Imaging of hepatic hypervascular tumors & clinical implications
Bieze, M.

Citation for published version (APA):
DIAGNOSTIC ACCURACY OF MRI IN DIFFERENTIATING HEPATOCellular ADENOMA FROM FOCAL NODULAR HYPERPLASIA:

PROSPECTIVE STUDY OF THE ADDITIONAL VALUE OF GADOXETATE DISODIUM

Matthanja Bieze
Jacomina W. van den Esschert
C. Yung Nio
Joanne Verheij
Johannes B. Reitsma
Valeska Terpstra
Thomas M. van Gulik
Saffire S.K.S. Phoa

Am J Roentgenol 2012; 199:26–34
OBJECTIVE

The purpose of this article is to prospectively determine the sensitivity of hepatobiliary phase gadoxetate disodium enhanced MRI combined with standard MRI in differentiating focal nodular hyperplasia (FNH) from hepatocellular adenoma (HCA).

SUBJECTS AND METHODS

Patients suspected of having FNH or HCA larger than 2 cm underwent gadoxetate disodium–enhanced MRI. Standard MRI was evaluated separately from the additional hepatobiliary phase by two blinded radiologists. For the largest lesion in each patient, findings were compared with histologic diagnosis. Sensitivity, positive predictive value (PPV), and distinctive features were analyzed using McNemar and analysis of variance tests.

RESULTS

Fifty-two patients completed the study. Histologic diagnosis revealed 24 HCAs and 28 FNHs. Characterization on standard MRI was inconclusive in 40% (21/52) and conclusive in 60% (31/52) of lesions. The sensitivity for standard MRI for HCA was 50% (12/24) with a PPV of 100% (12/12). The sensitivity for FNH was 68% (19/28) with a PPV of 95% (18/19). After review of hepatobiliary phase, the sensitivity for HCA improved to 96% (23/24) with a PPV of 96% (23/24). The sensitivity for FNH improved to 96% (27/28) with a PPV of 96% (27/28). Features with significant predictive value for diagnosis in HCA included bleeding (p < 0.001), fat (p = 0.010), and glycogen (p = 0.024). The presence of a central scar was predictive for FNH (p < 0.001).

CONCLUSION

This study shows high sensitivity of gadoxetate disodium–enhanced MRI when standard series are combined with the hepatobiliary phase for differentiation of FNH and HCA in lesions larger than 2 cm.

INTRODUCTION

Because of the widespread use of imaging modalities, hepatocellular adenoma (HCA) and focal nodular hyperplasia (FNH) are increasingly found incidentally [1]. It is generally accepted that FNH can be treated conservatively because of its benign nature and minimal risks of complications [2, 3]. HCA, unlike FNH, carries the risk of malignant transformation in 4.3% of lesions larger than 5 cm [4, 5], and spontaneous rupture with bleeding has been reported in 10% of lesions larger than 5 cm [4, 6]. The growth and risk of bleeding in HCA are influenced by the use of oral contraceptives. For these reasons, resection of HCAs larger than 5 cm is advised, and differentiation between HCA and FNH thus becomes important [7]. MRI and CT are mostly used for characterizing focal hepatic lesions. Diagnosis is based on lesion characteristics and enhancement patterns.

On MRI, typical findings of FNH include a central scar, lobulated shape, central feeding vessels, and arterial enhancement [8, 9]. Typical findings of HCA include hemorrhage [10], intratumoral fat, and glycogen [11], which present as high-signal foci on T1-weighted images. The fat-suppression setting will distinguish intratumoral fat. Other typical findings include peripheral feeding vessels and arterial enhancement [12]. However, these typical findings are not always present. For example, a macroscopic central scar occurs in 50% of FNHs and is often absent in FNHs smaller than 3 cm [8, 13]. In HCA, glycogen and fat are not always present, and bleeding occurs more frequently in lesions larger than 5 cm [4]. If imaging results are inconclusive, a liver biopsy may be mandatory [14]. Liver-specific hepatobiliary contrast agents for MRI are now available. Gadoxetate disodium (Eovist, Bayer HealthCare) is a gadolinium-based paramagnetic contrast agent taken up via an organic anion transport system by functioning hepatocytes [15, 16]. Approximately 50% of the contrast agent is excreted into the biliary system, and 50% is excreted by the kidneys. Hepatocyte-selective imaging allows assessment of hepatocyte function and biliary excretion. In FNH, a ductular reaction occurs along the septa, resulting in bile calculi with abnormal drainage [14]. This may result in accumulation of contrast agent in the lesion. In contrast, HCA has no or few bile ducts, and the lesional hepatocytes are thought to have diminished function [4, 14]. This may result in reduced accumulation of contrast agent in the hepatobiliary phase. This difference in accumulation of contrast agent in the hepatobiliary phase of imaging between FNH and HCA may therefore be useful for differentiation when typical features are absent. Previous studies with liverspecific contrast agents have shown promising results in differentiating FNH from HCA [7, 17]. However, those studies were limited, because the reference standard con-
sisted only of imaging or follow-up in a substantial number of included cases [18]. Therefore, the pur-
pose of this study was to prospectively determine the diagnostic accuracy of the hepatobiliary phase of
gadoxetate disodium–enhanced MRI combined with standard MRI in differentiating FNH from HCA, with histopathology as the standard of reference.

