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The stop-signal paradigm is frequently used to study response inhibition. In this paradigm,
participants perform a two-choice response time (RT) task where the primary task
is occasionally interrupted by a stop-signal that prompts participants to withhold their
response. The primary goal is to estimate the latency of the unobservable stop response
(stop signal reaction time or SSRT). Recently, Matzke et al. (2013) have developed a
Bayesian parametric approach (BPA) that allows for the estimation of the entire distribution
of SSRTs. The BPA assumes that SSRTs are ex-Gaussian distributed and uses Markov
chain Monte Carlo sampling to estimate the parameters of the SSRT distribution. Here we
present an efficient and user-friendly software implementation of the BPA—BEESTS—that
can be applied to individual as well as hierarchical stop-signal data. BEESTS comes with
an easy-to-use graphical user interface and provides users with summary statistics of
the posterior distribution of the parameters as well various diagnostic tools to assess the
quality of the parameter estimates. The software is open source and runs on Windows and
OS X operating systems. In sum, BEESTS allows experimental and clinical psychologists
to estimate entire distributions of SSRTs and hence facilitates the more rigorous analysis
of stop-signal data.

Keywords: stop-signal paradigm, stop-signal RT distribution, ex-Gaussian distribution, hierarchical Bayesian

modeling, statistical software

1. INTRODUCTION
Response inhibition—the ability to stop an ongoing response—is
frequently studied using the stop-signal paradigm. In the stop-
signal paradigm (Logan and Cowan, 1984; Lappin and Eriksen,
1966), participants perform a two-choice visual response time
(RT) task, such as responding to the color or the shape of the
stimuli. This primary task is occasionally interrupted by a stop-
signal that instructs participants not to respond on that trial. The
goal is to estimate the latency of the unobservable stop response
(stop-signal RT; SSRT).

Based on the independent horse-race model (Logan, 1981;
Logan and Cowan, 1984), various methods are available to esti-
mate SSRTs (e.g., Logan, 1994; Verbruggen and Logan, 2009;
Verbruggen et al., 2009). Over the past decades, the horse-race
model has been extensively used to estimate stopping latencies
and compare the efficiency of response inhibition between dif-
ferent age groups (e.g., Schachar and Logan, 1990; Kramer et al.,
1994; Ridderinkhof et al., 1999; Williams et al., 1999) and clinical
populations (Schachar and Logan, 1990; Oosterlaan et al., 1998;
Schachar et al., 2000). Unfortunately, most standard methods to
estimate SSRTs only provide a summary measure of the latency of
the stop process, such as the mean or the median SSRT.

Several researchers have argued, however, that the adequate
analysis of RT data should not only focus on mean RT, but should

consider the shape of the entire RT distribution (e.g., Heathcote
et al., 1991; Matzke and Wagenmakers, 2009). The shape of SSRT
distributions may, for example, differ between different clini-
cal populations, without necessary differences in mean SSRT.
Ignoring the shape of SSRT distributions may thus lead to incor-
rect conclusions about differences in response inhibition between
groups.

To allow for a more thorough analysis of stop-signal data,
Matzke et al. (2013) have recently developed a Bayesian para-
metric approach (BPA) that enables researchers to estimate the
entire distribution of SSRTs (see Logan et al., in press, for an
alternative approach). The BPA assumes that SSRTs follow an ex-
Gaussian distribution and uses Bayesian parameter estimation to
obtain posterior distributions for the model parameters. The BPA
enables researchers to compare and evaluate differences in the
ex-Gaussian stop parameters between experimental and clinical
groups. By doing so, the BPA has the potential to facilitate the
interpretation of stop-signal data and contribute to new insights
on the nature of response inhibition.

Parameter estimation in the BPA currently relies on the pop-
ular Bayesian statistical package WinBUGS (Bayesian inference
Using Gibbs Sampling for Windows; Lunn et al., 2012). The
practical usefulness of the BPA is, however, severely limited by
the disadvantages of the present implementation. The WinBUGS
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routine is extremely time consuming and rather user-unfriendly.
For instance, WinBUGS requires several hours to produce reliable
parameter estimates for a single participant and it requires several
days to fit a hierarchical data set. It is therefore all but impossible
for experimental and clinical psychologists to take advantage of
the theoretical progress offered by the BPA.

In order to overcome this obstacle and promote the broader
application of the Bayesian analysis of stop-signal data, we intro-
duce a relatively fast, user-friendly software that allows for the
estimation of entire SSRT distributions. BEESTS (Bayesian Ex-
Gaussian Estimation of STop-Signal RT distributions) can be
applied to individual and hierarchical stop-signal data and comes
with an easy-to-use graphical user interface. BEESTS provides
users with summary statistics of the posterior distribution of the
parameters as well as various diagnostic tools to assess the quality
of the parameter estimates.

The outline of the paper is as follows. First, we describe the
BPA in more detail. Second, we introduce BEESTS, present the
installation instructions, and describe the various analysis and
output options provided by the software. Third, we illustrate
the use of BEESTS with experimental stop-signal data. The last
section concludes.

