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CHAPTER 8

Concluding remarks and outlook

This Chapter reflects on the content of this thesis. The current status of LCS as a
technique for non-invasive bilirubinometry is discussed and possibilities for further
improvement of the technique are addressed. Since the application of LCS is not

restricted to bilirubinometry on neonates, we also describe other potential applications
for this new technique.



8.1 Introduction

In Chapters 1 and 2, the limitations of currently used optical techniques for
transcutaneous  bilirubinometry were introduced: whereas transcutaneous
bilirubinometers are suited as a screening method for hyperbilirubinemia, these devices
cannot serve as a replacement of invasive blood sampling. The major reason for this is
the fact that these devices measure the extravascular bilirubin concentration, which
cannot be directly related to the parameter of interest: the intravascular, or total serum
bilirubin concentration (TSB). We suggested two approaches to solve this problem,
from both a medical and a technological perspective. This thesis focused on the
technological approach, by designing a spectroscopic technique (low-coherence
spectroscopy, LCS) that can confine its probing volume to the intravascular space only.
Thereby, a one to one comparison between the spectroscopic bilirubin measurement
and the TSB can be achieved. Hence, LCS may become the technique that can
completely replace invasive blood sampling for TSB determination, leading to less pain,
stress and a faster diagnosis for jaundiced neonates.

Since LCS is a new technique, this thesis describes the essential first steps in the design,
development and validation of the technique (Chapters 4 and 5). The measured
attenuation coefficients (0.15 — 34 mm™) by LCS on tissue simulating phantoms are
within the range of the neonatal skin optical properties described in Chapter 3 (p, = i, +
K’/(1-g) = 10 — 20 mm™ when a scattering anisotropy of g = 0.85 is assumed [1]). In
addition to the phantom experiments, we proved that we can use LCS to measure local
absorption coefficient spectra in real, living tissue and that biologically relevant
chromophore concentrations could be obtained from the measured absorption spectra
(Chapter 6). To further improve the acquisition speed and sensitivity of the technique,
Chapter 7 presented a new method for spectroscopic detection in LCS. Hence, we
demonstrated that LCS is a very promising technique for non-invasive bilirubin
measurements.

Before LCS can be clinically applied, further research is needed on 1) the
applicability of LCS for measuring the w, in whole blood, 2) the quantification of bilirubin
concentrations from the measured W, of whole blood and 3) improvements on the
speed, sensitivity and design of our current LCS system. Sections 8.2 and 8.3 of this
Chapter discuss these issues in detail. Since the application of LCS is not restricted to
bilirubinometry, Section 8.4 discusses other potential applications for this new
technique.

8.2 In vivo LCS measurements of whole blood

As described in Chapters 1 and 2, and Section 8.1, we intend to use LCS for measuring
the absorption coefficient spectrum within a single blood vessel. From the measured
spectrum, we want to obtain the bilirubin concentration in whole blood, comparable to
our method of obtaining the hemoglobin concentration in Chapter 6.2.2. Naturally, this
raises the question: is LCS sensitive enough to measure the high attenuation associated
with the large absorption and scattering in whole blood?
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Based on the measured SNR of our tdLCS system (~50 dB, Figure 7.5), we should be
able to measure optical densities (OD = p,-8) of maximally In(10°) = 11.5. The epidermal
OD measured in Chapter 6 was approximately 0.8. Hence, if we measure inside a blood
vessel located beneath the epidermis, the remaining maximal OD for our measurement
is 11.5 — 0.8 = 10.7. If we assume a diameter of 0.1 mm (€ = 0.2 mm) for this blood
vessel, the maximal attenuation coefficient that LCS can measure over the full diameter
of this vessel is p, = 10.7/0.2 = 53.5 mm™.