METHODS

This study was a prospective single-center diagnostic accuracy study with paired design for differentiating FNH from HCA conducted between January 2008 and June 2010. Standard MRI was compared with the hepatobiliary phase of gadoxetate disodium–en-
hanced MRI at a blinded reading. The institutional medical ethics committee approved the study, and written informed consent was ob-
tained from all patients. A total of 67 consecutive patients were included (mean age, 39 years; range, 18–60 years). Patients either primarily pre-
sented to our surgical outpatient clinic or were secondarily referred from other centers with suspicion of FNH or HCA on the basis of CT or MRI without hepatobiliary contrast. The lesions had to be homogeneous or inhomogeneous.

The MRI was performed with a 1.5-T MRI scanner (Avanto, Siemens Healthcare) using a phased-
array torso coil. MRI series consisted of 2D gradient-echo in- and opposed-phase imaging FLASH
(TR/TE, 137.2, 256 × 156); and axial breath-hold T2-weighted HASTE (TR/TE, 5400/76; TR, 90°; matrix, 256 × 156); and axial diffusion weighted echo-planar imaging with b values of 50, 400, and 800 s/mm² (TR/TE, 125/2.3 and 125/4.6; TR, 70°; matrix, 384 × 230); axial diffusion weighted echo-planar imaging with b values of 50, 400, and 800 s/mm² (TR/TE, 5400/76; flip angle, 90°; matrix, 12 × 154); true FISP T2-weighted series, and contrast-enhanced arterial, portal, and late phases. The lesion enhancement pattern was considered diagnostic for HCA. The pattern of contrast agent uptake was scored as either homogenous or inhomogeneous. The lesions had to be homogeneous or inhomogeneous.

The MRI series were evaluated in consensus by two radiologists with more than 10 years of experi-
ence in abdominal radiology. The readers were informed of the differential diagnosis of either FNH or HCA but were blinded to patient history and previous imaging findings. First, the standard images were evaluated, after which the hepatobiliary phase was evaluated in the same session. The following characteristics were used for evaluation of the liver: the number of lesions and the presence of steato-
sis (i.e., visual loss of signal intensity of the liver between in- and out of phase Ti-weighted series). The following items were noted regarding the lesions: size, segmental localization, shape (round or lobulated), and demarcation (sharp or faint). High-signal foci on Ti-weighted series were assessed; foci with loss of signal intensity on the Ti-weighted out-of-phase series were regarded as fat, and small foci without loss of signal intensity were regarded as glycogen. Larger irregular high-signal areas on Ti-weighted series were regarded as recent bleeding, whereas low-signal areas were regarded as older bleeding. Diffuse loss of signal intensity on the Ti-weighted out-of-phase series was regarded as diffuse fat content within the lesion. Furthermore, a central scar (a high-signal-intensity “spokes wheel” on true FISP Ti-weighted series) was considered diagnostic for HCA. Lesion-to-liver intensity was noted on unenhanced T1-weighted series and low signal intensity on Ti-weighted series, with or without enhance-
ment during portal or late series). Lesion-to-liver intensity was noted on unenhanced Ti-weighted and true FISP T2-weighted series, and contrast-enhanced arterial, portal, and late phases. The lesion enhancement pattern was expressed as a “peak pattern,” if arterial enhancement with clear loss of signal intensity during portal or late phases was seen, and as a “plateau pattern,” if signal intensity was sustained during portal and late phases of imaging. The two readers made a visual score of signal intensity and enhancement pattern. When in doubt, a region of interest was placed in the lesion to measure signal intensity of the lesion. The diagnosis of FNH was based on the presence of a central scar, arterial enhancement, and absence of signs of washout during portal phase. A diagnosis of HCA was based on arterial enhancement, with possible washout during portal phase; the presence of bleed-
ing, fat, or glycogen; and the absence of a central scar. MRI of lesions without these characteristics was regarded as inconclusive. Finally, the lesions were evaluated for signal intensity compared with sur-
rounding liver tissue on the Ti-weighted hepatobiliary series at 20 minutes after injection. Isointense or hyperintense signal intensity of the lesion was regarded as diagnostic for FNH, and hypointensity was considered diagnostic for HCA. The pattern of contrast agent uptake was scored as either homo-
ogeneous or inhomogeneous.

