM vs. control: $p = .241$; OWM vs. control: $p = .287$). For poetry writing, students who observed were not more motivated, nor did they have higher task value or self-efficacy scores than students who did not observe.

Discussion

We investigated the effect of observational learning on students’ performance on creative tasks in the visual and verbal domain. We aimed to answer two questions: Is observational learning more beneficial than learning by practising for creative products, processes, and motivation? And does the ‘model similarity effect’ influence the effect of observational learning? We expected students who observed to produce more creative products than students who did not observe. Concerning the processes, we hypothesized that observation would result in longer session times and more revision than learning by practice. We expected intrinsic motivation, task value and self-efficacy to be higher after observation. Regarding model similarity, we hypothesized that the effect of pretest and verbal IQ (in the case of poetry writing) would differ between the conditions.

For collage making, our hypotheses for main effects were largely confirmed. Students who observed others at work produced collages that were rated as more creative than students who learned by practising. Students’ processes of collage making differed between conditions at the post-test: students revised more (in terms of more unused but cut out shapes) in the OWM condition than in the control condition. This difference was not significant for the OSM condition. For OWM, intrinsic motivation, task value, and self-efficacy were significantly higher after the intervention than for students in the control group. For OSM, this was only the case for task value. For none of the variables did we find evidence in support of the model similarity hypothesis.

For poetry writing, we found that OWM resulted in better poems than OSM, although the observation conditions did not score significantly better than the control condition. For processes, OWM resulted in longer processes than the control condition, while both observation conditions resulted in more revision than in the control condition. No effects were observed on intrinsic motivation, task value, and self-efficacy. We conclude that the hypotheses regarding effects on products and motivational variables must be rejected, but that poetry writing processes were affected significantly by observation. For none of the variables did we find evidence in favour of the model similarity hypothesis.

In general, we found indications that students who focused on the weaker model performed better in both domains (products and processes). Initially, we did not expect differences in the mean performance between the two observation conditions. Instead, we expected different students to behave differently in the conditions. Possibly, the task to evaluate the videos of the relatively more competent model was too difficult for the students. The stronger model might have served as a frame of reference when students had to explain why the weaker model did worse (Braaksma et al., 2002), which is easier than explaining what a good model does well. Creative processes of the majority of the students might have been more similar to those of the weaker student in the poetry videos, since Dutch students generally have little experience in poetry writing. Possibly a 3×2 design with condition (practice; observational learning from weak
model only; observational learning from strong model only) and student ability (weak vs. strong) as factors would have provided more information on differential effects of student ability.

Some validity concerns of the present study must be discussed. One limitation concerns the measurement of creativity of products. We did not score the products on technical qualities and therefore we can only assume that the judges were able to distinguish between creative performance and technical quality. Although raters seemed to be able to distinguish levels of creativity, validity might be warranted in future studies by adding non-creative dimensions to the rating procedure as well.

Another concern is the measurement of processes. The process measures we used are only indirectly related to cognitive processes. For example, the ratio of words in final text and the amount of words produced does not distinguish between prewriting activities, ongoing exploration and actual revision behaviour. However, our measures proved to be sensitive enough for detecting condition effects. Currently, the setting in real classrooms prevented us to measure processes in a more direct way (e.g., by using think aloud methodology). In future studies process measurement could be optimized, attempting to get closer access to the actual process. An interesting procedure seems to be a secondary task procedure as installed in classroom settings in writing process studies (Torrance, Fidalgo, & Garcia, 2007) which can be adapted to visual tasks.

Another issue is that the procedures in the two experiments (collage making and poetry writing) were different in time and order. The poetry experiment was the first to take place, so this may have affected the collage experiment and its outcomes. Moreover, for practical reasons, the duration of the tests and the test moments differed between experiments which hampers generalizability across domains. More convincing results were found for the visual domain. Possibly using a visual medium (video) is more effective in a visual domain, collage making, than in a non-visual domain such as poetry writing. More research is needed to clarify this issue.