Around the center wavelength of our LCS system, whole blood has an absorption
coefficient of ¥~30 mm™ and a scattering coefficient of ~300 mm™ [2], resulting in a total
attenuation coefficient of p, = 330 mm™. This p, for whole blood is larger than the
maximal attenuation coefficient that LCS can measure. However, when measuring on
such a highly scattering medium with large anisotropy (g = 0.99) [2], multiple scattering
contributions to the LCS signal are inevitable. As was discussed in Chapter 5, these
contributions can lower the effective ys-contribution to the p, that is measured by LCS,
while the p,-contribution remains unaffected, since absorption takes place along the
photon’s path (Chapter 4). Although we do not know the exact influence of these and
other effects on LCS measurements on whole blood, we will show an experimental
validation of the performance of LCS on whole blood in the next section.

8.2.1 Experimental validation

To validate the performance of LCS in whole blood, we performed an in vivo tdLCS
measurement on the nail and the underlying nail bed of the index finger of a healthy
human volunteer. The measurement settings and method of analysis were identical to
the methods described in Chapter 6.2. Figure 8.1 shows the resulting OCT image, with
three dark regions in the nail bed, which are presumably blood vessels. A region of
interest within one of the presumed blood vessels was selected (dashed rectangle: 200
x 110 um’, width x depth) for the determination of p,. The measured attenuation
coefficient spectrum (dots) within this region was fitted with a p-fit (solid line) as
described in Chapter 6.2.2, assuming the presence of oxygenized and deoxygenized
hemoglobin in the vessel. The OD of the tissue covering the blood vessel was
approximately 0.75.

The highest measured p-values within the vessel (57 mm™) are close to the
predicted maximal measurable value of 53.5 mm™. The p,-contribution to the p.-fit (~5
mm™) is low compared to the expected s for whole blood, which may be explained by
the contribution of multiple scattering to the LCS signal. Strikingly, the measured and
fitted values of W, are very similar to the absorption coefficient of whole blood [2]. In
fact, the fitted total hemoglobin concentration ([tHb]) was 143 * 24 g/L, which is within
the physiological [tHb] range of 134 to 173 g/L for whole blood [2]. In addition, the
fitted oxygen saturation (SO,) of 60£29 % resembled the SO, of venous blood [3].

These results show that in vivo LCS measurements on whole blood within a blood vessel
are possible. Although the current accuracy of the measurement is too low for clinical
applications, this accuracy is likely to be improved when the configuration for sdLCS is
optimized (Chapter 7 and Section 8.3.1).
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Figure 8.1 In vivo LCS measurement on a blood vessel under the nail of an
index finger. The upper OCT image shows the nail, the nail bed and the
selected blood vessel region for the determination of u. (dashed rectangle).
The lower graph shows the attenuation spectrum within the selected region,
the fit on us and the us-contribution to the us-fit. The fitted total hemoglobin
concentration [tHb] (143424 g/L) is within the physiological [tHb] range of
134 to 173 g/L for whole blood.

8.2.2  Blood flow influences on the LCS signal

Blood flow induces Doppler shifting of the modulation frequency of the LCS signal.
This has different consequences for tdLCS and sdLCS. Since the frequency shifted signals
are remapped to a wavelength axis in tdLCS, Doppler shifting by blood flow induces a
translation of the LCS spectrum along the wavelength axis, comparable to the spectral
broadening by Brownian motion (Chapter 4). This may not only induce an error in the
determination of the optical coefficients, it may also lead to a complete loss of signal if
the frequency shift extends the bounds of the lock-in filter. Although we did not
encounter any influences of blood flow induced Doppler shifting in the measurements
presented in Chapter 6 and Section 8.2.1, the influences of blood flow should not be
overlooked when using tdLCS. To avoid Doppler shifting of the LCS signal, the angle of
incidence on the blood vessel can be set to 90 degrees. Since this may be difficult to
realize in practice, a temporary stop of blood flow can be realized during the
measurement by a (manual) occlusion of the vessel.