MRI Interpretation

The MRI protocol with a 1.5-T MRI scanner (Avanto, Siemens Healthcare) using a phased-
array torso coil. MRI series consisted of 2D gradient-echo in- and opposed-phase imaging FLASH
(TR/TE, 137.2, 252 × 154); and axial breath-hold T2-weighted HASTE (TR/TE, 5400/76; TR, 90°; matrix, 256 × 156); and axial diffusion weighted echo-planar imaging with b values of 50, 400, and 800 s/mm² (TR/TE, 5400/76; flip angle, 90°; matrix, 12 × 154); true FISP T2-weighted series, and contrast-enhanced arterial, portal, and late phases. The lesion enhancement pattern was expressed as a “peak pattern,” if arterial enhancement with clear loss of signal intensity during portal or late phases was seen, and as a “plateau pattern,” if signal intensity was sustained during portal and late phases of imaging. The two readers made a visual score of signal intensity and enhancement pattern. When in doubt, a region of interest was placed in the lesion to measure signal intensity of the lesion. The diagnosis of FNH was based on the presence of a central scar, arterial enhancement, and absence of signs of washout during portal phase. A diagnosis of HCA was based on arterial enhancement, with possible washout during portal phase; the presence of bleed-
ing, fat, or glycogen; and the absence of a central scar. MRI of lesions without these characteristics was regarded as inconclusive. Finally, the lesions were evaluated for signal intensity compared with sur-
rounding liver tissue on the Ti-weighted hepatobiliary series at 20 minutes after injection. Isointense or hyperintense signal intensity of the lesion was regarded as diagnostic for FNH, and hypointensity was considered diagnostic for HCA. The pattern of contrast agent uptake was scored as either homo-
ogeneous or inhomogeneous.
The standard of reference was defined as histopathologic diagnosis. The histologic specimens were obtained by resection or liver biopsy from tumoral and normal liver tissue. The evaluating pathologist was blinded to patient history. In addition to standard liver stainings, including H and E, collagen, and CK7, glutamine synthetase staining was performed for confirmation of histomorphologic diagnosis [19]. The diagnosis of FNH as based on morphologic characteristics, including the presence of stellate fibrous scarring, dystrophic arteries, ductular reaction, variable infiltrate, and absence of cytologic abnormalities. Morphologic characteristics of HCA included a proliferation of nonatypical hepatocytes, with a well-developed reticulin framework, without a central scar.

In cases of multiple lesions, the largest lesion or the lesion most suitable for biopsy was selected on imaging. The location of this lesion was recorded by the investigator, who also instructed the interventional radiologist as to which lesion to biopsy. The investigator also monitored the preoperative selection of the lesions and the postoperative examination by the pathologist to guarantee proper matching between imaging and histopathology.

Histologic diagnoses were 24 HCAs and 28 FNHs, diagnosed in 25 patients on resection and in 27 patients on biopsy specimens. Biopsy material (six HCAs and 21 FNHs) and resection specimens (18 HCAs and seven FNHs) were used. All FNHs but one showed a typical maplike pattern staining of glutamine synthetase, which was absent in HCAs. This one lesion was composed of nonatypical hepatocytes together with scarring, ductular reaction, thick-walled vessels, and inflammatory infiltrates but lacked the typical maplike glutamine synthetase staining. On the basis of morphologic features, lack of serum amyloid A, and C-reactive protein overexpression, the lesion was diagnosed as FNH.

