A fundamental task in modern cryptography is the joint computation of a function which has two inputs, one from Alice and one from Bob, such that neither of the two can learn more about the other’s input than what is implied by the value of the function. In this Letter, we show that any quantum protocol for the computation of a classical deterministic function that outputs the result to both parties (two-sided computation) and that is secure against a cheating Bob can be completely broken by a cheating Alice. Whereas it is known that quantum protocols for this task cannot be completely secure, our result implies that security for one party implies complete insecurity for the other. Our findings stand in stark contrast to recent protocols for weak coin tossing and highlight the limits of cryptography within quantum mechanics. We remark that our conclusions remain valid, even if security is only required to be approximate and if the function that is computed for Bob is different from that of Alice.

In this Letter, we study the task of secure two-party computation. Here, two mistrustful players, Alice and Bob, wish to compute the value of a classical deterministic function \(f \), which takes an input \(u \) from Alice and \(v \) from Bob, in such a way that both learn the result of the computation and that none of the parties can learn more about the other’s input, even by deviating from the protocol. As our main result, we show that any quantum protocol which is secure against a cheating Bob can be completely broken by a cheating Alice. Formally, we design an attack by Alice which allows her to compute the value of the function \(f \) for all of her inputs (rather than only a single one, which would be required from a secure protocol).

Our result strengthens the impossibility result for two-sided secure two-party computation by Colbeck, where he showed that Alice can always obtain more information about Bob’s input than what is implied by the value of the function [6]. In a similar way, we complement a result by Salvail et al. [7] showing that any quantum protocol for a nontrivial primitive necessarily leaks information to a dishonest player. Our result is motivated by Lo’s impossibility result for the case where only Alice obtains the result of the function (one-sided computation) [8]. Lo’s approach is based on the idea that Bob does not have any output; hence, his quantum state cannot depend on Alice’s input. Then, Bob has learned nothing about Alice’s input, and a cheating Alice can therefore still change her input value (by purifying the protocol) and thus cheat.

In the two-sided case, this approach to proving the insecurity of two-party computation fails as Bob knows the value of the function and has thus some information about Alice’s input. In order to overcome this problem, we develop a new approach. We start with a formal definition of security based on the standard real–ideal-world paradigm from modern cryptography. In our case of a classical functionality, this definition guarantees the existence of a classical input for Bob in the ideal world, even if he is, in the real world, dishonestly purifying his steps of the protocol. Since real and ideal are indistinguishable for a secure protocol and since a purification of the classical input cannot be part of Bob’s systems, Alice can now obtain a copy of this input by applying a unitary—constructed with help of Uhlmann’s theorem—to her output registers and, henceforth, break the protocol.

We wish to emphasize that the above conclusion remains valid if the protocol is not required to be perfectly secure.
execute a protocol that takes an input and only connected with a quantum channel, wish to pre- and postprocessing of the in- and outputs to the ideal functionality is composed out of CPTP maps modeling the Likewise, every ideal adversary interacting with the ideal protocol by the honest and dishonest players is modeled by informal notion of the real–ideal-world paradigm precise. The natural measure of distinguishability of CPTP maps in this context is the diamond norm, since it can be viewed as the maximal bias of distinguishing real and ideal world by supplying inputs to the CPTP maps and attempting to distinguish the outputs by measurements (i.e., by interacting with an environment). This rather strong notion of security naturally embeds into a composable framework for security in which also quantum key distribution can be proven secure (see, e.g., Ref. [16]).

Since our goal is the establishment of a no-go theorem, we consider a notion of security which is weaker than the above in two respects. First, we do not allow the environment to supply an arbitrary input state but only the purification of a classical input (see definition of ρ_{UVR} below), and second, we consider a different order of quantifiers: instead of “\forall real adversary A ideal adversary V input, the output states are indistinguishable” as a security requirement we only require “\forall real adversary A input I ideal adversary, the outputs states are indistinguishable.” This notion of security is closely related to notions of security considered in Ref. [13,15] and is further discussed in the Supplemental Material [17].