For sdLCS, Doppler shifting by blood flow has less influence on the measured
spectrum compared to tdLCS. Since a Doppler frequency shift will be negligible
compared to the frequency of light, a translation of the measured spectrum along the
wavelength axis will not occur. However, a Doppler frequency shift extending the
bounds of the frequency domain filter (Figure 7.1f) can induce loss of signal. The latter
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may be avoided by a careful choice of the modulation frequency and filter bounds, a 90
degree angle of incidence or temporary occlusion of the vessel. Another effect of blood
flow on the sdLCS signal may be a decrease of the modulation depth in ip(A) (‘fringe
wash-out’, see Chapter 7.7), since the scattering red blood cells move during the
integration time of the spectrograph. This problem may be solved by faster acquisition
(Section 8.3.1).

8.2.3 Bilirubin concentration measurements by LCS

The in vivo LCS measurements described in Chapter 6 and Section 8.2.1 focused on
the measurement of oxygenized and deoxygenized hemoglobin concentrations.
Although this does not directly demonstrate the capability of LCS to measure bilirubin
concentrations, it proves the capability of the technique to derive biologically relevant
tissue chromophore concentrations from an attenuation coefficient spectrum. The
bilirubin absorption peak around 460 nm (Figure 1.1) falls just outside the spectral
range of our LCS measurements, because of the decrease in SNR in this region (Figure
7.5). Although the SNR around 460 nm of the sdLCS system shows an improvement with
respect to tdLCS, further improvements in LCS system design may be needed for
accurate bilirubin concentration measurements (Section 8.3.1).

For the clinical assessment of whole blood bilirubin concentrations in neonates, an
accuracy of at least 10 umol/L within the range of 40 to 400 umol/L is desired, which
translates into an accuracy of 0.13 mm™ for the determination of .. Although the
current accuracy in u, of 0.5 mm™ is close to this required value (Chapter 4), further
improvements on LCS accuracy are needed (Section 8.3.1). Nevertheless, with the
current accuracy in p, we would be able to measure bilirubin concentration changes of
40 upmol/L, which is comparable to the accuracy of existing transcutaneous
bilirubinometers [4]. Hence, further research on LCS for non-invasive bilirubinometry is
justified.

In contrast to the existing bilirubinometers, LCS can potentially be applied for
continuous monitoring of bilirubin levels, which may provide more insight into bilirubin
physiology and reduces the time for treatment decision making. Existing devices cannot
be used for this purpose, because photo bleaching of bilirubin decreases the bilirubin
concentration in the extravascular space [5], introducing an additional measurement
error. Since LCS will be applied for bilirubin concentration measurements on flowing
blood in the intravascular space, the effect of photo bleaching will be negligible.

8.3 Possibilities for LCS system improvement

8.3.1 Speed and sensitivity

As mentioned in Chapter 7 and Section 8.2, the speed and sensitivity of the current
LCS system need to be improved. In Section 7.2.2, we showed that spectroscopic
detection with sdLCS induces a theoretical sensitivity advantage compared to tdLCS.
Furthermore, a trade-off exists between the speed and sensitivity of an LCS system,
since acquisition speed can be enhanced by sacrificing sensitivity.

Since the quantum efficiency and acquisition speed of the USB4000 spectrograph,
used for spectral detection, are not optimized for sdLCS, we could not demonstrate a
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sensitivity advantage compared to tdLCS in Chapter 7. However, we did demonstrate
that our method for spectroscopic detection in LCS is feasible. Therefore, the most
straightforward method to realize a speed and sensitivity enhancement in LCS, is by
implementing a spectrograph that is optimized for sdLCS. The maximal sensitivity
advantage that can be achieved with an sdLCS system will depend on the number of
pixels, the quantum efficiency, and the AL, of the spectrograph (Eg. 7.10). Hence,
these parameters should be considered when optimizing the sdLCS system, as well as
the trade-off between acquisition speed and sensitivity. In addition, sensitivity may be
improved by (lateral) averaging of spectra, which increases the SNR with the square
root of the number of averages.

