Search for a supersymmetric partner to the top quark in final states with jets and missing transverse momentum at $\sqrt{s} = 7$ TeV with the ATLAS detector

DOI
10.1103/PhysRevLett.109.211802

Publication date
2012

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for a Supersymmetric Partner to the Top Quark in Final States with Jets and Missing Transverse Momentum at $\sqrt{s} = 7$ TeV with the ATLAS Detector

G. Aad et al. *

(Received 7 August 2012; published 20 November 2012)

A search for direct pair production of supersymmetric top squarks (\tilde{t}_1) is presented, assuming the \tilde{t}_1 decays into a top quark and the lightest supersymmetric particle, χ^0_1, and that both top quarks decay to purely hadronic final states. A total of 16 (4) events are observed compared to a predicted standard model background of $13.5^{+3.7}_{-3.6}(4.4^{+1.7}_{-1.5})$ events in two signal regions based on $\int L dt = 4.7$ fb$^{-1}$ of pp collision data taken at $\sqrt{s} = 7$ TeV with the ATLAS detector at the LHC. An exclusion region in the $m_{\tilde{t}}$ versus χ^0_1 mass plane is evaluated: $370 < m_{\tilde{t}} < 465$ GeV is excluded for $m_{\chi^0_1} \sim 0$ GeV while $m_{\tilde{t}} = 445$ GeV is excluded for $m_{\chi^0_1} \lesssim 50$ GeV.

DOI: 10.1103/PhysRevLett.109.211802

PACS numbers: 12.60.Jv, 13.85.Rm, 14.80.Ly

The standard model (SM) is a successful but incomplete theory of particle interactions. Supersymmetry (SUSY) [1–9] provides an elegant cancellation of the quadratic mass divergences that would accompany a SM Higgs boson by introducing supersymmetric partners of all SM particles, such as a scalar partner of the top quark (\tilde{t}). Like tt, direct tt is produced primarily through gluon fusion at the Large Hadron Collider (LHC). The production cross section depends mostly on the mass of the top partner and has minimal dependence on other SUSY parameters [10–12]. The LHC enables searches for direct tt production at higher mass scales than previous accelerators [13–27]. The viability of SUSY as a scenario to stabilize the Higgs potential and to be consistent with electroweak naturalness [28,29] is tested by the search for \tilde{t} below the TeV scale.

In this Letter, we present a search for direct tt production assuming $t \rightarrow t\chi^0_1 \rightarrow bW\chi^0_1$, where t_1 is the lightest t eigenstate and χ^0_1 represents the lightest supersymmetric particle (LSP) in R-parity conserving models [30–34]. We target events where both W bosons decay hadronically, yielding a final state with six high transverse momentum (p_T) jets from the all-hadronic tt final state and large missing transverse momentum (E_T^{miss}) from the LSPs. The kinematics of both top quarks can therefore be fully specified by the visible decay products. Additionally, SM backgrounds from all-hadronic tt are suppressed as there is no intrinsic E_T^{miss} except from semileptonic c- and b-quark decays. The dominant background consists of $t\bar{t}$ events that contain a $W \rightarrow \ell \nu$ decay where the lepton (ℓ), often of τ flavor, is either lost or misidentified as a jet. These events also have large E_T^{miss} from the neutrino (ν).

The data were acquired during 2011 in LHC pp collisions at a center-of-mass energy of 7 TeV with the ATLAS detector [35], which consists of tracking detectors surrounded by a 2 T superconducting solenoid, calorimeters, and a muon spectrometer in a toroidal magnetic field. The high-granularity calorimeter system, with acceptance covering $|\eta| < 4.9$ [36], is composed of liquid argon with lead, copper, or tungsten absorbers and scintillator tiles with steel absorbers. This data set, composed of events with a high-p_T jet and large E_T^{miss} as selected by the trigger system, corresponds to an integrated luminosity of 4.7 fb$^{-1}$ with a relative uncertainty of 3.9% [37–39].

Jets are constructed from three-dimensional clusters of calorimeter cells using the anti-k_T algorithm with a distance parameter of 0.4 [39,40]. Jet energies are corrected [41] for losses in material in front of the active calorimeter layers, detector inhomogeneities, the noncompensating nature of the calorimeter, and the impact of multiple overlapping pp interactions. These corrections are derived from test beam, cosmic-ray, and pp collision data, and from a detailed GEANT4 [42] detector simulation [43]. Jets containing a b-hadron are identified with an algorithm exploiting both the impact parameter and secondary vertex information [44,45]. A factor correcting for the slight differences in the b-tagging efficiency between data and the GEANT4 simulation is applied to each jet in the simulation. The b-jets are restricted to the fiducial region of the tracker, $|\eta| < 2.5$. Non-b background are minimized by requiring either ≥ 1 b-jets with a selection corresponding to a 60% efficiency with a low <0.2% misidentification rate (tight), or ≥ 2 b-jets each with 75% efficiency but a higher \approx1.7% misidentification rate per b-jet (loose).