2. THE BAYESIAN PARAMETRIC APPROACH
2.1. RATIONALE AND ASSUMPTIONS
According to the standard horse-race model (Logan, 1981; Logan
and Cowan, 1984), performance in the stop-signal paradigm
can be conceptualized as a horse-race between two independent
processes that compete against each other: a go-process that is
initiated by the primary task “go” stimulus and a stop-process
that is generated by the stop-signal. As shown in Figure 1, if the
go-process finishes before the stop-process, the primary response
is executed; if the stop-process finishes before the go-process,
the primary response is inhibited. The shorter the time interval
between the onset of the go-stimulus and the onset of the stop-
signal (i.e., stop-signal delay; SSD), the more likely participants
are to inhibit their response on the primary task (see also Matzke
et al., 2013).

The BPA is based on the rationale of the standard horse-race
model, but it assumes that primary task “go” RTs and SSRTs

onset go stimulus onset stop signal

SSD

internal response to stop signal

SSRT time

go RT distribution

P(respond | stop signal) P(inhibit | stop signal)

FIGURE 1 | Graphical representation of the independent horse-race

model. The success of response inhibition is determined by the relative
finishing times of the go and the stop process. Primary task “go” RTs that
are longer than SSD + SSRT are successfully inhibited (i.e., white area); go
RTs that are shorter than SSD + SSRT escape inhibition and result in
signal-respond RTs (i.e., gray area; see also Matzke et al., 2013). Constant
SSRT is assumed.

are both independent random variables (i.e., complete horse-race
model). As shown in Figure 2, the BPA assumes that the distri-
bution of RTs that escape inhibition (i.e., signal-respond RTs)
can be viewed as a censored go RT distribution. The censoring
point is assumed to be drawn from the SSRT distribution and can
take on a different value on each stop-signal trial (e.g., SSD +
SSRT1, SSD + SSRT2, and SSD + SSRT3). The estimation of
the SSRT distribution therefore involves simultaneously estimat-
ing the parameters of the go RT distribution and its censoring
distribution (see also Matzke et al., 2013).

The BPA assumes that the go RTs and SSRTs are ex-
Gaussian distributed (Ratcliff and Murdock, 1976; Ratcliff, 1978,
1993; Hockley, 1982, 1984; Heathcote et al., 1991; Matzke and
Wagenmakers, 2009). The ex-Gaussian is a three-parameter dis-
tribution that is given by the convolution of a Gaussian and
an exponential distribution. The µ and � parameters are the
mean and the standard deviation of the Gaussian component,
respectively, and � is the mean of the exponential component. The
µ and � parameters reflect the leading edge and mode of the dis-
tribution, whereas � reflects the tail of the distribution. As shown
in Figure 3, the ex-Gaussian is a positively skewed unimodal dis-
tribution that can excellently accommodate the shape of empirical
RT data.

The probability density function of the ex-Gaussian is
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onset go stimulus onset stop signal

SSD SSRT1

SSRT2

SSRT3

time

go RT distribution

Stop−signal RT distribution

Signal−respond RT distribution

FIGURE 2 | Assumptions of the Bayesian parametric approach. The
BPA treats the distribution of signal-respond RTs (i.e., gray area) as a go RT
distribution that is censored by the SSRT distribution. The censoring point
can take on a different value on each stop-signal trial (e.g., SSD + SSRT1,
SSD + SSRT2, and SSD + SSRT3). If the go RT on a given trial is longer than
SSD + SSRT, the go RT is successfully inhibited. In contrast, if the go RT on
a given trial is shorter than SSD + SSRT, the go RT cannot be inhibited and
results in a signal-respond RT. See Matzke et al. (2013) for details.
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FIGURE 3 | The shape of the ex-Gaussian distribution as a function of the µ, �, and � parameters. The distributions were generated with the following
parameter sets: µ = 0.5, � = 0.05, � = 0.3 (Panel 1); µ = 1, � = 0.05, � = 0.3 (Panel 2); µ = 0.5, � = 0.2, � = 0.3 (Panel 3); and µ = 0.5, � = 0.05, � = 0.8 (Panel 4).

The mean and variance of the ex-Gaussian distribution equals

E(t) = µ + � (3)

and
Var(t) = �2 + �2, (4)

respectively. Note that the BPA does not assume that the ex-
Gaussian parameters correspond to specific cognitive processes
(Matzke and Wagenmakers, 2009); the ex-Gaussian distribution
is used as a convenient descriptive model to summarize the dis-
tribution of go RTs and SSRTs. As an alternative, one may use, for
instance, the ex-Wald distribution (Schwarz, 2001), or “shifted”
RT distributions with a parameter-dependent lower bound, such
as the shifted Wald, the shifted Weibull or the shifted log nor-
mal distribution [e.g., Heathcote, 2004; Heathcote et al., 2004;
Rouder, 2005; Rouder et al., 2005; see also Luce (1986) for
alternatives].

