Nature’s distributional-learning experiment: Infants’ input, infants’ perception, and computational modeling

Benders, A.T.

Publication date
2013

Citation for published version (APA):
CONTENTS

1 INTRODUCTION: NATURE’S DISTRIBUTIONAL-LEARNING EXPERIMENT 1
 1.1 Introduction 2
 1.2 Nature’s distributional-learning experiment 3
 1.3 The BiPhon model and comparison to other theories and frameworks 6
 1.4 Dutch /a/ and /aː/ 9
 1.5 Part I) investigate the acoustic properties and the auditory distributions of the phonemes in the infants’ environment 12
 1.6 Part II) investigate infants’ perception of the same phonemes 13
 1.7 Part III) explain infants’ speech-sound perception from infants’ input distributions through distributional learning simulated in a computational model 15
 1.8 Comparison to previous work 17
 1.9 Summary 19

2 ALL MOMMY DOES IS SMILE! DUTCH MOTHERS’ REALIZATION OF SPEECH SOUNDS IN INFANT-DIRECTED SPEECH EXPRESSES AFFECT, NOT DIDACTIC INTENT 21
 2.1 Introduction 22
 2.1.1 Didactic vowel space enhancement in IDS 22
 2.1.2 Affective vowel formant increase in IDS 23
 2.1.3 Testing didactic and affective changes in Dutch IDS 24
 2.1.4 Summary of study objectives 26
 2.2 Method 27
 2.2.1 Participants 27
 2.2.2 Procedure and Equipment 27
 2.2.3 Coding 28
 2.2.4 Acoustic measurements 29
 2.2.4.1 Vowels 29
 2.2.4.2 The fricative /s/ 29
 2.2.4.3 Pitch 29
 2.2.5 Exclusion and Analyses 29
 2.3 Results 31
 2.3.1 Vowel space: Area 31
 2.3.2 Vowel space: Formant frequencies 32
 2.3.3 The fricative /s/ 35
 2.3.4 Pitch characteristics 36
 2.4 Conclusion and Discussion 36
 2.5 Appendix: Details of the analysis 42
 2.5.1 Vowels 42
3 Learning phonemes from multiple auditory cues: Dutch infants’ language input and perception 43

3.1 Introduction 44

3.1.1 Distributional learning of phoneme categories 45
3.1.2 Infants’ perception of vowel quality and duration 46
3.1.3 Dutch /a/ and /a:/ 47
3.1.4 Summary of study objectives 48

3.2 Study 1: /a/ and /a:/ in Dutch infant-directed speech 48

3.2.1 Method 49
3.2.1.1 Materials 49
3.2.1.2 Data preparation 50
3.2.1.3 Analysis 51

3.2.2 Results 52
3.2.3 Discussion 58

3.3 Study 2: Dutch infants’ perception of /a/ and /a:/ 59

3.3.1 Method 60
3.3.1.1 Participants 60
3.3.1.2 Stimuli 61
3.3.1.3 Procedure 61
3.3.1.4 Preparation of looking-time data and analysis 64

3.3.2 Results 65
3.3.3 Discussion 67

3.4 General Discussion 67
3.5 Summary 70

4 Dutch infants’ sensitivity to the combination of vowel quality and duration in a speech sound categorization paradigm 71

4.1 Introduction 72

4.1.1 Infants’ sensitivity to vowel duration and vowel quality 72

4.1.2 Methods to study infants’ phoneme representations 74

4.2 Method 76

4.2.1 Subjects 76
4.2.2 Sound stimuli 77
4.2.3 Visual stimuli 78
4.2.4 Set-up and procedure 78
4.2.5 Analysis plan 81

4.3 Results 82

4.3.1 RT analysis 85
4.3.1.1 Adults – RT analysis 85
4.3.1.2 Infants – RT analysis 85
4.3.2 Pupil analysis 85
 4.3.2.1 Adults – pupil analysis 85
 4.3.2.2 15-month-olds – pupil analysis 88
 4.3.2.3 9-month-olds – pupil analysis 88
4.3.3 15-month relation between CDI-scores and RTs and pupil sizes 89
4.4 Discussion 90
4.5 Summary 93
5 Explaining Infants’ Phoneme Perception from the Distributions in Infant-Directed Speech: Two Distributional-Learning Models 95
 5.1 Introduction 96
 5.2 The distributions of /a/ and /æ:/ in Dutch infant-directed speech 98
 5.3 Dutch infants’ perception of /a/ and /æ:/ 101
 5.4 A computational-level model to link input and perception: Incremental Mixture-of-Gaussians model 103
 5.4.1 The Mixture-of-Gaussians model 103
 5.4.2 Distributional learning 103
 5.4.3 Evaluation of the MoG modeling 104
 5.5 MoG modeling of distributional learning 106
 5.5.1 Results 2-cue-with-\(\rho\) MoG 108
 5.5.2 Results 2-cue-no-\(\rho\) MoG 108
 5.5.3 Results 1-cue-F2 MoG and 1-cue-duration MoG 110
 5.5.4 Discussion 112
 5.6 A neural network model to link input and perception: Emerging categories in symmetric neural networks 114
 5.6.1 The neural network architecture 115
 5.6.2 Activity spreading 115
 5.6.3 Distributed categories and categorical perception 117
 5.6.4 Distributional learning 119
 5.6.5 A NN architecture for two input dimensions 120
 5.6.6 Evaluation of the NN modeling 121
 5.7 NN modeling of distributional learning 124
 5.7.1 Results: 2-cue NN 125
 5.7.2 Results: 1-cue-F2 NN and 1-cue-Duration NN 126
 5.7.3 Discussion 126
 5.8 Discussing the NN modeling of distributional learning 127
 5.8.1 Understanding the dynamics of learning with two input layers 129
 5.8.2 The acquisition of enhanced perceptual contrast 132
 5.8.3 The absence of a representation of auditory distance 133
5.8.4 Learning with a lexicon to acquire the status of specific cue combinations 135
5.9 General Discussion 136
5.10 Summary 138
5.11 Appendix A: The mathematical definition of the MoG 139
5.12 Appendix B: The mathematical definition of the NN 142
6 Discussion and Conclusion: Evaluating nature’s distributional-learning experiment 145
6.1 Summary of the study aims 146
6.2 Summary of the empirical results:
 Similarities between infants’ input and perception 146
6.3 Evaluating the role of computational models:
 Tools or theories? 147
6.4 Investigating infants’ input:
 Against data reduction 149
6.5 Investigating infants’ phoneme perception:
 Overt behavior and attention allocation 150
6.6 Conclusion 152

Bibliography 153

Summary in English 175
Samenvatting in het Nederlands 185
Curriculum Vitae 195