Search for diphoton events with large missing transverse momentum in 7 TeV proton-proton collision data with the ATLAS detector

DOI
10.1016/j.physletb.2012.10.069

Publication date
2012

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for diphoton events with large missing transverse momentum in 7 TeV proton–proton collision data with the ATLAS detector

ATLAS Collaboration

A search for diphoton events with large missing transverse momentum ($E_{T}\text{miss}$) in 4.8 fb^{-1} of proton–proton (pp) collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the Large Hadron Collider (LHC) in 2011, extending a prior study performed with 1 fb^{-1} detector at the LHC in 2011, extending large missing transverse momentum ($E_{T}\text{miss}$) collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector, corresponding to an integrated luminosity of 4.8 fb^{-1}. No excess of events was observed above the Standard Model prediction and model-dependent 95% confidence level exclusion limits are set. In the context of a generalised model of gauge-mediated supersymmetry breaking with a bino-like lightest neutralino of mass above 50 GeV, gluinos (squarks) below 1.07 TeV (0.87 TeV) are excluded, while a breaking scale Λ below 196 TeV is excluded for a minimal model of gauge-mediated supersymmetry breaking. For a specific model with one universal extra dimension, compactification scales $1/R < 1.40$ TeV are excluded. These limits provide the most stringent tests of these models to date.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

This Letter reports on a search for diphoton ($\gamma\gamma$) events with large missing transverse momentum ($E_{T}\text{miss}$) in 4.8 fb^{-1} of proton–proton (pp) collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the Large Hadron Collider (LHC) in 2011, extending and superseding a prior study performed with 1 fb^{-1} [1]. The results are interpreted in the context of three models of new physics: a general model of gauge-mediated supersymmetry breaking (GGM) [2–4], a minimal model of gauge-mediated supersymmetry breaking (SPS8) [5], and a model with one universal extra dimension (UED) [6–8].

2. Supersymmetry

Supersymmetry (SUSY) [9–17] introduces a symmetry between fermions and bosons, resulting in a SUSY partner (sparticle) with identical quantum numbers except a difference by half a unit of spin for each Standard Model (SM) particle. As none of these sparticles have been observed, SUSY must be a broken symmetry if realised in nature. Assuming R-parity conservation [18–22], sparticles are produced in pairs. These would then decay through cascades involving other sparticles until the lightest SUSY particle (LSP), which is stable, is produced.

In gauge-mediated SUSY breaking (GMSB) models [23–28] the LSP is the gravitino \tilde{G}. GMSB experimental signatures are largely determined by the nature of the next-to-lightest SUSY particle (NLSP). In this study the NLSP is assumed to be the lightest neutralino $\tilde{\chi}^0_1$. Should the lightest neutralino be a bino (the SUSY partner of the SM U(1) gauge boson), the final decay in the cascade would predominantly be $\tilde{\chi}^0_1 \rightarrow \gamma\tilde{G}$, with two cascades per event, leading to final states with $\gamma\gamma + E_{T}\text{miss}$, where $E_{T}\text{miss}$ results from the undetected gravitinos.

Two different classes of gauge-mediated models, described in more detail below, are considered as benchmarks to evaluate the reach of this analysis: the minimal GMSB model (SPS8) as an example of a complete SUSY model with a full particle spectrum and two different variants of the GGM model as examples of phenomenological models with reduced particle content.

In the SPS8 model, the only free parameter is the SUSY-breaking mass scale Λ that establishes the nature of the observable phenomena exhibited by the low-energy sector. The other model parameters are fixed to the following values: the messenger mass $M_{\text{mess}} = 2\Lambda$, the number of SU(5) messengers $N_{5} = 1$, the ratio of the vacuum expectation values of the two Higgs doublets $\tan\beta = 15$, and the Higgs sector mixing parameter $\mu > 0$. The bino NLSP is assumed to decay promptly ($\delta_{\text{NLSP}} < 0.1$ mm). For $\Lambda \simeq 200$ TeV, the direct production of gaugino pairs such as $\tilde{\chi}^0_{1,2}\tilde{\chi}^\pm_{1,2}$ or $\tilde{\chi}^+_{1,1}\tilde{\chi}^-_{1,1}$ pairs is expected to dominate at a LHC centre-of-mass energy of $\sqrt{s} = 7$ TeV. The contribution from gluino and/or squark pairs is below 10% of the production cross section due to their high masses. The sparticle pair produced in the collision decays via cascades into two photons and two gravitinos. Further SM particles such as gluons, quarks, leptons and gauge bosons may be produced in the cascade decays. The current best limit on Λ in this model is 145 TeV [1].