2.2. BAYESIAN PARAMETER ESTIMATION AND PRIORS
As explained in Matzke et al. (2013), the BPA simultaneously
estimates the µgo, �go, and �go parameters of the go RT distri-
bution and the µstop, �stop, and �stop parameters of the SSRT
distribution. The BPA relies on Bayesian parameter estimation
and therefore involves specifying the prior distribution of the
model parameters. BEESTS uses slightly different priors than
the WinBUGS implementation of the BPA. Note, however, that
Bayesian parameter estimation is insensitive to the choice of the
prior as long as sufficiently diagnostic data are available (e.g.,
Edwards et al., 1963; Gill, 2002; Lee and Wagenmakers, in press).
The prior distributions of the model parameters for the BEESTS
implementation are listed in the Appendix. The ability of BEESTS
to recover underlying true parameter values with the present
prior setting has been validated in a series of simulation studies.
See the supplemental materials at http://dora.erbe-matzke.com/
publications.html for a summary of the results of the parameter
recoveries.

The BPA relies on Markov chain Monte Carlo sampling
(MCMC; Gilks et al., 1996; Gamerman and Lopes, 2006) to
obtain posterior distributions for the go and stop parameters.
Figure 4 illustrates the basic concepts of Bayesian parameter esti-
mation using MCMC sampling. The bottom panel of Figure 4

shows sequences of values (i.e., MCMC chains) sampled from
the posterior distribution of the �stop parameter. The accuracy
of the sampling process can be increased by running multiple
chains, discarding the beginning of each chain as burn-in, and
by thinning the chains to decrease autocorrelation. In the present
illustration, we ran three chains, each with different starting val-
ues and retained 2000 iterations per chain, resulting in a total
of 6000 samples from the posterior distribution (see also Matzke
et al., 2013).

The top panel of Figure 4 shows the prior and posterior dis-
tribution of the �stop parameter. The horizontal gray line at the
bottom of the figure shows the prior distribution of �stop. The
prior is updated by the incoming data to yield the posterior
distribution. The histogram and the gray density plot show the
distribution of the samples drawn from the posterior distribution
of �stop collapsed over the three MCMC chains. The posterior dis-
tribution quantifies the uncertainty about the estimate of �stop.
The central tendency of the posterior, such as the median, is
often used as a point estimate of the parameter. The dispersion
of the posterior, such as the standard deviation or the percentiles,
quantifies the precision of the parameter estimate; the larger the
dispersion, the greater the uncertainty in the estimated parame-
ter. For example, the horizontal line at the top of Figure 4 ranges
from the 2.5th to the 97.5th percentile of the posterior (i.e., 95%
Bayesian credible interval), indicating that we can be 95% con-
fident that the true value of �stop lies within this range (see also
Matzke et al., 2013).

Before interpreting the parameter estimates, it is crucial to
ensure that the chains have converged from their starting values
to their stationary distributions. First, we verify that the posterior
distributions of the model parameters are unimodal. Second, we
run multiple MCMC chains and ascertain that the chains have
mixed well. At convergence, the individual MCMC chains should
look like “hairy caterpillars” and should be indistinguishable
from one another. Lastly, we compute the �R (Gelman and Rubin,
1992) convergence diagnostic measure for each model parame-
ter. �R compares the between-chain variability to the within-chain
variability. As a rule of thumb, �R should be lower than 1.1
if the chains have properly converged. In case of convergence
problems, we recommend that users increase the number of
samples, the length of the burn-in period, and the degree of
thinning.
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FIGURE 4 | Illustration of MCMC-based Bayesian estimation for the

�stop parameter with the individual BPA. The histogram in the top panel
figure shows the posterior distribution of �stop. The corresponding gray line
indicates the fit of a non-parametric density estimator. The horizontal black
line at the top of the top panel shows the 95% Bayesian credible interval.
The horizontal gray line at the bottom of the top panel shows the prior
distribution of �stop. The solid, dashed and dotted lines in the bottom panel
figure represent the different sequences of values (i.e., MCMC chains)
sampled from the posterior distribution of �stop. To create the histogram in
the top panel, the sampled values were first collected across the three
chains and then projected onto the x-axis of the top panel figure (see also
Matzke et al., 2013).

The BPA can be applied to individual as well as hierarchical
stop-signal data. See Matzke et al. (2013) for the graphical repre-
sentation of the individual and hierarchical BPA models. For the
individual analysis, the goal is to estimate the ex-Gaussian go and
stop parameters for each participant separately. In contrast, for
the hierarchical analysis (e.g., Rouder et al., 2005; Gelman and
Hill, 2007; Farrell and Ludwig, 2008; Matzke and Wagenmakers,

2009; Lee, 2011), the BPA assumes that the participant-level
go and stop parameters are drawn from group-level distribu-
tions. The group-level distributions specify the between-subject
variability of the participant-level parameters. The group-level
distributions are themselves characterized by a set of group-level
parameters. The goal is to simultaneously estimate the group-
level parameters as well as the participant-level go and stop
parameters. As explained in Matzke et al. (2013), hierarchical
modeling is particularly valuable in situations with only a small
number of observations per participant and moderate between-
subject variability in parameter values (Gelman and Hill, 2007).
In such situations, Bayesian hierarchical modeling typically yields
less variable and more accurate estimates than single-level param-
eter estimation (Rouder et al., 2005; Farrell and Ludwig, 2008).
The advantages of the hierarchical approach are less pronounced
in situations with a large number of observations per partici-
pant. Similarly, in settings with only a few participants—a typical
scenario in psychophysical experiments—the group-level param-
eters cannot be estimated precisely, a problem that diminishes
the benefits of hierarchical modeling. In these cases, the indi-
vidual approach may perform similarly well as the hierarchical
approach.