Furthermore, external validity is an issue which deserves attention. External validity can be promoted by implementing several versions of a treatment. In the current experiment, we implemented two versions of a treatment (focus on weak and strong model). In future studies, diverse treatment operationalizations could be further explored. Using different operationalizations may complicate the interpretation of the results, as we have seen, but generalizability would benefit from it. To satisfy experimental requirements, the setting in the current study was not completely realistic. Students had relatively little freedom; they had to finish their creative products in one session, within a time limit. In a more realistic context, they might have opportunities to leave the products for some time and return to them for further elaboration at later moments. The control condition consisted of practice guided by a workbook, without teacher involvement. In art education, however, the teacher usually plays a crucial role. In future studies, it will be interesting to study the effect of observation in real educational practice. Implementing observational learning in actual art classes requires embedding observational learning videos in a lesson series (accompanied by feedback and practice).

All in all, the results suggest that it is worthwhile implementing observational learning in arts education. At least for visual art, we have demonstrated positive effects. We certainly do not suggest replacing artistic practice by observation as we did in the experiment. Instead, we recommend enriching the arts classes with observational learning. From a theoretical perspective, it can be concluded that observational learning is an effective learning tool, not only for mathematics and structured writing tasks, but also for ill-defined creative tasks in arts education. Even when students are asked to
produce original work, modelling examples may support them. In addition, we think that this study shows a new direction of studying interventions that foster creativity, taking both effects on process and product into account.

Acknowledgements

This study was executed with a grant from The Research Institute of Child Development and Education of the University of Amsterdam. We would like to thank the anonymous reviewers for their thorough reading of the manuscript and their feedback.

References

Received 12 October 2010; revised version received 1 July 2011
Appendix A

Poetry tasks

Pretest 1:
Write a cinquain that starts with the word 'snow'.
This is the form of a cinquain:

- Line 1: first word (given).
- Line 2: two adjectives about the first word.
- Line 3: three verbs about the first word.
- Line 4: a sentence about the first word (you may decide upon the length).
- Line 5: repetition of the first word.

You have 10 min for completing this task (an example was given).

Pretest 2:
Write a poem based on the following steps:

- Mention a place in the house;
- Make up a line with a colour;
- Make up a line with a domestic device and a sound;
- Tell something about the weather;
- Make up a line that is related to the lines above;
- Repeat the first line;
- Repeat the second line with a small change.

You have 10 min for completing this task (an example was given).

Post-test 1:
Write a poem of five lines that contains the following words:
Music, bike, shiver, green, resembles.
Each line should contain one of these words (each word should only be used once)
You have 10 min for completing this task.

Post-test 2:
Write an animal haiku about a lion.
A haiku contains 17 syllables, divided over three lines of the poem. This is the form of a haiku:

- Line 1: five syllables.
- Line 2: seven syllables.
- Line 3: five syllables.
Appendix B

Anchors collage post-test

Anchor with score 50

Anchor with score 100

Anchor with score 150
Appendix C

Anchors poetry post-test *(These anchors are translated from Dutch)*

Anchor with score 50

I went with my bike to tennis class.
The music is full of chatter.
I feel a shiver over my back.
The green is from the grass.
Because it looks like a pool [in Dutch this rhymes with the previous line].

Anchor with score 100.

I cycle through the forest.
My ipod plays music.
Leaves from the trees are luminously green.
Suddenly there is a shiver.
It seems to be winter.

Anchor with score 150

Everything that seems normal to you,
Makes me shiver.
The colour green.
Hearing the music.
That day we were together, you behind me on my bike.