We will now give a formal definition of security. Following the notation of Ref. [15], we denote by A and B the real honest Alice and Bob and add a prime to denote dishonest players A', B' and a hat for the ideal versions \hat{A}, \hat{B}. The CPTP map corresponding to the protocol for honest Alice and dishonest Bob is denoted by $\sigma_{A'B'}$. Both honest and dishonest players obtain an input, in Alice’s case u (in register U) and in Bob’s case v (in register V) drawn from the joint distribution $p(u,v)$. The output state of the protocol, augmented by the reference R, takes the form $\text{id}_R \otimes \sigma_{A'B'}(\rho_{UVR})$, where ρ_{UVR} is a purification of $\sum_{u,v} p(u,v) |u\rangle |v\rangle \langle u| \langle v|$.

Since we are faced with the task of the secure evaluation of a classical deterministic function, we consider an ideal functionality \mathcal{F} which measures the inputs in registers \hat{U} and \hat{V} and outputs orthogonal states in registers \hat{X} and \hat{Y} that correspond to the function values. Formally, $\mathcal{F}(|u\rangle |v\rangle |0\rangle |0\rangle) := \delta_{u,v} \delta_{\hat{u},\hat{v}} |f(u,v)\rangle |f(u,v)\rangle |\hat{X}\rangle |\hat{X}\rangle |\hat{Y}\rangle |\hat{Y}\rangle$, where δ denotes the Kronecker delta function. When an ideal honest \hat{A} and an ideal adversary \hat{B} interact with the ideal functionality, we denote the joint map by $\mathcal{F}_{\hat{A}\hat{B}}: UV \rightarrow XY$ (see Fig. 1). \hat{A} just forwards the in- and outputs to and from the functionality, whereas \hat{B} pre- and postprocess them with CPTP maps $\Lambda^{1}_{V \rightarrow \hat{Y}}$ and $\Lambda^{2}_{X \rightarrow Y}$ resulting in a joint map $\mathcal{F}_{\hat{A}\hat{B}} = [\text{id}_{U \rightarrow \hat{X}} \otimes \Lambda^{2}_{X \rightarrow Y} \otimes \text{id}_{E}] \circ (\mathcal{F}_{\hat{A}\hat{B}}) \circ \Lambda^{1}_{V \rightarrow \hat{Y}} \otimes \text{id}_{E}$, where \circ denotes sequential application of CPTP maps.
We say that a (two-party quantum) protocol $\rho = \sigma$ if $C(\rho, \sigma) \leq \varepsilon$. If $C(\rho, \sigma)$ is the purified distance, defined as $\sqrt{1 - F(\rho, \sigma)}$, then $F(\rho, \sigma) : = \text{tr}(\sqrt{\rho \sqrt{\sigma} \sqrt{\rho} \sqrt{\sigma}})$ is the fidelity. We say that a (two-party quantum) protocol π for f is ε-correct if for any distribution $p(u, v)$ of the inputs $[\text{id}_R \otimes \pi_{AB}](\rho_{UVR}) = _\varepsilon [\text{id}_R \otimes \mathcal{F}_{AB}](\rho_{UVR})$ and ε-secure against dishonest Bob if for any $p(u, v)$ and for any real adversary B' there exists an ideal adversary \tilde{B} such that $[\text{id}_R \otimes \pi_{AB}](\rho_{UVR}) = _\varepsilon [\text{id}_R \otimes \mathcal{F}_{AB}](\rho_{UVR})$. ε-security against dishonest Alice is defined analogously.

Since \mathcal{F} is classical, we can augment it so that it outputs \tilde{v} in addition. More precisely, we define $\mathcal{F}_{\text{aug}} : U \times V \rightarrow X \times Y$ by $\mathcal{F}_{\text{aug}}(u|v_1|v_2) := \delta_{u,v} \delta_{v,u} f"(u,v)"(f(u,v))$ which has the property that $\mathcal{F} = \mathcal{F}_{\text{aug}} \circ \mathcal{F}_{\text{aug}}$. For a concrete input distribution we define $\sigma_{RXVY} := [\text{id}_R \otimes \mathcal{F}_{AB}](\rho_{UVR})$ which satisfies $\sigma_{RXVY} = _\varepsilon \rho_{RXVY}$ for $\rho_{RXVY} := [\text{id}_R \otimes \pi_{AB}](\rho_{UVR})$ if the protocol is secure against cheating Bob. We call σ_{RXVY} a secure state for $p(u, v)$.