3. RELEASING THE BEESTS
BEESTS is a cross-platform open-source software for the estima-
tion of SSRT distributions with the BPA (Matzke et al., 2013).
BEESTS relies on Python for parameter estimation and on R (R
Core Team, 2012) for the post-processing of the posterior dis-
tribution of the model parameters. Specifically, BEESTS uses the
Python-based toolboxes kabuki (Wiecki et al., 2013) and PyMC
(Patil et al., 2010) to construct the model and to generate samples
from the posterior distribution of the model parameters using
Metropolis-within-Gibbs sampling (Tierney, 1994), respectively.
For computational efficiency, the likelihood functions are coded
in Cython (Behnel et al., 2011). Once the model parameters are
estimated, BEESTS relies on R to compute summary statistics for
the posterior distribution of the model parameters and to assess
the quality of the parameter estimates. As shown in Figure 5,
BEESTS is equipped with an easy-to-use graphical user interface
(GUI).

4. INSTALLATION
BEESTS is a stand-alone and open source software released under
the Affero General Public License. BEESTS runs on Windows
(Windows XP and Windows 7) and OS X (Mountain Lion)
operating systems. The software is freely available at http://dora.
erbe-matzke.com/software.html. To install BEESTS on Windows,
download BEESTS-1.2.zip and unpack the zip file at any
desired location on your computer. Start the GUI by click-
ing on BEESTS.exe. To install BEESTS on OS X, download
BEESTS-1.2.dmg, double-click the file, and install it on your
computer.

5. LOADING DATA
The top panels of Figure 6 show the required data for-
mat for the analysis. Data files should be saved as csv (i.e.,
comma-separated values) files. For the individual analysis, the
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FIGURE 5 | Graphical user interface for BEESTS. See text for details.

first row of the data file must contain the column names
"ss_presented", "inhibited", "ssd", and "rt".
The remaining rows contain the data for each go and stop-
signal trial. For the hierarchical analysis, the first row of

the data file must additionally contain the column name
"subj_idx". See Table 1 for instructions on response coding
and the examples folder in BEESTS for examples of the data
format.
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FIGURE 6 | BEESTS input and output. The left panels show input and
output for the individual analysis. The right panels show input and output for
the hierarchical analysis. The top panels show the required data format. The
middle panels show the output of the Summary statistic option. For the

hierarchical analysis, only the group-level mean and group-level variability (i.e.,
standard deviation) parameters are shown. The bottom panels show partial
output for the Goodness-of-fit option for Participant 1 in the Bissett and
Logan (2011) experiment. SRRT = signal-respond RT.

Table 1 | Response coding for the hierarchical BEESTS analysis.

"subj_idx" "ss_presented" "inhibited" "ssd" "rt"

1 0 �999 �999 656

1 1 0 300 469

1 1 1 300 �999

The "subj_idx" column contains the participant number. The

"ss_presented" column contains the trial type, where go trials are

coded with 0 and stop-signal trials are coded with 1. The "inhibited" column

contains the inhibition data, where signal-respond trials are coded with 0 (i.e.,

unsuccessful inhibition), signal-inhibit trials are coded with 1 (i.e., successful

inhibition), and go trials are coded with �999. The "ssd" column contains the

stop-signal delay in ms., where go trials are coded with �999. The "rt" column

contains the go RT for go trials and the signal-respond RT for signal-respond

trials in ms., where signal-inhibit trials are coded with �999.

To load the data file, click on Open in the File menu
and follow the instructions. Based on the data format, BEESTS
automatically infers whether an individual or hierarchical anal-
ysis is appropriate: data files without the "subj_idx" col-
umn are analyzed with the individual BPA, whereas data
files with the "subj_idx" column are analyzed with the
hierarchical BPA.

6. ANALYSIS
Once the data are loaded, users can specify the details of the
MCMC sampling, the required output, and the preferred number
of CPU cores used by BEESTS.

6.1. SAMPLING
BEESTS allows users to specify the following aspects of the sam-
pling run. Typical values of the input arguments are shown in
Figure 5.

6.1.1. Number of chains
Use the Number of chains option to specify the number
of MCMC chains, i.e., sequences of values sampled from the
posterior distribution of the parameters. The start values are
automatically set to the maximum a posteriori probability (MAP)
estimates of the parameters.