Two different configurations of the GGM SUSY model are considered in this study, for which the neutralino NLSP, chosen to be the bino, and either the gluino or the squark masses are treated as...
free parameters. For the squark–bino GGM model all squark masses are treated as degenerate except the right-handed up-type squarks whose mass is decoupled (set to inaccessibly large values). For the gluino–bino model all squark masses are decoupled. For both configurations all other sparticle masses are also decoupled, leading to a dominant production mode at $\sqrt{s} = 7$ TeV of a pair of squarks in one case and a pair of gluinos in the other case. These would decay via short cascades into the bino-like neutralino NLSP. Jets may be produced in the cascades from the gluino and squark decays. Further model parameters are fixed to $c_{\text{NLSP}} < 0.1$ mm and $\tan\beta = 2$; for this GGM scenario, restricted to the region of parameter space for which the NLSP is the bino-like neutralino, the final-state phenomenology relevant to this search is only weakly dependent on the value of $\tan\beta$ [4]. The decay into the wino-like neutralino NLSP is possible and was studied by the CMS Collaboration [29].

3. Extra dimensions

UED models postulate the existence of additional spatial dimensions in which all SM particles can propagate, leading to the existence of a series of excitations for each SM particle, known as a Kaluza–Klein (KK) tower. This analysis considers the case of a single UED, with compactification radius (size of the extra dimension) $R \approx 1$ TeV$^{-1}$. At the LHC, the main UED process would be the production via the strong interaction of a pair of first-excitation-level KK quarks and/or gluons [30]. These would decay via cascades involving other KK particles until reaching the lightest KK particle (LKP), i.e. the first-excitation-level KK photon γ^*. SM particles such as quarks, gluons, leptons and gauge bosons may be produced in the cascades. If the UED model is embedded in a larger space with N additional eV-sized dimensions accessible only to gravity [31], with a $(4 + N)$-dimensional Planck scale (M_D) of a few TeV, the LKP would decay gravitationally via $\gamma^* \rightarrow \gamma + G$. G represents a tower of eV-spaced graviton states, leading to a graviton mass between 0 and $1/R$. With two decay chains per event, the final state would contain $\gamma\gamma + E_{\text{miss}}$, where E_{miss} results from the escaping gravitons. Up to 1 TeV, the branching ratio to the diphoton and E_{miss} final state is close to 100%. As $1/R$ increases, the gravitational decay widths become more important for all KK particles and the branching ratio into photons decreases, e.g. to 50% for $1/R = 1.5$ TeV [7].

The UED model considered here is defined by specifying R and Λ, the ultraviolet cut-off used in the calculation of radiative corrections to the KK masses. This analysis sets Λ such that $\mathcal{A}R = 20$ [32]. The γ^* mass is insensitive to Λ, while other KK masses typically change by a few per cent when varying $\mathcal{A}R$ in the range 10–30. For $1/R = 1.4$ TeV, the masses of the first-excitation-level KK photon, quark and gluon are 1.40 TeV, 1.62 TeV and 1.71 TeV, respectively [33].

4. Simulated samples

For the GGM model, the SUSY mass spectra were calculated using SUSPECT 2.41 [34] and SDECAY 1.3 [35]; for the SPS8 model, the SUSY mass spectra were calculated using ISAJET 7.80 [36]. The Monte Carlo (MC) SUSY signal samples were produced using Herwig++ 2.5.1 [37] with MRST2007 LO* [38] parton distribution functions (PDFs). Signal cross sections were calculated to next-to-leading order (NLO) in the strong coupling constant, including the resummation of soft gluon emission at next-to-leading-logarithmic accuracy [39–43]. The nominal cross sections and the uncertainties were taken from an envelope of cross-section predictions using different PDF sets and factorisation and renormalisation scales, as described in Ref. [44]. In the case of the UED model, cross sections were estimated and MC signal samples generated using the UED model as implemented at leading order (LO) in PYTHIA 6.423 [45,33] with MRST2007 LO* PDFs. The “irreducible” background from $W(\rightarrow \ell\nu)\gamma\gamma$ and $Z(\rightarrow \nu\bar{\nu})\gamma\gamma$ production was simulated at LO using MadGraph 4 [46] with the CTEQ6L1 [47] PDFs. Parton showering and fragmentation were simulated with PYTHIA. NLO cross sections and scale uncertainties were implemented via multiplicative constants (K-factors) that relate the NLO and LO cross sections. These have been calculated for several restricted regions of the overall phase space of the $Z(\rightarrow \nu\bar{\nu})\gamma\gamma$ and $W(\rightarrow \ell\nu)\gamma\gamma$ processes [48,49], and are estimated to be 2.0 ± 0.3 and 3 ± 3 for the $Z(\rightarrow \nu\bar{\nu})\gamma\gamma$ and $W(\rightarrow \ell\nu)\gamma\gamma$ contributions to the signal regions of this analysis, respectively. As described below, all other background sources are estimated through the use of control samples derived from data.

All samples were processed through the GEANT4-based simulation of the ATLAS detector [50,51]. The variation of the number of pp interactions per bunch crossing (pile-up) as a function of the instantaneous luminosity is taken into account by overlaying simulated minimum bias events according to the observed distribution of the number of pile-up interactions in data, with an average of ~10 interactions.