Main results.—The proofs of our main results build upon the following lemma which constructs a cheating strategy for Alice that works on average over the input distribution $p(u, v)$.

Lemma.—If a protocol π for the evaluation of f is ε-correct and ε-secure against Bob, then for all input distributions $p(u, v)$ there is a cheating strategy for Alice such that she obtains \tilde{v} with some probability distribution $q(\tilde{v}|u, v)$ satisfying $\sum_{u,v} p(u, v) q(\tilde{v}|u, v) \delta(f(u,v), f(u,v)) \geq 1 - 6\varepsilon$. Furthermore, \tilde{v} is almost independent of u; i.e., there exists a distribution $\tilde{q}(\tilde{v})$ such that $\sum_{u,v} p(u, v) q(\tilde{v}|u, v) \tilde{q}(\tilde{v} | u, v) \geq 6\varepsilon$.

Proof.—We first construct a “cheating unitary” T for Alice and then show how Alice can use it to cheat successfully.

Let Alice and Bob play honestly, but let them purify their protocol with purifying registers X'_1 and Y'_1, respectively. We assume without loss of generality that honest parties measure their classical input, and hence, X'_1 and Y'_1 contain copies of u and v, respectively. We denote by $|\Phi\rangle_{RXX'_1Y'_1}$ the state of all registers at the end of the protocol. Notice that tracing out X'_1 from $|\Phi\rangle_{RXX'_1Y'_1}$ results in a state $|\Phi\rangle_{RXVY} = \rho_{RXVY}$ which is exactly the final state when Alice played honestly and Bob played dishonestly with the following strategy: he plays the honest but purified strategy and outputs the purification of the protocol (register Y'_1) and the output values $f(u, v)$ (register Y). His combined dishonest register is $Y = Y'_1 Y$. Since the protocol is ε-secure against Bob by assumption, there exists a secure state σ_{RXVY} satisfying $\sigma_{RXVY} = _\varepsilon \rho_{RXVY}$. Let $|\Psi_{RXVY}\rangle$ be a purification of σ_{RXVY} with purifying register P. Note that $|\Psi_{RXVY}\rangle$ is also a purification of σ_{RXVY}, this time with purifying registers P and Q. Recall that $|\Phi_{RXVY}\rangle$ purifies ρ_{RXVY} with purifying register X'_1. Since $\sigma_{RXVY} = _\varepsilon \rho_{RXVY}$ we can use Uhlmann’s theorem [18] to conclude that there exists an isometry $T \equiv T_{X'_1 \rightarrow \tilde{P}}$ (with induced CPTP map $\mathcal{T} = \mathcal{T}_{X'_1 \rightarrow \tilde{P}}$) such that

$$[\mathcal{T}_{X'_1 \rightarrow \tilde{P}} \otimes \text{id}_{RXVY}](|\Phi\rangle_{RXVY}) = _\varepsilon |\Psi\rangle_{RXVY}.$$ (1)

We will now show how Alice can use T to cheat. Notice that tracing out Y'_1 from $|\Phi_{RXVY}\rangle_{RXVY}$ results exactly in the final state when Bob played honestly and Alice played dishonestly with the following strategy: she plays the honest but purified strategy and outputs the purification of the protocol (register X'_1) and the output values $f(u, v)$ (register X). She then applies $T_{X'_1 \rightarrow \tilde{P}}$, measures register \tilde{V} in the computational basis, and obtains a value \tilde{v}. It remains to argue that Alice can compute $f(u, v)$ with good probability based on the value \tilde{v} that she has obtained from measuring register \tilde{V}.