The E_T^{miss} is the magnitude of the negative vector sum of the p_T of the clusters of calorimeter cells, calibrated according to their associated reconstructed object (e.g., jets and electrons), and of the p_T of muons above 10 GeV.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

0031-9007/12/109(21)/211802(18) 211802-1 © 2012 CERN, for the ATLAS Collaboration
within $|\eta| < 2.4$. Events containing E_T^{miss} induced by jets associated with calorimeter noise or noncollision backgrounds [46], or by cosmic-ray muons [47,48], are removed from consideration. Large p_T^{miss} collinear with a high-p_T jet could indicate a significant fluctuation in the reconstructed jet energy or the presence of a semileptonic c- or b-quark decay. Therefore, the difference in azimuthal angle ($\Delta \phi$) between the p_T^{miss} and any of the three highest-p_T jets in the event, $\Delta \phi (p_T^{\text{miss}}, \text{jet})$, is required to be $> \pi/5$ radians. Fluctuations in the E_T^{miss} are also suppressed by requiring that the $\Delta \phi$ between the above computed p_T^{miss} and one calculated with the tracking system, using tracks having $p_T > 0.5$ GeV, is $< \pi/3$ radians.

Events are required to have at least one jet with $p_T > 130$ GeV in $|\eta| < 2.8$ and $E_T^{\text{miss}} > 150$ GeV to ensure full efficiency of the trigger. At least five other jets having $p_T > 30$ GeV and $|\eta| < 2.8$ must be present. In addition to the jet and E_T^{miss} requirements, events containing “loose” electrons [49,50] with $p_T > 20$ GeV and $|\eta| < 2.47$ that do not overlap with any jet within $\Delta R < 0.4$, where $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, are rejected. Similarly, events with muons [47–51] having $p_T > 10$ GeV and $|\eta| < 2.4$ that are separated by $\Delta R > 0.4$ from the nearest jet are rejected. A jet with 1–4 tracks and $\Delta \phi (p_T^{\text{miss}}, \text{jet}) < \pi/5$ indicates a likely $W \rightarrow \tau \nu$ decay. Events with such τ-like jets that have transverse mass $m_T = \sqrt{2p_T E_T^{\text{miss}}(1 - \cos \Delta \phi)} < 100$ GeV are rejected.

The presence of high-p_T top quarks that decay through $t \rightarrow bW \rightarrow b\ell\nu$ in the $t\bar{t}t$ final state is exploited to further reduce SM backgrounds by only considering events with reconstructed three-jet invariant masses consistent with the top-quark mass (m_t). A clustering technique resolves the combinatorics associated with high-multiplicity jet events. The three closest jets in the $\eta-\phi$ plane are combined to form one triplet; a second triplet is formed from the remaining jets by repeating the procedure. The resulting three-jet mass (m_{jjj}) spectrum is shown in Fig. 1 for the control region constructed from $\ell +$ jets events (defined below). There is a clear peak associated with the hadronically decaying top quarks above a non-$t\bar{t}$ background. A requirement of $80 < m_{jjj} < 270$ GeV is placed on each reconstructed triplet in the event. The kinematics of the $t \rightarrow bW \rightarrow b\ell\nu$ decay is also exploited to further reduce the dominant $\ell +$ jets background, as the m_T distribution of the p_T^{miss} and b-jet (m_T^{jet}) has an end point at m_t. When there are ≥ 2 loose b-jets, the m_T^{jet} for the b-jet closest to the p_T^{miss} is required to be > 175 GeV. The largest m_T^{jet} is calculated for each of the four highest-p_T jets, is required to be > 175 GeV in the case of only one tight b-jet.