6.1.2. Samples
Use the Samples option to specify the total number of MCMC
samples per chain.

6.1.3. Burn-in
Use the Burn-in option to specify the number of burn-in
samples to discard at the beginning of each chain.
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6.1.4. Thinning
Use the Thinning option to specify the degree of thinning
within each chain. For instance, a thinning factor of 12 means
that only every 12th MCMC sample will be retained.

6.2. OUTPUT
All output will be saved in the directory where the data
file is located. BEESTS automatically saves the pos-
terior samples from each chain to a separate csv file
(e.g., name.datafile_parameters1.csv, name.
datafile_parameters2.csv, etc.). If multiple chains are
run, BEESTS automatically displays the �R statistic for each model
parameter (see Figure 5).

As shown in Figure 5, BEESTS allows users to request the fol-
lowing additional output. If Estimates for is set to All in
a hierarchical analysis, BEESTS will provide the selected output
options (i.e., summary statistics, density plots of the posterior
distributions, and MCMC trace plots) for the group-level param-
eters and for each participant separately. If Estimates for is
set to Only-group, BEESTS will provide the selected output
options only for the group-level parameters.

6.2.1. Summary statistics
Use the Summary statistics option to obtain a csv file with
the summary statistics (i.e., mean, standard deviation, and quan-
tiles) of the posterior distribution of the model parameters and
of the corresponding mean and standard deviation of the go and
SSRT distribution (see Equations 3, 4).

6.2.2. Posterior distributions
Use the Posterior distributions option to obtain a
pdf file with the density plots of the posterior and the prior
distribution of the model parameters.

6.2.3. MCMC chains
Use the MCMC chains option to obtain a pdf file with trace
plots for the MCMC chains of the model parameters.

6.2.4. Deviance
Use the Deviance option to obtain the deviance
values from each chain in a separate csv file (e.g.,
name.datafile_deviance1.csv, name.datafile_
deviance2.csv, etc.). The deviance values may be used
to compute the Deviance Information Criterion (DIC, e.g.,
Spiegelhalter et al., 2002) measure of model selection.

6.2.5. Goodness-of-Þt
Use the Goodness-of-fit option to assess the absolute
goodness-of-fit of the model using posterior predictive model
checks. As explained in Matzke et al. (2013), the adequacy of the
model can be assessed by generating predicted data using the pos-
terior distributions of the parameters. If the model adequately
describes the data, the predictions based on the model parameters
should closely approximate the observed data. The model checks
can be formalized by computing posterior predictive p values
[e.g., Gelman et al., 1996; Gelman and Hill, 2007, but see Bayarri
and Berger (1998)]. Extreme p values close to 0 or 1 indicate that
the BPA does not describe the observed data adequately.

For each individual participant, BEESTS uses the median of
the observed and predicted signal-respond RTs as test statistics.
The Predictions option can be used to specify the num-
ber of predicted data sets. BEESTS then randomly samples the
specified number of parameter vectors from the joint posterior
of the individual go and stop parameters. Next, BEESTS gener-
ates the specified number of predicted stop-signal data sets for
each SSD using the corresponding number of stop-signal trials
and the chosen parameter vectors. For each SSD, BEESTS then
computes the median signal-respond RT in each predicted data
set. Lastly, for each SSD, BEESTS computes the one-sided pos-
terior predictive p value given by the fraction of times that the
predicted median signal-respond RT is greater than the observed
median signal-respond RT. Corresponding two-sided p values can
be computed as 2 × min(p, 1 � p). Note, however, that two-sided
p values are well defined only when the test statistic has a sym-
metric distribution. Note also that BEESTS assesses model fit on
all SSDs that contain at least one observed signal-respond RT. In
order to obtain stable median signal-respond RTs, however, we
advise users to interpret the results only on SSDs with a reasonable
number of observed signal-respond RTs.

The output of the posterior predictive model checks consists
of (1) a csv file listing for each SSD the number of observed
signal-respond RTs, the observed median signal-respond RT, the
average of the predicted median signal-respond RTs, and the one-
sided and two-sided posterior predictive p value and (2) a pdf file
with a graphical summary of the model checks using violin plots.
Violin plots (e.g., Hintze and Nelson, 1998) combine information
available from density plots with information about summary
statistics in the form of box plots. Note that irrespective of the
type of analysis (individual or hierarchical), the goodness-of-fit
of the model is assessed on a participant level using the parameter
values of the individual participants (see Figure 8).

6.3. OPTIONS: MAX CPU CORES TO USE
Use the Max CPU cores to use option to specify the num-
ber of CPU cores to use during the sampling process. If multiple
MCMC chains are requested, BEESTS can run the chains in par-
allel by allocating each chain to a different CPU core in order to
increase speed. The default number of CPU cores used by BEESTS
is the number of cores available on the computer minus one.

6.4. RUNNING THE ANALYSIS
Once the details of the sampling process and the required out-
put are specified, start the analysis by clicking on Run. As shown
in Figure 5, BEESTS automatically displays the progress of the
sampling. If multiple MCMC chains are run in parallel, BEESTS
displays the progress of only one of the MCMC chains (i.e., the
main process). The analysis can be stopped by “killing” the (par-
allel) processes in the Task Manager. Use the Clear command to
clear the working space.

