Quantitative and localized spectroscopy for non-invasive bilirubinometry in neonates

Bosschaart, N.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of symbols

general
\(t \) time
\(f \) frequency
\(\lambda \) wavelength
\(k \) wave number
\(d \) depth
\(\varepsilon \) geometrical path length
\(\Delta \lambda \) wavelength resolution
\(\Delta k \) wave number resolution
\(\Delta f \) frequency resolution
\(h \) photon energy
\(\varnothing \) diameter
\(r \) radius
\(D \) thickness

optical properties
\(\mu_t \) attenuation coefficient
\(\mu_a \) absorption coefficient
\(\mu_s \) scattering coefficient
\(\mu_s^{\text{red}} \) reduced scattering coefficient
\(\mu_b \) backscattering coefficient
\(\mu_{b,\text{NA}} \) NA-corrected \(\mu_b \)
\(\mu_{\text{eff}} \) effective attenuation coefficient
\(p(\theta) \) scattering phase function
\(g \) scattering anisotropy
\(n \) phase refractive index
\(n_g \) group refractive index
\(a \) scattering scaling factor
\(b \) scatter power
\(c \) chromophore concentration

diffusion theory
\(l \) spectral intensity
\(R \) remittance
\(r_j \) fiber distance from source
\(z_0 \) modeled source position
\(z_b \) modeled virtual source position
\(A \) empirical parameter
\(\alpha \) proportionality factor
\(\beta, \gamma \) validity limiting parameters

LCS system and geometry
\(x_S \) sample arm length
\(x_R \) reference arm length
\(\Delta L \) optical path length difference
\(\lambda_0 \) center wavelength
\(\lambda_{\text{FWHM}} \) wavelength bandwidth
\(I_c \) coherence length
\(S_0 \) source power spectrum
\(T_c \) system coupling efficiency
\(\zeta \) system calibration constant
\(\alpha \) scaling factor
\(\xi_f \) focus position in path length units
\(Z_R \) Rayleigh length
\(w \) beam waist
\(Q \) solid angle
\(\theta \) (focusing) angle
\(M \) number of modes

LCS acquisition
\(\Delta x_S \) sample arm displacement
\(\Delta x_R \) reference arm displacement
\(\nu_R \) reference mirror velocity
\(f_R \) reference mirror scanning frequency
\(\Delta R \) reference mirror scanning amplitude
\(\Delta \varepsilon \) path length scanning window
\(N \) number of samples
\(f_s \) sampling frequency

Brownian motion
\(\Delta f_D \) Doppler frequency shift
\(k_B \) Boltzmann constant
\(T \) temperature
\(\eta \) viscosity

LCS spectroscopic detection
\(\eta_S, \eta_R \) sample/reference arm fraction
\(d_{\max}, \Delta L_{\max} \) imaging depth/path length
\(\delta k, \delta \lambda \) spectrometer pixel width
\(N_p \) # pixels
\(\tau \) integration time
\(f_D \) Doppler frequency
\(\varepsilon \) detection efficiency
\(\Delta \varepsilon_R \) reference mirror scanning window
\(\Delta \varepsilon_S \) spectrograph probing window

(bold-faced printed characters in this thesis denote wavelength dependent parameters)