Quantitative and localized spectroscopy for non-invasive bilirubinometry in neonates

Bosschaart, N.

Citation for published version (APA):
Bosschaart, N. (2012). Quantitative and localized spectroscopy for non-invasive bilirubinometry in neonates

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of symbols

general
- t: time
- f: frequency
- λ: wavelength
- k: wave number
- d: depth
- ε: geometrical path length
- $\Delta \lambda$: wavelength resolution
- Δk: wave number resolution
- Δf: frequency resolution
- $h\nu$: photon energy
- \varnothing: diameter
- r: radius
- D: thickness

optical properties
- μ_t: attenuation coefficient
- μ_a: absorption coefficient
- μ_s: scattering coefficient
- μ_s^{red}: reduced scattering coefficient
- μ_b: backscattering coefficient
- μ_b^{NA}: NA-corrected μ_b
- μ_{eff}: effective attenuation coefficient
- $p(\theta)$: scattering phase function
- g: scattering anisotropy
- n: phase refractive index
- n_g: group refractive index
- a: scattering scaling factor
- b: scatter power
- c: chromophore concentration

diffusion theory
- I: spectral intensity
- R: remittance
- r_j: fiber distance from source
- z_0: modeled source position
- z_b: modeled virtual source position
- A: empirical parameter
- α: proportionality factor
- β, γ: validity limiting parameters

LCS signal description
- E_S: electric field in the sample arm
- E_R: electric field in the reference arm
- E_D: electric field at the detector
- I_S: sample arm intensity
- I_R: reference arm intensity
- i_D: detector current
- i_{AC}: AC photodetector current
- S: power spectrum

LCS system and geometry
- x_S: sample arm length
- x_R: reference arm length
- ΔL: optical path length difference
- λ_0: center wavelength
- λ_{FWHM}: wavelength bandwidth
- l_c: coherence length

- S_0: source power spectrum
- T_c: system coupling efficiency
- ζ: system calibration constant
- α: scaling factor
- ε_f: focus position in path length units
- Z_R: Rayleigh length
- w: beam waist
- Q: solid angle
- Θ: (focusing) angle
- M: number of modes

LCS acquisition
- Δx_S: sample arm displacement
- Δx_R: reference arm displacement
- ν_R: reference mirror velocity
- f_R: reference mirror scanning frequency
- ΔR: reference mirror scanning amplitude
- $\Delta \varepsilon$: path length scanning window
- N: number of samples
- f_s: sampling frequency

Brownian motion
- Δf_D: Doppler frequency shift
- k_B: Boltzmann constant
- T: temperature
- η: viscosity

LCS spectroscopic detection
- η_S, η_R: sample/reference arm fraction
- $d_{\text{max}}, \Delta L_{\text{max}}$: imaging depth/path length
- $\delta k, \delta \lambda$: spectrometer pixel width
- N_p: # pixels
- τ: integration time
- f_0: Doppler frequency
- ϵ: detection efficiency
- $\Delta \varepsilon_R$: reference mirror scanning window
- $\Delta \varepsilon_S$: spectrograph probing window

(bold-faced printed characters in this thesis denote wavelength dependent parameters)