Statistical analysis was per patient for the largest suitable lesion using SPSS (version 18, IBM). Descriptive statistics were used for the study population. Continuous data were tested for normal distribution and equal variances using the Levene test. Features on imaging were tested for significance between FNH and HCA using the analysis of variance and multivariate tests. The sensitivity, specificity, and positive predictive value (PPV) of the standard and hepatobiliary phases of gadoxetate disodium–enhanced MRI were calculated with the McNemar test and the 95% CI of the proportions on the Wilson procedure without correction for continuity [20]. Statistical tests were evaluated at the 5% level of significance.

Statistical Analysis

Statistical analysis was per patient for the largest suitable lesion using SPSS (version 18, IBM). Descriptive statistics were used for the study population. Continuous data were tested for normal distribution and equal variances using the Levene test. Features on imaging were tested for significance between FNH and HCA using the analysis of variance and multivariate tests. The sensitivity, specificity, and positive predictive value (PPV) of the standard and hepatobiliary phases of gadoxetate disodium–enhanced MRI were calculated with the McNemar test and the 95% CI of the proportions on the Wilson procedure without correction for continuity [20]. Statistical tests were evaluated at the 5% level of significance.

Matching of Imaging & Histopathology

In cases of multiple lesions, the largest lesion or the lesion most suitable for biopsy was selected on imaging. The location of this lesion was recorded by the investigator, who also instructed the interventional radiologist as to which lesion to biopsy. The investigator also monitored the preoperative selection of the lesions and the postoperative examination by the pathologist to guarantee proper matching between imaging and histopathology.

Histologic diagnoses were 24 HCAs and 28 FNHs, diagnosed in 25 patients on resection and in 27 patients on biopsy specimens. Biopsy material (six HCAs and 21 FNHs) and resection specimens (18 HCAs and seven FNHs) were used. All FNHs but one showed a typical maplike pattern staining of glutamine synthetase, which was absent in HCAs. This one lesion was composed of nonatypical hepatocytes together with scarring, ductular reaction, thick-walled vessels, and inflammatory infiltrates but lacked the typical maplike glutamine synthetase staining. On the basis of morphologic features, lack of serum amyloid A, and C-reactive protein overexpression, the lesion was diagnosed as FNH.

Statistical Analysis

Statistical analysis was per patient for the largest suitable lesion using SPSS (version 18, IBM). Descriptive statistics were used for the study population. Continuous data were tested for normal distribution and equal variances using the Levene test. Features on imaging were tested for significance between FNH and HCA using the analysis of variance and multivariate tests. The sensitivity, specificity, and positive predictive value (PPV) of the standard and hepatobiliary phases of gadoxetate disodium–enhanced MRI were calculated with the McNemar test and the 95% CI of the proportions on the Wilson procedure without correction for continuity [20]. Statistical tests were evaluated at the 5% level of significance.
A total of 52 patients completed the study. The two men both presented with FNH. Forty-seven of the 50 women reported long-term use of oral contraceptives. Thirty-one patients presented with abdominal pain or discomfort, three of whom presented with acute bleeding requiring arterial embolization (16 with HCA and 15 with FNH). Eighteen of the 24 patients with HCA (75%) underwent resection of the lesion (mean [± SD] diameter, 8.5 ± 4.9 cm; range, 4.4–25 cm). Seven of 28 patients with FNH (25%) underwent resection of the lesion because of discomfort (mean diameter, 6.8 ± 3.0 cm; range, 3.7–12.0 cm). Patients who presented with discomfort often had bleeding (nine with HCA) or a large lesion with mass impact on the surrounding liver parenchyma and organs. However, one patient with extreme discomfort only had a 2.5-cm FNH. Thirty-five lesions were 5 cm or larger (20 HCAs and 15 FNHs), and resection was advised if the diagnosis was HCA. The group of patients with a lesion smaller than 5 cm (n = 17) consisted of four with HCA (24%) and 13 with FNH (76%). In the overall group, 15 patients had a solitary lesion at imaging (four with HCA and 11 with FNH), 18 had two or three lesions (five with HCA and 13 with FNH), six had four to 10 lesions (five with HCA and one with FNH), and 12 patients had more than 10 lesions characterized on MRI (nine with HCA and three with FNH). Of the 19 patients with HCA and multiple lesions, three also presented with a lesion compatible with FNH on imaging, with high or isointense signal on the hepatobiliary phase. One lesion was also confirmed to be FNH at histopathologic analysis.