Appendix D

Comparison of models with process variables as dependent variables

Table D1. Four models analysing effects on revision in collage making (−2LL)

<table>
<thead>
<tr>
<th>Model</th>
<th>−2LL</th>
<th>Models compared</th>
<th>(\chi^2)</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>331.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>324.3</td>
<td>0 vs. 1</td>
<td>6.7</td>
<td>2</td>
<td>< .03</td>
</tr>
<tr>
<td>2</td>
<td>305.1</td>
<td>1 vs. 2</td>
<td>19.2</td>
<td>1</td>
<td>< .001</td>
</tr>
<tr>
<td>3</td>
<td>302.8</td>
<td>2 vs. 3</td>
<td>2.3</td>
<td>2</td>
<td>> .32</td>
</tr>
</tbody>
</table>
Table D2. Six models analysing effects on process time in poetry writing (−2LL)

<table>
<thead>
<tr>
<th>Model</th>
<th>-2LL</th>
<th>Models compared</th>
<th>(\chi^2)</th>
<th>df</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>505.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>494.0</td>
<td>0 vs. 1</td>
<td>11.1</td>
<td>2</td>
<td>< .004</td>
</tr>
<tr>
<td>2</td>
<td>470.5</td>
<td>1 vs. 2</td>
<td>23.5</td>
<td>1</td>
<td>< .001</td>
</tr>
<tr>
<td>3</td>
<td>469.7</td>
<td>2 vs. 3</td>
<td>.8</td>
<td>2</td>
<td>.67</td>
</tr>
<tr>
<td>4</td>
<td>457.8</td>
<td>2 vs. 4</td>
<td>12.7</td>
<td>1</td>
<td>< .001</td>
</tr>
<tr>
<td>5</td>
<td>457.8</td>
<td>4 vs. 5</td>
<td>0.0</td>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table D3. Six models analysing effects on revision in poetry writing (−2LL)

<table>
<thead>
<tr>
<th>Model</th>
<th>-2LL</th>
<th>Models compared</th>
<th>(\chi^2)</th>
<th>df</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>505.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>492.1</td>
<td>0 vs. 1</td>
<td>13.7</td>
<td>2</td>
<td>.001</td>
</tr>
<tr>
<td>2</td>
<td>475.7</td>
<td>1 vs. 2</td>
<td>23.6</td>
<td>1</td>
<td>< .001</td>
</tr>
<tr>
<td>3</td>
<td>474.1</td>
<td>1 vs. 3</td>
<td>1.6</td>
<td>2</td>
<td>.45</td>
</tr>
<tr>
<td>4</td>
<td>464.9</td>
<td>2 vs. 4</td>
<td>9.2</td>
<td>1</td>
<td>.002</td>
</tr>
<tr>
<td>5</td>
<td>463.9</td>
<td>4 vs. 5</td>
<td>1.0</td>
<td>2</td>
<td>.61</td>
</tr>
</tbody>
</table>

Table D4. Four models to analyse effects on intrinsic motivation in collage making (−2LL)

<table>
<thead>
<tr>
<th>Model</th>
<th>-2LL</th>
<th>Models compared</th>
<th>(\chi^2)</th>
<th>df</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>365.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>358.6</td>
<td>0 vs. 1</td>
<td>6.5</td>
<td>2</td>
<td>.038</td>
</tr>
<tr>
<td>2</td>
<td>334.8</td>
<td>1 vs. 2</td>
<td>23.8</td>
<td>1</td>
<td>< .001</td>
</tr>
<tr>
<td>3</td>
<td>332.8</td>
<td>2 vs. 3</td>
<td>2.0</td>
<td>2</td>
<td>.37</td>
</tr>
</tbody>
</table>
Table D5. Four models analysing effects on task value in collage making (−2LL)

<table>
<thead>
<tr>
<th>Model</th>
<th>−2LL</th>
<th>Models compared</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Intercept only</td>
<td>365.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Condition as a factor</td>
<td>356.9</td>
<td>0 vs. 1</td>
<td>8.2</td>
<td>2</td>
<td>.02</td>
</tr>
<tr>
<td>2 Condition as a factor and</td>
<td>328.1</td>
<td>1 vs. 2</td>
<td>28.8</td>
<td>1</td>
<td><.001</td>
</tr>
<tr>
<td>pretest as a covariate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Condition as a factor and</td>
<td>327.3</td>
<td>2 vs. 3</td>
<td>.8</td>
<td>2</td>
<td>.67</td>
</tr>
<tr>
<td>the effect of pretest differs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between the conditions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D6. Four models analysing effects on self-efficacy in collage making (−2LL)