Let \mathcal{M}_{RXV} be the CPTP map that measures registers R, X, and \tilde{V} in the computational basis. Tracing over P^2 and applying \mathcal{M}_{RXV} on both sides of Eq. (1), we find

$$[\mathcal{M}_{RXV} \otimes \text{id}_{RXVY}](|\mathcal{T}_{X'_1 \rightarrow \tilde{P}} \otimes \text{id}_{RXVY}||\Phi\rangle_{RXVY}) = _\varepsilon [\mathcal{M}_{RXV} \otimes \text{id}_{RXVY}](|\Psi\rangle_{RXVY}).$$ (2)

by the monotonicity of the purified distance under CPTP maps. The right-hand side of Eq. (2) equals $\sum_{u,v,\tilde{v}} p(u, v) q(\tilde{v}|u, v) |u\rangle |v\rangle |\tilde{v}\rangle |f(u, v)\rangle |f(u, v)\rangle$ for some probability distribution $q(\tilde{v}|u, v)$ that is conditioned only on Bob’s input u, since $|\Phi_{RXVY}\rangle$ is a purification of the secure state σ_{RXVY}. The left-hand side of Eq. (2) equals $\sum_{u,v,\tilde{v}} p(u, v) q(\tilde{v}|u, v) |u\rangle |v\rangle |\tilde{v}\rangle |f(u, v)\rangle |f(u, v)\rangle |x\rangle |x\rangle$ for some conditional probability distributions $q(\tilde{v}|u, v)$ and $r(x|u, v, \tilde{v})$. Because of the correctness of the protocol, this state is ε-close to

$$\sum_{u,v,\tilde{v}} p(u, v) q(\tilde{v}|u, v) |u\rangle |v\rangle |\tilde{v}\rangle |f(u, v)\rangle |f(u, v)\rangle |x\rangle |x\rangle,$$ (3)

for some conditional probability distribution $q(\tilde{v}|u, v)$. Noting that therefore also $p(\cdot, \cdot) q(\cdot|\cdot, \cdot)$ and $p(\cdot, \cdot) \tilde{q}(\cdot|\cdot, \cdot)$ (when interpreted as quantum states) are ε-close in purified distance, we can replace $r(x|u, v, \tilde{v})$ in Eq. (3) by $p(\cdot, \cdot) q(\cdot|\cdot, \cdot)$ in Eq. (1) by $p(\cdot, \cdot) q(\cdot|\cdot, \cdot)$ increasing the purified distance to the left-hand side of Eq. (2) only to 2ε. Putting things together, Eq. (2) implies

160501-3
\[\sum_{u,v,\vec{v}} p(u,v)g(\vec{v}|u,v)|uv\rangle\langle uv|\vec{v}\rangle_{\vec{v}}\left|f(u,v)\right\rangle\langle f(u,v)|_X\]
\[=3e\sum_{u,v,\vec{v}} p(u,v)\tilde{q}(\vec{v}|u,v)|uv\rangle\langle uv|\vec{v}\rangle_{\vec{v}}\left|f(u,v)\right\rangle\langle f(u,v)|_X.\]

Sandwiching both sides with \(\text{tr}[Z^*]\), where \(Z = \sum_{u,v,\vec{v}} |uv\rangle\langle uv|\vec{v}\rangle_{\vec{v}}\left|f(u,v)\right\rangle\langle f(u,v)|_X\), we find the first claim since the purified distance of two distributions upper bounds their total variation distance and since the latter does not increase under \(\text{tr}[Z]\). The second claim follows similarly by tracing out register \(X\) from the last displayed equation.

Applying the lemma to the uniform distribution we immediately obtain our impossibility result for perfectly secure protocols.

Theorem 1.—If a protocol \(\pi\) for the evaluation of \(f\) is perfectly correct and perfectly secure (\(e = 0\)) against Bob, then, if Bob holds input \(v\), Alice can compute \(f(u,v)\) for all \(u\).

We note that this notion of insecurity implies that Alice can completely break the security for nontrivial functions \(f\).