Two signal regions (SR) are defined including the above kinematic and mass requirements. The first, which requires $E_T^{\text{miss}} > 150$ GeV (SRA), is optimized for low m_{t_1}, while the second, requiring $E_T^{\text{miss}} > 260$ GeV (SRB), is used for higher m_{t_1}. Using these signal regions, the search is most sensitive to $t\bar{t}t\bar{t}$ production with $350 \leq m_{t_1} \leq 500$ GeV and $m_{t_1} < m_{t_2}$. Signal events are simulated using HERWIG++ [52] with the MRST2007LO* [53] parton distribution functions (PDF) generated with the $t\bar{t}$ and $t\bar{t}$ masses at fixed values in a grid with 50 GeV spacing. The mixing between \bar{t}_1 and \bar{t}_R is chosen such that the lightest scalar top is mostly the partner of the right-handed top quark. The branching fraction of $t \rightarrow t'X_1^0$ is set to 100% and the top-quark mass is set to 172.5 GeV. Signal cross sections are calculated to next-to-leading order in the strong coupling constant, including the resummation of soft gluon emission at next-to-leading-logarithmic accuracy (NLO + NLL) [10–12]. The nominal production cross section and associated uncertainty are taken from an envelope of cross section predictions using different PDF sets and factorization and renormalization scales, as described in Ref. [54]. The $t\bar{t}t\bar{t}$ cross section for $m_{t_1} = 400$ GeV is $\sigma_{t\bar{t}t\bar{t}} = 0.21 \pm 0.03$ pb.

In the signal region, the dominant source of SM background is $t\bar{t} \rightarrow \tau +$ jets events where the τ lepton is reconstructed as a jet. Additional, smaller, backgrounds include other $t\bar{t} \rightarrow \ell +$ jets final states, $t\bar{t} + V$ where V represents a W or Z boson, single top-quark production, $V +$ jets, and $VV +$ jets. The $t\bar{t}$ events are produced with ALPGEN [55] using the CTEQ6L1 PDF [56] and interfaced to HERWIG [57,58] for particle production and JIMMY [59] for the underlying event model. TAUOLA was used to model the decay of τ leptons [60]. Additional $t\bar{t}$ samples generated with MC@NLO [61,62] and ACERMC [63], interfaced to HERWIG and JIMMY, are used to estimate event generator
systematic uncertainties. Samples of $t\bar{t}$ + V are produced with MADGRAPH [64] interfaced to PYTHIA [58,65,66]. Single top events are generated with MC@NLO [67,68] and ACERMC. The associated production of W and Z bosons and light and heavy-flavor jets is simulated using ALPGEN; diboson production is simulated with SHERPA [69].

All samples are passed through the GEANT4 simulation of the ATLAS detector, and are reconstructed in the same manner as the data. The simulation includes the effect of multiple pp interactions and is weighted to reproduce the observed distribution of the number of interactions per bunch crossing. SM event samples are normalized to the results of higher-order calculations using the cross sections cited in Ref. [70] except for the $\ell +$ jets $t\bar{t}$ background. This sample is normalized by a factor that scales the $t\bar{t}$ expectation to agree with the observed data in a control region (CR) kinematically close to the signal region but with little expected signal. The CR is constructed from events containing one muon or one “tight” electron [49] with $p_T > 30$ GeV consistent with originating from a W-boson decay ($40 < m_T^l < 120$ GeV) and ≥ 5 jets, where m_T^l is the transverse mass of the electron or muon and p_T^{miss} the lepton. The jet must be isolated such that the scalar p_T sum of tracks in a cone of $\Delta R < 0.2$ around the lepton, excluding the track of the lepton, is <1.8 GeV for the muon or is <10% of the electron p_T, respectively. The jet, b-jet, and E_T^{miss} requirements remain the same as the standard signal selection; however, some topological constraints are relaxed [$\Delta \phi (p_T^{miss},$ jet) $> \pi/10$ radians and $m_{jjj} < 600$ GeV] and others removed (m_T^{jet}) to gain statistics. The $t\bar{t}$ purity in the control region is >80%; the expected signal contamination is <3%. The lepton is treated as a jet of the same energy and momentum, mimicking the effect of the $t\bar{t}$ lepton. Effects of the additional E_T^{miss} from the τ neutrino are smaller than the statistical uncertainties. The normalization is scaled by 0.66 ± 0.05 to bring the ≥ 6 jet $\ell +$ jets ALPGEN $t\bar{t}$ events into agreement with the data after recalculating all quantities except E_T^{miss}; the uncertainty quoted here is statistical only. This scale factor is used in Figs. 1–3. The normalization is validated with an orthogonal $t\bar{t}$-dominated sample created from SRA by selecting events with τ-like jets; the requirement on m_T^{jet} is removed to increase the sample size. The m_T of τ-like jets is shown in Fig. 2, where the $t\bar{t}$ sample has been normalized as described above. Expectations from the simulation agree with the data within uncertainties. Contributions to the signal region from QCD multijet and all-hadronic $t\bar{t}$ production are estimated with a data-driven technique [71]. Jets are smeared in a low-E_T^{miss} data sample using response functions derived from control regions dominated by multijet events. The expected number of such events is 0.2 ± 0.2 in SRA after the full event selection.