<table>
<thead>
<tr>
<th>Model</th>
<th>−2LL</th>
<th>Models compared</th>
<th>χ²</th>
<th>df</th>
<th>χp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Intercept only</td>
<td>365.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Condition as a factor</td>
<td>358.1</td>
<td>0 vs. 1</td>
<td>7.0</td>
<td>2</td>
<td>.03</td>
</tr>
<tr>
<td>2 Condition as a factor and</td>
<td>330.8</td>
<td>1 vs. 2</td>
<td>27.3</td>
<td>1</td>
<td><.01</td>
</tr>
<tr>
<td>pretest as a covariate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Condition as a factor and</td>
<td>330.5</td>
<td>2 vs. 3</td>
<td>.3</td>
<td>2</td>
<td>.86</td>
</tr>
<tr>
<td>the effect of pretest differs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between the conditions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D7. Six models analysing effects on intrinsic motivation in poetry writing

<table>
<thead>
<tr>
<th>Model</th>
<th>−2LL</th>
<th>Models compared</th>
<th>χ²</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Intercept only</td>
<td>365.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Condition as a factor</td>
<td>358.7</td>
<td>0 vs. 1</td>
<td>6.4</td>
<td>2</td>
<td>.04</td>
</tr>
<tr>
<td>2 Condition as a factor and</td>
<td>331.0</td>
<td>1 vs. 2</td>
<td>27.7</td>
<td>1</td>
<td><.001</td>
</tr>
<tr>
<td>pretest as a covariate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Condition as a factor and</td>
<td>329.1</td>
<td>2 vs. 3</td>
<td>1.9</td>
<td>2</td>
<td>.39</td>
</tr>
<tr>
<td>the effect of pretest differs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between the conditions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Condition as a factor and</td>
<td>315.6</td>
<td>2 vs. 4</td>
<td>13.5</td>
<td>1</td>
<td><.001</td>
</tr>
<tr>
<td>pretest and IQ as covariates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Condition as a factor and</td>
<td>314.5</td>
<td>4 vs. 5</td>
<td>1.1</td>
<td>2</td>
<td>.58</td>
</tr>
<tr>
<td>pretest as a covariate and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the effect of verbal IQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>differs between the conditions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table D8. Six models analysing effects on task value in poetry writing (−2LL)

<table>
<thead>
<tr>
<th>Model</th>
<th>−2LL</th>
<th>Models compared</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Intercept only</td>
<td>365.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Condition as a factor</td>
<td>357.2</td>
<td>0 vs. 1</td>
<td>7.9</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Condition as a factor and pretest as a covariate</td>
<td>328.6</td>
<td>1 vs. 2</td>
<td>28.6</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Condition as a factor and the effect of pretest differs between the conditions.</td>
<td>327.8</td>
<td>2 vs. 3</td>
<td>.8</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Condition as a factor and pretest and IQ as covariates</td>
<td>314.1</td>
<td>2 vs. 4</td>
<td>13.7</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Condition as a factor and pretest as a covariate and the effect of verbal IQ differs between the conditions.</td>
<td>312.9</td>
<td>4 vs. 5</td>
<td>1.2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table D9. Two models analysing effects on self-efficacy in poetry writing (−2LL)

<table>
<thead>
<tr>
<th>Model</th>
<th>−2LL</th>
<th>Models compared</th>
<th>χ²</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Intercept only</td>
<td>362.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Condition as a factor</td>
<td>365.4</td>
<td>0 vs. 1</td>
<td>5.8</td>
<td>2</td>
</tr>
</tbody>
</table>