Imaging results are summarized in Table 1. For 31 of 52 patients, MRI was conclusive and diagnosed 12 lesions as HCA and 19 as FNH. Compared with histologic diagnosis, this resulted in a sensitivity for HCA of 50% (12/24; 95% CI, 31–69%), and a PPV of 100% (95% CI, 76–100%). The sensitivity for FNH was 64% (18/28; 95% CI 46–79%) with a PPV of 95% (18/19; 95% CI 75–99%). With standard MRI, characterization was inconclusive in 21 of 52 patients, including 11 with HCA (Fig. 1) and 10 with FNH (Fig. 2). Two of 10 FNHs showed a small central scar. In comparison, 16 of 18 FNHs contained a scar when diagnosis was conclusive on standard MRI. In 11 HCAs, the MRI was regarded inconclusive, although in five lesions, high-signal foci were dubiously present. The mean diameter of lesions was 7.1 cm on conclusive standard MRI and 6.4 cm on inconclusive MRI (p = 0.420).

On the hepatobiliary series, no cases were regarded as inconclusive (Table 1). Twenty-four lesions were hypointense compared with surrounding liver tissue and were characterized as HCA (Fig. 3). Twenty-eight lesions were isointense or hyperintense and therefore characterized as FNH (p < 0.01) (Fig. 4). Compared with the histologic diagnosis, this resulted in a sensitivity of 96% for HCA (43/44; 95% CI, 80–99%), with a PPV of 99% (95% CI, 80–99%). The sensitivity for FNH was 95% (27/28; 95% CI, 82–99%), with a PPV of 99% (95% CI, 82–99%). High signal intensity of FNH (n = 27) during the hepatobiliary phase was homogeneous in 14 cases (52%) and inhomogeneous in 13 cases (48%). One case
of FNH showed low homogeneous signal intensity compared with surrounding parenchyma during the hepatobiliary phase and was incorrectly characterized as HCA. One case of HCA was isointense and therefore falsely characterized as FNH.

TABLE 1: Diagnosis of Hepatocellular Adenoma (HCA) and Focal Nodular Hyperplasia (FNH) on Standard and Hepatobiliary MRI Series

<table>
<thead>
<tr>
<th>Type of MRI Diagnosis</th>
<th>Histologic Diagnosis</th>
<th>FNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconclusive</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>HCA</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>FNH</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Hepatobiliary phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconclusive</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HCA</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>FNH</td>
<td>1</td>
<td>27</td>
</tr>
</tbody>
</table>

Note—Data are no. of lesions.

FIGURE 3

37-year-old woman with hepatocellular adenoma (HCA) and acute pain in upper abdomen that started during pregnancy.

A: Transverse T1-weighted in phase MRI shows isointense lesion in segment 3 with high-signal area centrally, consistent with recent bleeding. There is low-signal ring surrounding bleeding, consistent with older blood (blooming artifact). **B**: Transverse T1-weighted image obtained after injection of gadoxetate disodium in arterial phase shows homogeneous enhancement of lesion (signal intensity of 469, compared with 200 on unenhanced image) and no enhancement of area of bleeding.

TABLE 2: Characteristics of Focal Nodular Hyperplasia (FNH) and Hepatocellular Adenoma (HCA) Lesions

<table>
<thead>
<tr>
<th>Characteristics on MRI</th>
<th>Total</th>
<th>HCA</th>
<th>FNH</th>
<th>HCA</th>
<th>FNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histologic outcome</td>
<td>52</td>
<td>24</td>
<td>28</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Septations of the liver</td>
<td>12</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Round or oval</td>
<td>19</td>
<td>12</td>
<td>7</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Lobular</td>
<td>33</td>
<td>12</td>
<td>21</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>C ircumscription</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well defined</td>
<td>43</td>
<td>19</td>
<td>24</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Unclear</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Size of lesion (cm, mean (range))</td>
<td>6.8 (2-25)</td>
<td>7.2 (2.3-25)</td>
<td>6.8 (2-12)</td>
<td>7.6 (2.3-25)</td>
<td>5.1 (2-9)</td>
</tr>
<tr>
<td>No. of lesions per patient</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Note—Data are no. of lesions except where indicated otherwise.