Proof. Letting \(p(u,v) = \frac{1}{|\Pi|}\) and \(e = 0\) in the lemma results in the statement that if Alice has input \(u_0\), she will obtain \(\tilde{v}\) from the distribution \(\tilde{q}(\tilde{v}|u_0, v)\) which equals \(q(\tilde{v}|v)\). But since also \(q(\tilde{v}|u, v) = \tilde{q}(\tilde{v}|v)\) for all \(u\), we have \(\frac{1}{|\Pi|} \sum_{u,v,\tilde{v}} q(\tilde{v}|u,v) = 1.\) In other words, all \(\tilde{v}\) that occur (i.e., that have \(\tilde{q}(\tilde{v}|v) > 0\)) satisfy for all \(u\), \(f(u,v) = f(u,\tilde{v})\). Alice can therefore compute the function for all \(u\).

The impossibility result for the case of imperfect protocols is also based on the lemma but requires a subtle swap in the order of quantifiers (from \(\forall v\), input \(\exists\) ideal adversary to \(\exists\) ideal adversary \(\forall v\) input) which we achieve by use of von Neumann’s minimax theorem.

Theorem 2.—If a protocol \(\pi\) for the evaluation of \(f\) is \(e\)-correct and \(e\)-secure against Bob, then there is a cheating strategy for Alice (where she uses input \(u_0\) while Bob has input \(v\)) which gives her \(\tilde{v}\) distributed according to some distribution \(\tilde{q}(\tilde{v}|u_0, v)\) such that for all \(u\): \(P_{R_{\tilde{v}}\pi}|f(u,v) = f(u,\tilde{v})| \geq 1 - 28e\).

Proof. The argument is inspired by Ref. [19]. For a finite set \(S\), we denote by \(\Delta(S)\) the simplex of probability distributions over \(S\). Denote by \(\mathcal{W}\) the set of pairs \((u, v)\). Consider a finite \(e\)-net \(\mathcal{D}\) of \(\Delta(\mathcal{W})\) in total variation distance and to each distribution in \(\mathcal{D}\) the corresponding cheating unitary \(T\) constructed in the proof of the lemma. We collect all these unitaries in the (finite) set \(E\) and assume that \(T\) determines \(p\) uniquely, as we could include the value \(p\) into \(T\). For each such \(T\), let \(q(\tilde{v}|u,v,T)\) and \(\tilde{q}(\tilde{v}|v,T)\) be the distributions from the lemma. Define the payoff function \(g(u,v,T) := \sum_{\tilde{v}} q(\tilde{v}|u,v,T)\delta_{f(u,v),\tilde{v}} - \sum_{\tilde{v}} \tilde{q}(\tilde{v}|u,v,T)\delta_{f(u,v),\tilde{v}}\). The lemma then yields \(1 - 12e \leq \min_{p\in\mathcal{D}} \max_{T\in\mathcal{E}} \sum_{u,v} p(u,v)g(u,v,T)\) which is at most \(2e + \min_{p\in\Delta(\mathcal{W})} \max_{\mathcal{E}} \sum_{u,v} p(u,v)g(u,v,T)\) since replacing \(p\) by \(p'\) incurs only an overall change in the value by \(2e\) as \([-1\leq g(u,v,T)\leq 1]\). By von Neumann’s minimax theorem, this last term equals \(2e + \max_{p\in\Delta(\mathcal{W})} \min_{u,v,T} \sum_{u,v} p(u,v)T g(u,v,T)\) [20].