The E_T^{miss} distribution in SRA is shown in Fig. 3 for data, for the SM backgrounds, and for expectations of $t\bar{t} + t\bar{t}$ production with $m_{t\bar{t}} = 400$ and $m_{t\bar{t}} = 1$ GeV. Numbers of events and combined statistical and systematic uncertainties, for both SRA and SRB, are tabulated in Table I. Uncertainties in the event generators, including the impact of initial- and final-state radiation, are the dominant source of systematic uncertainty of 28% (23%) for the background in SRA (SRB). Other major sources of uncertainty include 22% (32%) for the jet energy calibration, 6.5% (6.8%) for jet energy resolution, 5.9% (6.2%) for b-jet identification, and 1.4% (1.5%) for E_T^{miss} in SRA (SRB).

![FIG. 2 (color online). The m_T distribution for τ-like jets with the selection described in the text. Data are indicated by points; shaded histograms represent contributions from several SM sources (with $t\bar{t}$ scaled by 0.66). The hatched error bars indicate the systematic uncertainty on the total expected background. The expected signal distribution for $m_{t\bar{t}} = 400$ GeV, $m_{t\bar{t}} = 1$ GeV is overlaid.](image)

![FIG. 3 (color online). The E_T^{miss} distribution in data compared to the SM expectation for signal region A. The hatched error bars indicate the systematic uncertainty on the total expected background. The expected signal distribution for $m_{t\bar{t}} = 400$ GeV, $m_{t\bar{t}} = 1$ GeV is overlaid.](image)
TABLE I. The numbers of expected events for the SM backgrounds and an example SUSY signal point, and the observed number of events in data. The 95% C.L. upper limit on the observed (expected) visible cross section, as defined in the text, is appended below.

<table>
<thead>
<tr>
<th></th>
<th>SRA</th>
<th>SRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>$E_T^{miss} > 150$ GeV</td>
<td>$E_T^{miss} > 260$ GeV</td>
</tr>
<tr>
<td>$t\bar{t} + W/Z$</td>
<td>9.2 ± 2.7</td>
<td>2.3 ± 0.6</td>
</tr>
<tr>
<td>Single top</td>
<td>0.8 ± 0.2</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>Z + jets</td>
<td>1.3 ± 0.1</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>W + jets</td>
<td>1.2 ± 0.1</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>Diboson</td>
<td>0.1 ± 0.1</td>
<td>0.1 ± 0.1</td>
</tr>
<tr>
<td>Multijets</td>
<td>0.2 ± 0.2</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td>Total SM</td>
<td>13.5 ± 3.7</td>
<td>4.4 ± 1.3</td>
</tr>
<tr>
<td>SUSY ($m_{\tilde{g}}, m_{\tilde{g}}$) = (400, 1) GeV</td>
<td>14.8 ± 4.0</td>
<td>8.9 ± 3.1</td>
</tr>
<tr>
<td>Data (observed)</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Visible cross section limit [fb]</td>
<td>2.9 (2.5)</td>
<td>1.3 (1.3)</td>
</tr>
</tbody>
</table>

FIG. 4 (color online). Expected and observed 95% C.L. exclusion limits in the plane of $m_{\tilde{g}}$ vs $m_{\tilde{g}}$, assuming 100% branching fraction for $\tilde{t} \rightarrow t\tilde{g}^0$. The dashed line shows the expected limit at 95% C.L. with the shaded region indicating the ±1σ exclusions due to experimental uncertainties. Observed limits are indicated by the solid contour (nominal) and the dotted contours (obtained by varying the SUSY cross section by the theoretical uncertainties). The inner dotted contour indicates the excluded region. The dashed diagonal line represents the kinematic limit for the $t\tilde{g}^0$ final state. The numbers overlaid on the plot represent the 95% C.L. excluded visible cross sections in pb.

The number of observed events in the data is well matched by the SM background. These results are interpreted as exclusion limits for $m_{\tilde{g}}$ and $m_{\tilde{g}}$ using a CLs likelihood ratio combining Poisson probabilities for signal and background [72]. Systematic uncertainties are treated as nuisance parameters assuming Gaussian distributions. Uncertainties associated with jets, b-jets, E_T^{miss}, and luminosity are fully correlated between signal and background; the others are assumed to be uncorrelated. The expected limits for the signal regions are evaluated for each ($m_{\tilde{g}}$, $m_{\tilde{g}}$) point; the SR with the better expected sensitivity is used for that point. The expected and observed 95% C.L. exclusion limits, interpolating across points, are displayed in Fig. 4. The −1σ observed limit contour that accounts for theoretical uncertainties on the SUSY cross sections is maximum at ($m_{\tilde{g}}, m_{\tilde{g}}$) = (445, 50) GeV. Top squark masses between 370 and 465 GeV are excluded for $m_{{\tilde{g}}_1} \sim$ 0 GeV. These values are derived from the −1σ observed limit contour to account for theoretical uncertainties on the SUSY cross sections. The 95% C.L. upper limit on the number of events beyond the SM in each signal region, divided by the integrated luminosity, yields limits on the observed (expected) visible cross sections of 2.9 (2.5) fb in SRA and 1.3 (1.3) fb in SRB.