FIGURE 4

22-year-old woman with focal nodular hyperplasia (FNH) and chronic dull pain in upper abdomen.

A: Transverse arterial phase T1-weighted image (fat saturated TR/TE, 5.77/2.54; flip angle, 10°; matrix, 256 × 156) shows arterial enhancement of lesion in segment IV of liver (arrow), with hypointense area in center of lesion; central scar (arrowhead) is also seen. **B**: Corresponding hepatobiliary phase T1-weighted image obtained 20 minutes after contrast agent injection shows isointense-to-hyperintense signal of lesion (arrow) compared with surrounding liver, consistent with FNH.
Features and Characteristics

The lesion characteristics are summarized in Table 2. Diffuse parenchymal atrophy of the liver was found in nine of 24 patients with HCA (38%) and in three of 28 patients (11%) with FNH (p = 0.022). Features with significant predictive value for HCA included fat content in five cases (p = 0.010). Hyperintense signal on T1-weighted series consistent with bleeding was found in 28 FNHs and zero HCAs (p < 0.001). This was histologically confirmed in five of six surgical specimens. Finally, glycogen was detected in four HCAs and zero FNHs as high-intense small areas on T2-weighted imaging (p = 0.004). Features with significant predictive value for FNH include a central scar in 18 of 28 FNHs (p < 0.001). Among 14 FNHs smaller than 5 cm, six showed no central scar. FNH was often lobulated (21/28) compared with HCA (12/24; p = 0.064). Peripheral vessels were found in two FNHs and three HCAs (p = 0.523), and none of the lesions had central feeding vessels. Lesion-to-liver intensity is summarized in Table 3. Three HCAs were not included in the analyses because of prior arterial embolization of a feeding vessel after bleeding. During unenhanced T1-weighted series, FNHs overall showed significantly lower signal intensity than did HCAs, even if bleeding was excluded from analyses (p < 0.001). During the T1-weighted arterial phase, all 28 FNHs and 14 HCAs showed arterial enhancement. During the T1-weighted portal phase, hyperintense signal compared with surrounding liver parenchyma was seen in 22 of 28 FNHs and 14 of 21 HCAs (p = 0.026). On the portal phase, hypointensity (washout) was seen in three HCAs and in none of the FNHs. During the late phase, hyperintense signal was seen in 18 FNHs and 13 HCAs, isointense signal was seen in eight FNHs and six HCAs, and hypointense signal was seen in two FNHs and two HCAs, with no significant difference between the two groups (p = 0.802). The enhancement pattern showed a plateau pattern in FNHs and a peak pattern in HCAs (p = 0.009) (Table 4). In the hepatobiliary phase of 24 of 52 patients, the lesions were hyperintense compared with surrounding liver tissue characterized as HCA and in 28 of 52 patients, the lesion was isointense or hypointense and was characterized as FNH (p < 0.001) (Fig. 4).

Discussion

In previous studies, enhancement with gadobenate dimeglumine has shown promising results in differentiating FNH from HCA [7]. The limitation of those studies was the use of only CT or follow-up as the standard of reference in most of the included cases. Therefore, we evaluated our imaging results with histologic analysis as the standard of reference in all cases. The present study shows the high accuracy of gadobenate dimeglumine-enhanced MRI when the standard series are combined with the hepatobiliary phase for differentiation of FNH and HCA in lesions larger than 2 cm. In 40% of cases, standard MRI was inconclusive because of the lack of typical features. In the literature, this occurs in 10–12% of cases, especially when lesions are smaller than 3 cm [8, 10]. Difficulties may arise in detecting a small scar in FNH. For example, in one FNH, we detected the small scar on the hepatobiliary phase only. Bleeding was mostly detected as hyperintense irregular areas on T1-weighted imaging. Older bleeding becomes smaller and less irregular, with loss of signal intensity on T1-weighted images, and may therefore be confused with a scar. This was the case in one HCA thought to be an FNH on standard MRI. The lesion was correctly characterized on the hepatobiliary phase. In two other lesions, the readers were uncertain about differentiating bleeding from a scar and therefore characterized the standard MRI as inconclusive.

