Nature's distributional-learning experiment: Infants' input, infants' perception, and computational modeling

Benders, T.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CONTENTS

1 INTRODUCTION: NATURE’S DISTRIBUTIONAL-LEARNING EXPERIMENT 1
 1.1 Introduction 2
 1.2 Nature’s distributional-learning experiment 3
 1.3 The BiPhon model and comparison to other theories and frameworks 6
 1.4 Dutch /a/ and /aː/ 9
 1.5 Part I) investigate the acoustic properties and the auditory distributions of the phonemes in the infants’ environment 12
 1.6 Part II) investigate infants’ perception of the same phonemes 13
 1.7 Part III) explain infants’ speech-sound perception from infants’ input distributions through distributional learning simulated in a computational model 15
 1.8 Comparison to previous work 17
 1.9 Summary 19

2 ALL MOMMY DOES IS SMILE! DUTCH MOTHERS’ REALIZATION OF SPEECH SOUNDS IN INFANT-DIRECTED SPEECH EXPRESSES AFFECT, NOT DIDACTIC INTENT 21
 2.1 Introduction 22
 2.1.1 Didactic vowel space enhancement in IDS 22
 2.1.2 Affective vowel formant increase in IDS 23
 2.1.3 Testing didactic and affective changes in Dutch IDS 24
 2.1.4 Summary of study objectives 26
 2.2 Method 27
 2.2.1 Participants 27
 2.2.2 Procedure and Equipment 27
 2.2.3 Coding 28
 2.2.4 Acoustic measurements 29
 2.2.4.1 Vowels 29
 2.2.4.2 The fricative /s/ 29
 2.2.4.3 Pitch 29
 2.2.5 Exclusion and Analyses 29
 2.3 Results 31
 2.3.1 Vowel space: Area 31
 2.3.2 Vowel space: Formant frequencies 32
 2.3.3 The fricative /s/ 35
 2.3.4 Pitch characteristics 36
 2.4 Conclusion and Discussion 36
 2.5 Appendix: Details of the analysis 42
 2.5.1 Vowels 42
2.5.2 The fricative /s/ 42
2.5.3 Pitch 42

3 Learning phonemes from multiple auditory cues: Dutch infants’ language input and perception 43
3.1 Introduction 44
 3.1.1 Distributional learning of phoneme categories 45
 3.1.2 Infants’ perception of vowel quality and duration 46
 3.1.3 Dutch /a:/ and /a:/ 47
 3.1.4 Summary of study objectives 48
3.2 Study 1: /a:/ and /a:/ in Dutch infant-directed speech 48
 3.2.1 Method 49
 3.2.1.1 Materials 49
 3.2.1.2 Data preparation 50
 3.2.1.3 Analysis 51
 3.2.2 Results 52
 3.2.3 Discussion 58
3.3 Study 2: Dutch infants’ perception of /a:/ and /a:/ 59
 3.3.1 Method 60
 3.3.1.1 Participants 60
 3.3.1.2 Stimuli 61
 3.3.1.3 Procedure 61
 3.3.1.4 Preparation of looking-time data and analysis 64
 3.3.2 Results 65
 3.3.3 Discussion 67
3.4 General Discussion 67
3.5 Summary 70

4 Dutch infants’ sensitivity to the combination of vowel quality and duration in a speech sound categorization paradigm 71
4.1 Introduction 72
 4.1.1 Infants’ sensitivity to vowel duration and vowel quality 72
 4.1.2 Methods to study infants’ phoneme representations 74
4.2 Method 76
 4.2.1 Subjects 76
 4.2.2 Sound stimuli 77
 4.2.3 Visual stimuli 78
 4.2.4 Set-up and procedure 78
 4.2.5 Analysis plan 81
4.3 Results 82
 4.3.1 RT analysis 85
 4.3.1.1 Adults – RT analysis 85
 4.3.1.2 Infants – RT analysis 85
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.4 Learning with a lexicon to acquire the status of specific cue combinations</td>
<td>135</td>
</tr>
<tr>
<td>5.9 General Discussion</td>
<td>136</td>
</tr>
<tr>
<td>5.10 Summary</td>
<td>138</td>
</tr>
<tr>
<td>5.11 Appendix A: The mathematical definition of the MoG</td>
<td>139</td>
</tr>
<tr>
<td>5.12 Appendix B: The mathematical definition of the NN</td>
<td>142</td>
</tr>
<tr>
<td>6 Discussion and Conclusion: Evaluating nature’s distributional-learning experiment</td>
<td>145</td>
</tr>
<tr>
<td>6.1 Summary of the study aims</td>
<td>146</td>
</tr>
<tr>
<td>6.2 Summary of the empirical results: Similarities between infants’ input and perception</td>
<td>146</td>
</tr>
<tr>
<td>6.3 Evaluating the role of computational models: Tools or theories?</td>
<td>147</td>
</tr>
<tr>
<td>6.4 Investigating infants’ input: Against data reduction</td>
<td>149</td>
</tr>
<tr>
<td>6.5 Investigating infants’ phoneme perception: Overt behavior and attention allocation</td>
<td>150</td>
</tr>
<tr>
<td>6.6 Conclusion</td>
<td>152</td>
</tr>
<tr>
<td>Bibliography</td>
<td>153</td>
</tr>
</tbody>
</table>

Summary in English 175
Samenvatting in het Nederlands 185
Curriculum Vitae 195