Hence, we have shown that there is a strategy for Alice, where she chooses her cheating unitary \(T\) with probability \(p^{\prime}(T)\), such that (for some \(e_1 + e_2 \leq 4e\)) for all \(u, v\),
\[\sum_{T} q(\tilde{v}|u,v)\delta_{f(u,v),\tilde{v}} \geq 1 - e_1 \quad (4)\]
\[\text{and } \sum_{\tilde{v}} |q(\tilde{v}|u,v) - \tilde{q}(\tilde{v}|v)| \leq \sum_{u,v,T} (p(T)q(\tilde{v}|u,v,T) - \tilde{q}(\tilde{v}|v,T)) \leq e_2, \text{ where } q(\tilde{v}|u,v) := \sum_{T} p(T)q(\tilde{v}|u,v,T) \text{ and } \tilde{q}(\tilde{v}|v) := \sum_{T} p(T)\tilde{q}(\tilde{v}|v,T). \text{ This implies that for all } u, v, \sum_{\tilde{v}} |q(\tilde{v}|u_0,v) - \tilde{q}(\tilde{v}|v)| \leq 2e_2. \text{ Combining this inequality with Eq. (4), we find for all } u, v, \sum_{\tilde{v}} q(\tilde{v}|u_0,v)\delta_{f(u,v),\tilde{v}} \geq 1 - e_1 - 2e_2 \geq 1 - 28e.\]

One might wonder whether Theorem 2 can be strengthened to obtain, with probability \(1 - O(e)\), a \(\tilde{v}\) such that for all \(u, f(u,v) = f(u,\tilde{v})\). It turns out that this depends on the function \(f\); when \(f\) is equality \(E_\mathcal{Q}(u,v) = 1\) if \(u = v\) and inner product \(|I_\mathcal{P}(u,v) = \sum_u u_v\mod2\), the stronger conclusion is possible. However, for disjointness \(|D_{\mathcal{I}}(u,v) = 0\) if \(\exists i: u_i = v_i = 1\) such a strengthening is not possible showing that our result is tight in general.

For \(E_\mathcal{Q}\), we reason as follows. Set \(u = v\) in Theorem 2. Alice is able to sample a \(\tilde{v}\) such that \(\sum_{\tilde{v}} q(\tilde{v}|u_0,v)\delta_{E_\mathcal{Q}(u,v),\tilde{v}} \geq 1 - 28e\). Since \(\delta_{E_\mathcal{Q}(u,v),\tilde{v}} = 1\) if \(\tilde{v} = \tilde{v}\), we find \(q(\tilde{v}|u_0,v) + \frac{1}{2}\left[1 - Q(v|u_0,v)\right] \geq 1 - 28e\), which implies \(Q(v|u_0,v) \geq 1 - 56e\). Interestingly, for \(D_{\mathcal{I}}\) such an argument is not possible. Assume that we have a protocol that is \(e\)-secure against Bob. Bob could now run the protocol normally on strings \(v\) with Hamming weight \(|v| \leq n/2\), but on inputs \(v\) with \(|v| > n/2\) he could flip, at random, \(\sqrt{n}\) of \(v\)’s bits that are 1. It is not hard to see that this new protocol is still \(e\)-secure and \(e + O(1/\sqrt{n})\)-correct. The loss in the correctness is due to the fact that, on high Hamming-weight strings, the protocol may, with a small probability, not be correct. On the other hand, on high Hamming-weight inputs, the protocol can not transmit or leak the complete input \(v\) to Alice, simply because Bob does not use it.

We thank Ivan Damgård, Frédéric Dupuis, Louis Salvail, Christopher Portmann, and Renato Renner for valuable discussions and an anonymous referee for suggesting an example presented in the Supplemental Material. M. C. is supported by the Swiss National Science Foundation (Grants No. PP00P2_128455 and No. 20CH21_138799), the NCCR “Quantum Science and Technology,” and the German Science Foundation (Grant No. CH 843/2-1). C. S. is supported by a NWO Veni grant. H. B. was supported by an NWO vici grant and by EU project QCS.

160501-4

[20] In order to apply von Neumann’s theorem, note that the initial term equals \(\min_{p' \in \Delta(W)} \max_{p' \in \Delta(E)} \sum_{u,v} p'(u,v) \times g(u,v,T) p''(T) \) since the maximal value of the latter is attained at an extreme point. Von Neumann’s minimax theorem [21] allows us to swap minimization and maximization leading to \(\max_{p' \in \Delta(E)} \min_{p \in \Delta(W)} \sum_{u,v,T} p(u,v)g(u,v,T)p''(T) \) without changing the value. This expression corresponds to the final term since the minimization can without loss of generality be restricted to its extreme points.