Quantitative and localized spectroscopy for non-invasive bilirubinometry in neonates

Bosschaart, N.

Publication date
2012

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 20 Nov 2021
List of symbols

General
- \(t \): time
- \(f \): frequency
- \(\lambda \): wavelength
- \(k \): wave number
- \(d \): depth
- \(\varepsilon \): geometrical path length
- \(\Delta \lambda \): wavelength resolution
- \(\Delta k \): wave number resolution
- \(\Delta f \): frequency resolution
- \(h \nu \): photon energy
- \(\varnothing \): diameter
- \(r \): radius
- \(D \): thickness

Optical properties
- \(\mu_t \): attenuation coefficient
- \(\mu_a \): absorption coefficient
- \(\mu_s \): scattering coefficient
- \(\mu_s^{\text{red}} \): reduced scattering coefficient
- \(\mu_b \): backscattering coefficient
- \(\mu_{b,\text{NA}} \): NA-corrected \(\mu_b \)
- \(\mu_{\text{eff}} \): effective attenuation coefficient
- \(g \): scattering anisotropy
- \(n \): phase refractive index
- \(n_g \): group refractive index
- \(a \): scattering scaling factor
- \(b \): scatter power
- \(c \): chromophore concentration

Diffusion theory
- \(I \): spectral intensity
- \(R \): remittance
- \(r_j \): fiber distance from source
- \(z_0 \): modeled source position
- \(z_b \): modeled virtual source position
- \(A \): empirical parameter
- \(\alpha \): proportionality factor
- \(\beta, \gamma \): validity limiting parameters

LCS system and geometry
- \(x_s \): sample arm length
- \(x_R \): reference arm length
- \(\Delta L \): optical path length difference
- \(\lambda_0 \): center wavelength
- \(\lambda_{\text{FWHM}} \): wavelength bandwidth
- \(l_c \): coherence length
- \(S_0 \): source power spectrum
- \(T_c \): system coupling efficiency
- \(\zeta \): system calibration constant
- \(\alpha \): scaling factor
- \(\varepsilon_f \): focus position in path length units
- \(Z_R \): Rayleigh length
- \(w \): beam waist
- \(\Omega \): solid angle
- \(\Theta \): (focusing) angle
- \(M \): number of modes

LCS acquisition
- \(\Delta x_s \): sample arm displacement
- \(\Delta x_R \): reference arm displacement
- \(v_R \): reference mirror velocity
- \(f_R \): reference mirror scanning frequency
- \(\Delta R \): reference mirror scanning amplitude
- \(\Delta L \): path length scanning window
- \(N \): number of samples
- \(f_s \): sampling frequency

Brownian motion
- \(\Delta f_D \): Doppler frequency shift
- \(k_B \): Boltzmann constant
- \(T \): temperature
- \(\eta \): viscosity

LCS spectroscopic detection
- \(n_s, n_R \): sample/reference arm fraction
- \(d_{\text{max}}, \Delta L_{\text{max}} \): imaging depth/path length
- \(\delta k, \delta \lambda \): spectrometer pixel width
- \(N_p \): # pixels
- \(\tau \): integration time
- \(f_D \): Doppler frequency
- \(\varepsilon \): detection efficiency
- \(\Delta \varepsilon_R \): reference mirror scanning window
- \(\Delta \varepsilon_s \): spectrograph probing window

(bold-faced printed characters in this thesis denote wavelength dependent parameters)