7. EMPIRICAL DATA EXAMPLES: INDIVIDUAL AND
HIERARCHICAL ANALYSIS

In this section, we illustrate the use of BEESTS with the stop-
signal data of 20 participants from the 40% stop-signal condition
of the first experiment reported in Bissett and Logan (2011). The
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data set featured a relatively large number of 720 go trials and 480
stop-signal trials per participant. See Matzke et al. (2013) for the
details on the data pre-processing and the model fitting. For all
of the participants, the BEESTS implementation yielded parame-
ter estimates that are highly similar to the ones obtained from the
WinBUGS routine. For a comparison of the parameter estimates
from the BEESTS and the WinBUGS implementation, the reader
is referred to the supplemental materials and to the empirical data
examples in Matzke et al. (2013).

Due to relatively high autocorrelations between the param-
eters, we ran long chains, discarded the beginning of the
chains as burn-in, and thinned each chain. The results reported
below are based on 6000 retained samples, using Number of
chains = 3, Samples = 36000, Burn-in = 12000,
and Thinning = 12.

7.1. INDIVIDUAL ANALYSIS
In this section, we present the results of fitting the data of
Participant 1 with the individual BPA. See the examples folder
for the data set. Using three CPU cores, the sampling took approx-
imately 23 min with BEESTS. The same analysis took about 15 h
with WinBUGS. The top left panel of Figure 6 shows the required
data format for the individual analysis. Figure 7 shows the pos-
terior and prior distributions (left panel; option Posterior
distributions) and the MCMC chains (right panel; option
MCMC chains) for the six model parameters. The prior distri-
butions are adequately updated; the posteriors are substantially
narrower than the priors. The posterior distributions and the
three MCMC chains do not show signs of convergence prob-
lems. All �R values were lower than 1.05. The middle left panel of
Figure 6 shows the summary statistics of the posterior distribu-
tion of the model parameters (option Summary statistic).

The posterior distributions are estimated well as evidenced by the
relatively small posterior standard deviations. The go parameters
are generally estimated more precisely than the stop parame-
ters because the go parameters are estimated based on the go
RTs as well as the signal-respond RTs and are therefore better
constrained by the data.

The bottom left panel of Figure 6 shows the sum-
mary of the posterior predictive model checks (option

FIGURE 8 | Results of the posterior predictive model checks for

Participant 1 in the Bissett and Logan (2011) data set with the

individual BPA (panel A) and the hierarchical BPA (panel B). See text for
a detailed description of the posterior predictive analyses. For each SSD,
the figures show the observed median signal-respond RT (black triangle), a
density plot of the predicted median signal-respond RTs (gray violin plot), a
boxplot ranging from the 25th to the 75th percentile of the predicted
median signal-respond RTs, and the median of the predicted median
signal-respond RTs (white circle). SRRT = signal-respond RT.

FIGURE 7 | Posterior (black solid lines) and prior distributions (black dotted lines; left panel) and MCMC chains (right panel) of the model parameters

for Participant 1 in the Bissett and Logan (2011) data set obtained with the individual BPA.
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Goodness-of-fit) using 1000 samples from the joint
posterior of the model parameters (Samples = 1000). As
mentioned above, we advise users to assess model fit only on
SSDs with a reasonable number of observed signal-respond RTs.
For instance, we assessed goodness-of-fit only on SSDs with at
least 10 observed signal-respond RTs. The one-sided p values
on these five SSDs (i.e., 200, 250, 300, 350, and 400 ms) are far
from 0 or 1 and the two-sided p values are all above 0.05. The left
panel of Figure 8 shows the corresponding graphical summary
for the model checks. For the selected SSDs, the observed median
signal-respond RTs (i.e., black triangles) are well within the 2.5th
and 97.5th percentile of the predicted median signal-respond RTs
(see gray violin plots), and are adequately approximated by the
median of the predicted median signal-respond RTs (i.e., white
circles). The results of the posterior predictive model checks

indicated thus that the BEESTS analysis appropriately accounted
for the observed data.

7.2. HIERARCHICAL ANALYSIS
As explained above, the hierarchical approach has the potential to
provide accurate parameter estimates with relatively few observa-
tions per participant. To illustrate the benefits of the hierarchical
approach over the individual BPA with scarce data, this section
presents the results of fitting a subsample of the observations from
the Bissett and Logan (2011) data set with the hierarchical as well
as the individual BPA. For each of the 20 participants, we fit a
randomly selected 90 go RTs, 30 signal-respond RTs, and 30 suc-
cessful inhibitions with the hierarchical BPA. We then compared
the results from the hierarchical analysis to the results from fit-
ting the same subsample of data with the individual BPA. Using

