Quantitative and localized spectroscopy for non-invasive bilirubinometry in neonates

Bosschaart, N.

Citation for published version (APA):
List of symbols

General
- t: time
- f: frequency
- λ: wavelength
- k: wave number
- d: depth
- ε: geometrical path length
- $\Delta \lambda$: wavelength resolution
- Δk: wave number resolution
- Δf: frequency resolution
- $h\nu$: photon energy
- \varnothing: diameter
- r: radius
- D: thickness

Optical properties
- μ_t: attenuation coefficient
- μ_a: absorption coefficient
- μ_s: scattering coefficient
- μ_s': reduced scattering coefficient
- μ_b: backscattering coefficient
- $\mu_{b,NA}$: NA-corrected μ_b
- μ_{eff}: effective attenuation coefficient
- $p(\theta)$: scattering phase function
- g: scattering anisotropy
- n: phase refractive index
- n_g: group refractive index
- a: scattering scaling factor
- b: scatter power
- c: chromophore concentration

Diffusion theory
- I: spectral intensity
- R: remittance
- r_j: fiber distance from source
- z_0: modeled source position
- z_b: modeled virtual source position
- A: empirical parameter
- α: proportionality factor
- β, γ: validity limiting parameters

LCS system and geometry
- x_s: sample arm length
- x_R: reference arm length
- ΔL: optical path length difference
- λ_0: center wavelength
- λ_{FWHM}: wavelength bandwidth
- l_c: coherence length
- S_0: source power spectrum
- T_c: system coupling efficiency
- ξ: system calibration constant
- α: scaling factor
- σ_f: focus position in path length units
- Z_R: Rayleigh length
- w: beam waist
- Q: solid angle
- Θ: (focusing) angle
- M: number of modes

LCS acquisition
- Δx_s: sample arm displacement
- Δx_R: reference arm displacement
- v_R: reference mirror velocity
- f_R: reference mirror scanning frequency
- ΔR: reference mirror scanning amplitude
- $\Delta \ell$: path length scanning window
- N: number of samples
- f_s: sampling frequency

Brownian motion
- Δf_D: Doppler frequency shift
- k_B: Boltzmann constant
- T: temperature
- η: viscosity

LCS spectroscopic detection
- n_{sR}: sample/reference arm fraction
- d_{max}, ΔL_{max}: imaging depth/path length
- δk, $\delta \lambda$: spectrometer pixel width
- N_p: # pixels
- τ: integration time
- f_D: Doppler frequency
- ε: detection efficiency
- $\Delta \sigma_R$: reference mirror scanning window
- $\Delta \sigma_s$: spectrograph probing window

(***bold-faced*** printed characters in this thesis denote wavelength dependent parameters)