In conclusion, we have presented a search for the direct production of $\tilde{t}_1 \rightarrow t\tilde{g}_1$ in the $t\bar{t}$/$t\bar{t}^0$ decay channel, assuming 100% branching fraction for $\tilde{t}_1 \rightarrow t\tilde{g}_1^0$. A total of 16 (4) events are observed compared to a predicted standard model background of $13.5^{+3.6}_{-4.4} (4.4^{+1.7}_{-1.3})$ events in two signal regions based on $\int L dt = 4.7$ fb$^{-1}$ of pp collision data taken at $\sqrt{s} = 7$ TeV with the ATLAS detector at the LHC. No evidence for $\tilde{t}_1 \rightarrow t\tilde{g}_1^0$ is observed in data and 95% C.L. limits are set on $\tilde{t}_1 \rightarrow t\tilde{g}_1^0$ production as a function of $m_{\tilde{g}}$ and $m_{\tilde{g}}$.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and Fapesp, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MPT CR, MPO CR, and VSC CR, Czech Republic; Dret, DstNsrc, and Lundbeck Foundation, Denmark; EPLANET, ERC, European Union; IN2P3-CNRS and CEA-DSM/IFR, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, NERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW, Poland; GRICES and FCT, Portugal; MURST (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MST, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NRC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial com-
puting support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

[36] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and the z axis along the beam pipe. Cylindrical coordinates (r, φ) are used in the transverse plane, being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $η = −\ln(\tan(θ/2))$.
Waseda University, Tokyo, Japan

Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison Wisconsin, USA

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven Connecticut, USA

Yerevan Physics Institute, Yerevan, Armenia

Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

\(^{a}\)Deceased.

\(^{b}\)Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisboa, Portugal.

\(^{c}\)Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.

\(^{d}\)Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

\(^{e}\)Also at TRIUMF, Vancouver British Columbia, Canada.

\(^{f}\)Also at Department of Physics, California State University, Fresno CA, USA.

\(^{g}\)Also at Novosibirsk State University, Novosibirsk, Russia.

\(^{h}\)Also at Fermilab, Batavia IL, USA.

\(^{i}\)Also at Department of Physics, University of Coimbra, Coimbra, Portugal.

\(^{j}\)Also at Department of Physics, UASLP, San Luis Potosi, Mexico.

\(^{k}\)Also at Università di Napoli Parthenope, Napoli, Italy.

\(^{l}\)Also at Institute of Particle Physics (IPP), Canada.

\(^{m}\)Also at Department of Physics, Middle East Technical University, Ankara, Turkey.

\(^{n}\)Also at Louisiana Tech University, Ruston LA, USA.

\(^{o}\)Also at Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.

\(^{p}\)Also at Dep of Physics and Astronomy, University College London, London, United Kingdom.

\(^{q}\)Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada.

\(^{r}\)Also at Department of Physics, University of Cape Town, Cape Town, South Africa.

\(^{s}\)Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

\(^{t}\)Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

\(^{u}\)Also at Manhattan College, New York NY, USA.

\(^{v}\)Also at School of Physics, Shandong University, Shandong, China.

\(^{w}\)Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

\(^{x}\)Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.

\(^{y}\)Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

\(^{z}\)Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.

\(^{aa}\)Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France.

\(^{bb}\)Also at Section de Physique, Université de Genève, Geneva, Switzerland.

\(^{cc}\)Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.

\(^{dd}\)Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.

\(^{ee}\)Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

\(^{ff}\)Also at California Institute of Technology, Pasadena CA, USA

\(^{gg}\)Also at Institute of Physics, Jagielionian University, Krakow, Poland.

\(^{hh}\)Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France, USA

\(^{ii}\)Also at Nevis Laboratory, Columbia University, Irvington NY, USA.

\(^{jj}\)Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.

\(^{kk}\)Also at Department of Physics, Oxford University, Oxford, United Kingdom.

\(^{ll}\)Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

\(^{mm}\)Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.

\(^{nn}\)Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.