Quantitative and localized spectroscopy for non-invasive bilirubinometry in neonates

Bosschaart, N.

Citation for published version (APA):
List of symbols

General
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>f</td>
<td>frequency</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
</tr>
<tr>
<td>k</td>
<td>wave number</td>
</tr>
<tr>
<td>d</td>
<td>depth</td>
</tr>
<tr>
<td>ε</td>
<td>geometrical path length</td>
</tr>
<tr>
<td>$\Delta \lambda$</td>
<td>wavelength resolution</td>
</tr>
<tr>
<td>Δk</td>
<td>wave number resolution</td>
</tr>
<tr>
<td>Δf</td>
<td>frequency resolution</td>
</tr>
<tr>
<td>$h\nu$</td>
<td>photon energy</td>
</tr>
<tr>
<td>ϕ</td>
<td>diameter</td>
</tr>
<tr>
<td>r</td>
<td>radius</td>
</tr>
<tr>
<td>D</td>
<td>thickness</td>
</tr>
</tbody>
</table>

Optical properties
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_t</td>
<td>attenuation coefficient</td>
</tr>
<tr>
<td>μ_a</td>
<td>absorption coefficient</td>
</tr>
<tr>
<td>μ_s</td>
<td>scattering coefficient</td>
</tr>
<tr>
<td>μ_s^{red}</td>
<td>reduced scattering coefficient</td>
</tr>
<tr>
<td>μ_b</td>
<td>backscattering coefficient</td>
</tr>
<tr>
<td>$\mu_{b,\text{NA}}$</td>
<td>NA-corrected μ_b</td>
</tr>
<tr>
<td>μ_{eff}</td>
<td>effective attenuation coefficient</td>
</tr>
<tr>
<td>$p(\theta)$</td>
<td>scattering phase function</td>
</tr>
<tr>
<td>g</td>
<td>scattering anisotropy</td>
</tr>
<tr>
<td>n</td>
<td>phase refractive index</td>
</tr>
<tr>
<td>n_g</td>
<td>group refractive index</td>
</tr>
<tr>
<td>a</td>
<td>scattering scaling factor</td>
</tr>
<tr>
<td>b</td>
<td>scatter power</td>
</tr>
<tr>
<td>c</td>
<td>chromophore concentration</td>
</tr>
</tbody>
</table>

Diffusion theory
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_S</td>
<td>sample arm intensity</td>
</tr>
<tr>
<td>I_R</td>
<td>reference arm intensity</td>
</tr>
<tr>
<td>i_D</td>
<td>photo detector current</td>
</tr>
<tr>
<td>i_{AC}</td>
<td>AC photo detector current</td>
</tr>
<tr>
<td>S</td>
<td>power spectrum</td>
</tr>
</tbody>
</table>

LCS system and geometry
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_S</td>
<td>sample arm length</td>
</tr>
<tr>
<td>x_R</td>
<td>reference arm length</td>
</tr>
<tr>
<td>ΔL</td>
<td>optical path length difference</td>
</tr>
<tr>
<td>λ_0</td>
<td>center wavelength</td>
</tr>
<tr>
<td>λ_{FWHM}</td>
<td>wavelength bandwidth</td>
</tr>
<tr>
<td>l_c</td>
<td>coherence length</td>
</tr>
<tr>
<td>S_0</td>
<td>source power spectrum</td>
</tr>
<tr>
<td>T_c</td>
<td>system coupling efficiency</td>
</tr>
<tr>
<td>ζ</td>
<td>system calibration constant</td>
</tr>
<tr>
<td>α</td>
<td>scaling factor</td>
</tr>
<tr>
<td>ξ_f</td>
<td>focus position in path length units</td>
</tr>
<tr>
<td>Z_R</td>
<td>Rayleigh length</td>
</tr>
<tr>
<td>w</td>
<td>beam waist</td>
</tr>
<tr>
<td>Ω</td>
<td>solid angle</td>
</tr>
<tr>
<td>Θ</td>
<td>(focusing) angle</td>
</tr>
<tr>
<td>M</td>
<td>number of modes</td>
</tr>
</tbody>
</table>

LCS acquisition
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δx_S</td>
<td>sample arm displacement</td>
</tr>
<tr>
<td>Δx_R</td>
<td>reference arm displacement</td>
</tr>
<tr>
<td>ν_R</td>
<td>reference mirror velocity</td>
</tr>
<tr>
<td>f_R</td>
<td>reference mirror scanning frequency</td>
</tr>
<tr>
<td>ΔR</td>
<td>reference mirror scanning amplitude</td>
</tr>
<tr>
<td>$\Delta \xi$</td>
<td>path length scanning window</td>
</tr>
<tr>
<td>N</td>
<td>number of samples</td>
</tr>
<tr>
<td>f_s</td>
<td>sampling frequency</td>
</tr>
</tbody>
</table>

Brownian motion
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δf_D</td>
<td>Doppler frequency shift</td>
</tr>
<tr>
<td>k_B</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>η</td>
<td>viscosity</td>
</tr>
</tbody>
</table>

LCS spectroscopic detection
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_S, η_R</td>
<td>sample/reference arm fraction</td>
</tr>
<tr>
<td>d_{max}, ΔL_{max}</td>
<td>imaging depth/path length</td>
</tr>
<tr>
<td>δk, $\delta \lambda$</td>
<td>spectrometer pixel width</td>
</tr>
<tr>
<td>N_p</td>
<td># pixels</td>
</tr>
<tr>
<td>τ</td>
<td>integration time</td>
</tr>
<tr>
<td>f_D</td>
<td>Doppler frequency</td>
</tr>
<tr>
<td>ϵ</td>
<td>detection efficiency</td>
</tr>
<tr>
<td>$\Delta \xi_R$</td>
<td>reference mirror scanning window</td>
</tr>
<tr>
<td>$\Delta \xi_S$</td>
<td>spectrograph probing window</td>
</tr>
</tbody>
</table>

(bold-faced printed characters in this thesis denote wavelength dependent parameters)*