FIGURE 9 | Posterior distributions and MCMC chains of the group-level

model parameters in the Bissett and Logan (2011) data set obtained

with the hierarchical BPA. The first and third rows show posterior (black
solid line) and prior distributions (black dotted line) and MCMC trace plots

for the group-level mean parameters, respectively. The second and fourth
rows show posterior and prior distributions and trace plots for the
group-level variability (i.e., group-level standard deviation) parameters,
respectively.
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FIGURE 10 | Posterior distribution of the stop parameters estimated

from a subsample of the data of Participant 1 with the individual and

the hierarchical BPA. The solid black and gray lines show the posterior
distribution of the stop parameters and the corresponding 95% Bayesian

credible intervals obtained with the individual and the hierarchical BPA,
respectively. The dashed black and gray lines show the median of the
posterior distributions obtained with the individual and the hierarchical BPA,
respectively (see also Matzke et al., 2013).

three CPU cores, the hierarchical analysis took approximately
3.5 h with BEESTS. The same analysis took about 100 h with
WinBUGS.

The top right panel of Figure 6 shows the required data
format for the hierarchical analysis. Figure 9 shows the pos-
terior and prior distributions (top panel) and the MCMC
chains (bottom panel) for the group-level mean and standard
deviation parameters. The prior distribution of the group-
level parameters are adequately updated; the posteriors are
substantially narrower than the priors and the chains have
mixed well. The �R values for all group-level and individ-
ual parameters were lower than 1.05. The middle right panel
of Figure 6 shows the summary statistics of the posterior
distribution of the group-level mean and standard deviation
parameters. The posterior distributions are estimated relatively
precisely. Note that if the Estimates for All option is
selected, BEESTS also produces output (i.e., density plots of
the posteriors, MCMC trace plots, and summary statistics) for
the individual go and stop parameters for each participant
separately.

The bottom right panel of Figure 6 shows the summary of
the posterior predictive model checks for Participant 1 using
1000 samples from the joint posterior of the participant-level
model parameters obtained with the hierarchical BPA. All pos-
terior predictive p values are well within an acceptable range.
Note, however, that the median signal-respond RTs—observed
and predicted—are based on only a few observations. The right
panel of Figure 8 shows the corresponding graphical summary
of the posterior predictive model checks. All observed median
signal-respond RTs are well within the range of the median
signal-respond RTs predicted by the joint posterior of the model
parameters. Due to the scarcity of the data, however, there is
large uncertainty in the predicted median signal-respond RTs.
Compare the results of the posterior predictive model checks in
the two panels of Figure 8. The violin plots in the left panel show
the predicted median signal-respond RTs from the individual
analysis of the data of Participant 1 based on the full 1200 trials.

The violin plots in the right panel show the predicted median
signal-respond RTs from the hierarchical analysis of the data of
Participant 1 based on a subsample of only 150 trials. Because
the hierarchical analysis is based on substantially fewer observa-
tions than the individual analysis of the full data set presented in
the previous section, the predicted median signal-respond RTs in
the right panel are more spread out than the predicted median
signal-respond RTs in the left panel. Posterior predictive p val-
ues resulting from such unstable observed and predicted median
signal-respond RTs should be interpreted with caution.

To illustrate the benefits of the hierarchical approach over the
individual BPA with scarce data, we compared the parameter esti-
mates from the hierarchical analysis with estimates obtained from
the individual analysis of the same subsample of 150 trials. As
mentioned above, hierarchical modeling generally results in more
accurate and less variable estimates than single-level estimation.
Figure 10 shows the posterior distribution of the stop parameters
of Participant 1 obtained with the hierarchical and the individ-
ual BPA using the same subsample of 150 observations. The gray
density plots show the posterior distribution of the stop parame-
ters from the hierarchical BPA. The black density plots show the
posterior distribution of the stop parameters from the individ-
ual analysis. The posterior distributions of the stop parameters
estimated with the hierarchical approach are less variable (i.e.,
smaller 95% Bayesian credible interval) than the posteriors esti-
mated with the individual BPA. Also, the posterior medians from
the hierarchical analysis are—as expected—shrunk toward their
corresponding group mean (see also Matzke et al., 2013).

8. DISCUSSION
The horse-race model presents various opportunities to estimate
the latency of response inhibition in the stop-signal paradigm.
Most methods, however, only focus on deriving a summary mea-
sure of SSRT. Recently, Matzke et al. (2013) have developed the
BPA that allows for the estimation of the entire distribution of
stopping latencies. The goal of the present paper was to promote
the widespread application of the Bayesian analysis of stop-signal
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data by introducing BEESTS, a relatively fast and user-friendly
software implementation of the BPA. BEESTS provides users with
a range of output options, such as summary statistics of the pos-
terior distribution of the parameters and various diagnostic tools
to assess the quality of the estimates. Importantly, BEESTS is
equipped with an easy-to-use graphical user interface.