As demonstrated in Chapter 7.7, a spectrograph with 17 kHz acquisition rate (100
times faster than the USB4000) matches the acquisition speed requirements for sdLCS.
With this acquisition rate, the determination of the attenuation spectrum in the blood
vessel of Section 8.2.1 would only take 12 ms. Since 140 kHz line rate cameras with high
guantum efficiency are available [6], such an sdLCS system is realizable.

For the purpose of bilirubinometry, it may be advantageous to enhance the
sensitivity of the sdLCS system for wavelengths around 460 nm (Section 8.2.3). The
current SNR in this wavelength band is relatively low due to a combination of detector
guantum efficiency and source power. Detector quantum efficiency around 460 nm can
be enhanced by choosing a detector that is optimized for this wavelength range, e.g.
visible/UV-enhanced detectors that have a considerably higher quantum efficiency
compared to regular silicon based detectors below 500 nm [7,8]. Recently,
supercontinuum sources became available with higher output power around 460 nm
compared to the source in our LCS system [9]. Furthermore, collimated broad band
LED’s are available with high output power around the bilirubin absorption peak [10].
However, since these LED’s do not have a single mode output spectrum, the effects of
modal dispersion and intermodal interference need to be reevaluated when
implementing these sources in our LCS system.

8.3.2 Compactness and clinical utility

Before LCS can be introduced into the clinic, several adjustments to the current
bench-top system design are necessary. To reduce the size of the system, the open air
optical paths can be replaced by fiber optic paths. In addition, the development of a
fiber based probe in the sample arm will be necessary to facilitate clinical
measurements. A fiber based LCS system requires careful design and choice of optical
components, since a large wavelength bandwidth needs to be guided through single
mode and/or multimode fibers while avoiding signal loss and the effects of modal
dispersion and intermodal interference. Recent advances in the field of integrated
optics have lead to e.g. chip-based spectrographs [11]. Therefore, further reduction of
the LCS system size may be achieved by integrating several or more system components
on a chip.

As was demonstrated in Chapter 6, lateral scanning of the sample is needed for
spatial averaging of the LCS signal. The current implementation for lateral sample
scanning involves movement of the sample with respect to the sample arm beam. For
clinical purposes, it will be advantageous to scan the sample arm beam with respect to
the sample. This can be achieved by implementing x/y-lateral scanning mirrors, as is
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commonly done in clinical OCT systems [12]. The implementation of x/y-lateral scanning
introduces the additional possibility to make a volume scan of the sample, instead of a
single B-scan as in Figure 8.1, which facilitates the localization of blood vessels (Section
8.3.3). Also the current method for axial scanning of the sample, involving movement of
the sample with respect to the sample lens, needs to be replaced by translation of the
sample lens with respect to the sample. The latter will require an adjustment of the
focus tracking scheme described in Chapter 4.

8.3.3 Blood vessel localization

In Chapter 6 and Section 8.2.1, the localization of the region of interest for the
determination of w, was supported by an OCT image that was reconstructed from the
LCS signal. Since only the spectral information within the region of interest is required,
the relatively slow step-wise LCS scanning outside the region of interest may be
replaced by other imaging modalities for blood vessel localization. Possible imaging
modalities for this purpose are conventional OCT imaging, photoacoustic tomography
[13] and side stream dark field (SDF) imaging [14]. Naturally, this requires precise
coalignment of these modalities with the LCS signal. Although such a design has
consequences for the compactness of the system, it is likely to result in a considerably
faster localization of blood vessels that are suited for LCS p—determination.

8.4 Other potential applications of LCS

Besides its value for non-invasive bilirubin measurements, LCS creates new
opportunities within and outside the field of tissue spectroscopy. Supported by the
structural tissue information of an OCT image, LCS offers the possibility to accurately
and simultaneously quantify a unique set optical property spectra (W, Ha, Ks and p,) and
tissue chromophore concentrations within a very confined and controllable tissue
volume of choice. No other spectroscopic technique is capable of doing such a
determination. As a consequence, LCS solves many methodological problems related to
conventional reflectance spectroscopy, e.g. assumptions on photon path lengths,
probing volume and homogeneity of the investigated tissue. This offers new
opportunities for tissue diagnostic applications.