Table 3: Lesion-to-Liver Intensity of Focal Nodular Hyperplasia (FNH) and Hepatocellular Adenoma (HCA)

<table>
<thead>
<tr>
<th>Lesion Type, Signal Intensity</th>
<th>Unenhanced Phase</th>
<th>Contrast-Enhanced Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNH (n = 28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypointense</td>
<td>18 (57)</td>
<td>28 (100)</td>
</tr>
<tr>
<td>Isointense</td>
<td>12 (43)</td>
<td>6 (21)</td>
</tr>
<tr>
<td>Hyperintense</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>HCA (n = 27)</td>
<td>14 (52)</td>
<td>13 (48)</td>
</tr>
<tr>
<td>Hypointense</td>
<td>7 (30)</td>
<td>4 (15)</td>
</tr>
<tr>
<td>Isointense</td>
<td>0 (0)</td>
<td>3 (12)</td>
</tr>
<tr>
<td>Hyperintense</td>
<td>1 (4)</td>
<td>2 (8)</td>
</tr>
</tbody>
</table>

Table 4: Enhancement Pattern of Focal Nodular Hyperplasia (FNH) and Hepatocellular Adenoma (HCA)

<table>
<thead>
<tr>
<th>Pattern</th>
<th>HCA</th>
<th>FNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Plateau</td>
<td>12</td>
<td>25</td>
</tr>
</tbody>
</table>

Note—Data are no. (%) of lesions.

Table 3

Table 4

Data are no. of lesions. Enhancement of the lesion can be expressed as a peak pattern with enhancement in the arterial phase of scanning, followed by loss of contrast during later phases. A plateau pattern is defined as arterial enhancement with lingering of contrast during later phases. This pattern was significantly different between both groups as FNH showed mostly a plateau pattern (p = 0.009).

Chapter 2
However, not all features listed as typical for FNH or HCA were significant in our series. We mostly found lobulated FNH; however, no significant difference was found compared with HCA, in which 50% of the lesions also showed a lobulated shape. Peripheral vessels were found both in HCA and FNH. This feature is considered diagnostic for HCA on CT [12]. Hence, shape and peripheral vessels may not be used as sole criteria on which differentiation between HCA and FNH is based. Lesion-to-liver intensity during dynamic phases of MRI could further help in differentiating FNH from HCA. Three patients were excluded from these analyses after they were treated for bleeding from the lesion with embolization of one or multiple vessels before MRI. After this procedure, the normal anatomy of the lesion is structurally altered. Therefore, these cases cannot be compared with the lesions in the overall patient group.

Our series showed significant hyperintensity of HCA during unenhanced T1-weighted series compared with FNH. High-signal foci on T1-weighted images may be due to bleeding or glycogen content in lesions [24], but we did not include these foci in the evaluation of lesion signal intensity. Steatosis of the liver may also explain a relatively high signal intensity of the lesions on the T1-weighted fat-suppressed series. Steatosis was more often present in HCA compared with FNH, but this did not explain the difference in lesion signal intensity. Furthermore, one FNH showed hypointense signal on the portal phase. This might be the result of the disappearance of portal tracts and the increase of arterial feeding vessels, causing rapid loss of contrast agent after the arterial phase. However, this washout sign is highly suggestive for hepatocellular carcinoma (HCC) [25] and, therefore, cannot be used as a diagnostic criterion if any suspicion for malignancy exists. Overall, when intensity of the lesion to liver is evaluated, the unenhanced T1-weighted phase and signs of washout might help differentiate FNH from HCA. Regarding lesion enhancement patterns, we found FNH to have a plateau pattern. This is in contrast to the enhancement pattern seen in HCA, which loses contrast agent significantly faster, creating a peak pattern. These different lesion enhancement patterns may help differentiate FNH from HCA.

We found isointense-to-hyperintense signal intensity of the lesion in the hepatobiliary phase in all but one FNH and in one HCA, compared with surrounding liver parenchyma. In FNH, isointense-to-hyperintense signal intensity of the lesion on the hepatobiliary phase is seen in 83–90% of HCAs were larger than 5 cm. Patients with typical FNH may have been less likely to be referred, because there are no surgical consequences to this diagnosis. The current bias is therefore toward cases with a more problematic diagnosis. In conclusion, this study shows high accuracy of gadoxetate disodium–enhanced MRI when the standard series are combined with the hepatobiliary phase for differentiation of FNH and HCA in lesions larger than 2 cm.

CONCLUSIONS

The results of this study advocate the use of the gadoxetate disodium–enhanced MRI for accurate differentiation of FNH and HCA.
References