Quantitative and localized spectroscopy for non-invasive bilirubinometry in neonates

Bosschaart, N.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of symbols

general
- \(t \) time
- \(f \) frequency
- \(\lambda \) wavelength
- \(k \) wave number
- \(d \) depth
- \(\varepsilon \) geometrical path length
- \(\Delta \lambda \) wavelength resolution
- \(\Delta k \) wave number resolution
- \(\Delta f \) frequency resolution
- \(h \) photon energy
- \(\phi \) diameter
- \(r \) radius
- \(D \) thickness

optical properties
- \(\mu_t \) attenuation coefficient
- \(\mu_a \) absorption coefficient
- \(\mu_s \) scattering coefficient
- \(\mu_s^{\text{red}} \) reduced scattering coefficient
- \(\mu_b \) backscattering coefficient
- \(\mu_{b,\text{NA}} \) NA-corrected \(\mu_b \)
- \(\mu_{\text{eff}} \) effective attenuation coefficient
- \(p(\theta) \) scattering phase function
- \(g \) scattering anisotropy
- \(n \) phase refractive index
- \(n_g \) group refractive index
- \(a \) scattering scaling factor
- \(b \) scatter power
- \(c \) chromophore concentration

diffusion theory
- \(I \) spectral intensity
- \(R \) remittance
- \(r_j \) fiber distance from source
- \(z_0 \) modeled source position
- \(z_b \) modeled virtual source position
- \(A \) empirical parameter
- \(\alpha \) proportionality factor
- \(\beta, \gamma \) validity limiting parameters

LCS system and geometry
- \(x_s \) sample arm length
- \(x_R \) reference arm length
- \(\Delta L \) optical path length difference
- \(\lambda_0 \) center wavelength
- \(\lambda_{\text{FWHM}} \) wavelength bandwidth
- \(l_c \) coherence length
- \(S_0 \) source power spectrum
- \(T_c \) system coupling efficiency
- \(\zeta \) system calibration constant
- \(\alpha \) scaling factor
- \(\delta_f \) focus position in path length units
- \(Z_0 \) Rayleigh length
- \(w \) beam waist
- \(\Omega \) solid angle
- \(\theta \) (focusing) angle
- \(M \) number of modes

LCS acquisition
- \(\Delta x_s \) sample arm displacement
- \(\Delta x_R \) reference arm displacement
- \(\nu_R \) reference mirror velocity
- \(f_R \) reference mirror scanning frequency
- \(\Delta \rho \) reference mirror scanning amplitude
- \(\Delta \varepsilon \) path length scanning window
- \(N \) number of samples
- \(f_s \) sampling frequency

Brownian motion
- \(\Delta f_D \) Doppler frequency shift
- \(k_B \) Boltzmann constant
- \(T \) temperature
- \(\eta \) viscosity

LCS spectroscopic detection
- \(n_s, n_R \) sample/reference arm fraction
- \(d_{\text{max}}, \Delta L_{\text{max}} \) imaging depth/path length
- \(\delta k, \delta \lambda \) spectrometer pixel width
- \(N_p \) # pixels
- \(\tau \) integration time
- \(f_D \) Doppler frequency
- \(\varepsilon \) detection efficiency
- \(\Delta \varepsilon_R \) reference mirror scanning window
- \(\Delta \varepsilon_s \) spectrograph probing window

(bold-faced) printed characters in this thesis denote wavelength dependent parameters