Recent advances in the field of spectroscopic optical coherence tomography (sOCT),
which is closely related to LCS (Chapter 4.1), further emphasize the need for techniques
like LCS by showing progression in localized measurements of optical properties [15].
Since the focus of this research is on OCT image contrast enhancement, the
guantification and localization of chromophore concentrations and attenuation spectra
is not as accurate and well-validated as in LCS. Nevertheless, the research area of LCS
and LCS-related research is becoming increasingly important in the field of tissue optics.
This section describes other potential applications for LCS.

8.4.1  Applications based on absorption

In Chapter 6 and Section 8.2, we showed that LCS can be used for the determination
of other chromophore concentrations than bilirubin. By measuring hemoglobin
absorption spectra, not only the total hemoglobin concentration could be determined,
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but also the oxygen saturation within the investigated tissue volume. Accurate
determination of total hemoglobin concentrations and oxygen saturation within blood
vessels can potentially replace the need for this determination by invasive blood
sampling in both neonates and adults. In addition, knowledge of the hemoglobin
concentration and oxygen saturation within confined tissue volumes consisting of both
intravascular and extravascular tissue space can provide valuable information on tissue
physiology and pathology, e.g. during shock.

The current LCS system was optimized for the visible wavelength range. As a
consequence, only concentrations of chromophores with distinct absorption features
within this wavelength region could be quantified. However, LCS is not limited to the
visible range and may be extended to the ultraviolet and (near) infrared region for the
quantification of e.g. water concentration (related to skin hydration) and potentially
glucose concentration (for the monitoring of diabetic patients). Also the delivery and
distribution of exogenous therapeutic and contrast agents with distinct absorption, or
scattering features may be monitored by LCS.

8.4.2  Applications based on scattering

Chapter 5 demonstrated that LCS is not only a promising technique for the
determination of local absorption coefficient spectra, but also for the determination of
local scattering, and backscattering coefficient spectra. Based on this determination, we
showed that LCS can be used for the characterization of samples, in terms of particle
size and concentration. This may be an interesting application within the field of
particle science. Furthermore, the quantitative and wavelength dependent
measurement of p, and p, makes the technique sensitive for changes in cell
morphology and organization, which may be relevant for (early) cancer detection and
monitoring of tumor development [16]. The additional absorption coefficient based
information on hemoglobin concentration and oxygen saturation, related to tumor
vascularization [17], results in an extensive and unigque set of ‘tumor sensitive’
parameters that can only be measured simultaneously by LCS. Hence, also the
application of cancer diagnosis by LCS deserves further investigation.

In addition to the quantitative measurement of optical coefficients, LCS can also be
used for deriving path length resolved blood flow, or perfusion related parameters from
the back scattered signal. These parameters can be quantified by measuring the blood-
flow related speckle decorrelation rate of the LCS signal, or the Doppler frequency shift
(see also Section 8.2.2), as has been demonstrated before with other low-coherence
interferometry based modalities [18,19].

8.5 Concluding remarks

Summarizing, this thesis described the essential first steps in the design, development
and validation of LCS as a method for the quantitative and localized determination of
tissue optical properties and chromophore concentrations. As an outlook, following the
suggested steps on improving the speed and sensitivity of the technique is required
before LCS can be introduced into the clinic for the purpose of non-invasive
bilirubinometry and other potential applications. Nevertheless, even with the sub-
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optimal sensitivity of the current time domain LCS system, we can already show that
LCS can be used for measuring the p, within a single blood vessel in human skin, and
that the derived hemoglobin concentration is well within the range of normal human
whole blood hemoglobin concentrations. Therefore, LCS is a very promising technique
that deserves further development and can potentially lead to less pain and
complications for preterm neonates.
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