BEESTS can be applied to individual as well as hierarchical
stop-signal data. The advantage of the individual approach lies
in its simplicity. The advantage of the hierarchical approach lies
in its potential to provide accurate parameter estimates with rel-
atively few observations per participant. The choice between the
individual and the hierarchical approach in practical applications
depends on a delicate balance between the quality of the data,
the number of participants, the number of trials per participant,
and whether users are interested in obtaining accurate parameter
estimates on the participant level in order to examine individual
differences or focus on group comparisons and are satisfied with
interpreting only the group-level parameters. Prior to data collec-
tion, users are encouraged to generate synthetic data with varying
number of trials and participants, fit the data in BEESTS, and
inspect the parameter estimates in order to assess the expected
uncertainty of the model parameters under the different scenarios
and modeling approaches.

BEESTS assumes that go RTs and SSRTs are ex-Gaussian dis-
tributed and relies on Bayesian parameter estimation to obtain
estimates for the go and stop parameters. Note, however, that
the BPA itself does not hinge on the particular parametric form
used to summarize the distributions, nor is it heavily influenced
by the exact choice of the prior distributions. In our experience,
the ex-Gaussian assumption and the corresponding (group-level
and hyper) prior distributions implemented in BEESTS provide
a reasonable default setting. Nevertheless, interested users may
adapt the source code (https://github.com/twiecki/stopsignal) to
accommodate alternative parametric assumptions or different
prior settings. Also, the posterior predictive model check imple-
mented in BEESTS using the median signal-respond RT is only
one of many possible approaches to assess the goodness-of-fit of
the model. Users may adapt the source code to implement pos-
terior predictive model checks using alternative test statistics (see
Matzke et al., 2013).

9. CONCLUSION
Here we introduced a user-friendly software package—BEESTS—
that allows for the efficient estimation of entire SSRT distri-
butions using MCMC sampling. BEESTS allows researchers to
rigorously address important questions about the variability
of stopping latencies, such as the relationship between mean
SSRT and SSRT variance. Similarly, BEESTS enables investigators
to assess differences in the shape of go RT and SSRT distri-
butions between clinical populations or experimental groups.
BEESTS therefore facilitates the interpretation of stop-signal
data and may open fruitful new avenues for response inhibition
research.
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A. APPENDIX
A.1 PRIOR DISTRIBUTION OF THE MODEL PARAMETERS
This appendix presents the prior distributions of the model
parameters in the BEESTS implementation of the Bayesian para-
metric approach (BPA). The name of each parameter as shown in
the BEESTS output is in brackets.

A.1.1 Individual BPA
The priors for the go and stop parameters are uniform distri-
butions, spanning a plausible but wide range of values. BEESTS
relies on slightly more diffuse priors than the WinBUGS imple-
mentation of the BPA (see Matzke et al., 2013):

µgo (mu_go) �Uniform(0.001, 1000)

�go (sigma_go) �Uniform(1, 500)

�go (tau_go) �Uniform(1, 500)

µstop (mu_stop) �Uniform(0.001, 600)

�stop (sigma_stop) �Uniform(1, 350)

�stop (tau_stop) �Uniform(1, 350).

(A1)

A.1.2 Hierarchical BPA
A.1.2.1 Individual parameters.The hierarchical BPA assumes
that the µgo, �go, �go, µstop, �stop, and �stop parameters
of each participant j = 1, . . . , J come from truncated nor-
mal group-level distributions. The group-level distributions are
themselves characterized by a group mean (µ) and a group stan-
dard deviation (�) parameter. The WinBUGS implementation
relies on normal group-level distributions that are trun-
cated only at the lower end, whereas BEESTS uses nor-
mal distributions that are truncated at the lower and the
upper ends:

µgoj (mu_go.subj) �Normal(µµgo , �µgo)[0.001, 1000]

�goj (sigma_go.subj) �Normal(µ�go , ��go)[1, 500]

�goj (tau_go.subj) �Normal(µ�go , ��go)[1, 500]

µstopj (mu_stop.subj) �Normal(µµstop , �µstop)[0.001, 600]

�stopj (sigma_stop.subj) �Normal(µ�stop , ��stop)[1, 350]

�stopj (tau_stop.subj) �Normal(µ�stop , ��stop)[1, 350].
(A2)

A.1.2.2 Group-level parameters.The priors for the group mean
and group standard deviations are uniform distributions. Note
that the WinBUGS implementation uses censored normal priors
for the group-level means and relies on slightly less diffuse priors
for the group-level standard deviations than BEESTS:

µµgo (mu_go) �Uniform(0.001, 1000)

�µgo (mu_go_var) �Uniform(0.01, 300)

µ�go (sigma_go) �Uniform(1, 500)

��go (sigma_go_var) �Uniform(0.01, 200)

µ�go (tau_go) �Uniform(1, 500)

��go (tau_go_var) �Uniform(0.01, 200)

µµstop (mu_stop) �Uniform(0.001, 600)

�µstop (mu_stop_var) �Uniform(0.01, 300)

µ�stop (sigma_stop) �Uniform(1, 350)

��stop (sigma_stop_var) �Uniform(0.01, 200)

µ�stop (tau_stop) �Uniform(1, 350)

��stop (tau_stop_var) �Uniform(0.01, 200).

(A3)
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