5. ATLAS detector

The ATLAS detector [52] is a multi-purpose apparatus with a forward–backward symmetric cylindrical geometry and nearly 4π solid angle coverage. Closest to the beamline are tracking devices comprising layers of silicon-based pixel and strip detectors covering $|\eta| < 2.5$ and straw-tube detectors covering $|\eta| < 2.0$, located inside a thin superconducting solenoid that provides a 2 T magnetic field. Outside the solenoid, fine-granularity lead/liquid-argon electromagnetic (EM) calorimeters provide coverage for $|\eta| < 3.2$ to measure the energy and position of electrons and photons. A presampler, covering $|\eta| < 1.8$, is used to correct for energy lost upstream of the EM calorimeter. An iron/scintillating-tile hadronic calorimeter covers the region $|\eta| < 1.7$, while a copper/liquid-argon medium is used for hadronic calorimeters in the end-cap region $1.5 < |\eta| < 3.2$. In the forward region $3.2 < |\eta| < 4.9$ liquid-argon calorimeters with copper and tungsten absorbers measure the electromagnetic and hadronic energy. A muon spectrometer consisting of three superconducting toroidal magnet systems each comprising eight toroidal coils, tracking chambers, and detectors for triggering surrounds the calorimeter system.

6. Reconstruction of candidates and observables

The reconstruction of converted and unconverted photons and of electrons is described in Refs. [53] and [54], respectively. Photon candidates were required to be within $|\eta| < 1.81$, and to be outside the transition region $1.37 < |\eta| < 1.52$ between the barrel and end-cap calorimeters. Identified on the basis of the characteristics of the longitudinal and transverse shower development in the EM calorimeter, the analysis made use of both “loose” and “tight” photons [53]. In the case that an EM calorimeter deposition was identified as both a photon and an electron, the photon candidate was discarded and the electron candidate retained. In addition,

1. ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln(\tan(\theta/2))$.
converted photons were re-classified as electrons if one or more candidate conversion tracks included at least one hit from the pixel layers. Giving preference to the electron selection in this way reduced the electron-to-photon fake rate by 50–60% (depending on the value of η) relative to that of the prior 1 fb$^{-1}$ analysis [1], while preserving over 70% of the signal efficiency. Finally, an “isolation” requirement was imposed. After correcting for contributions from pile-up and the deposition ascribed to the photon itself, photon candidates were removed if more than 5 GeV of transverse energy was observed in a cone of $\sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.2$ surrounding the energy deposition in the calorimeter associated with the photon.

The measurement of the two-dimensional transverse momentum vector p_T^{miss} (and its magnitude E_T^{miss}) was based on energy deposits in calorimeter cells inside three-dimensional clusters with $|\eta| < 4.9$ and was corrected for contributions from muons, if any [55]. The cluster energy was calibrated to correct for the different response to electromagnetically- and hadronically-induced showers, energy loss in dead material, and out-of-cluster energy. The contribution from identified muons was accounted for by adding in the energy derived from the properties of reconstructed muon tracks.

Jets were reconstructed using the anti-k_t jet algorithm [56] with radius parameter $R = 0.4$. They were required to have $p_T > 20$ GeV and $|\eta| < 2.8$ [57].

Two additional observables of use in discriminating SM backgrounds from potential GMSB and UED signals were defined. The total visible transverse energy H_T was calculated as the sum of the magnitude of the transverse momenta of the two selected photons and any additional leptons and jets in the event. The photon–E_T^{miss} separation $\Delta\phi(\gamma, E_T^{\text{miss}})$ was defined as the azimuthal angle between the missing transverse momentum vector and either of the two selected photons, with $\Delta\phi_{\text{min}}(\gamma, E_T^{\text{miss}})$ the minimum value of $\Delta\phi(\gamma, E_T^{\text{miss}})$ of the two selected photons.

7. Data analysis

The data sample, corresponding to an integrated luminosity of (4.8 ± 0.2) fb$^{-1}$ [58,59], was selected by a trigger requiring two loose photon candidates with $E_T > 20$ GeV. To ensure the event resulted from a beam collision, events were required to have at least one vertex with five or more associated tracks. Events were then required to contain at least two tight photon candidates with $E_T > 50$ GeV, which MC studies suggested would provide the greatest separation between signal and SM background for a broad range of the parameter space of the new physics scenarios under consideration in this analysis. A total of 10,455 isolated $\gamma\gamma$ candidate events passing these selection requirements were observed in the data sample. The E_T distributions2 of the leading and sub-leading photon for events in this sample are shown in Figs. 1 and 2. Also shown are the E_T spectra obtained from GGM MC samples for $m_3 = 1000$ GeV and $m_\tilde{g} = 450$ GeV, from SPS8 MC samples with $\Lambda = 190$ TeV, and from UED MC samples for $1/R = 1.3$ TeV, representing model parameters near the expected exclusion limit. Figs. 3 and 4 show the H_T and $\Delta\phi_{\text{min}}(\gamma, E_T^{\text{miss}})$ distributions of selected diphoton events, with those of the same signal models overlaid.

To maximise the sensitivity of this analysis over a wide range of model parameters that may lead to different kinematic properties, three different signal regions (SRs) were defined based on the observed values of E_T^{miss}, H_T and $\Delta\phi_{\text{min}}(\gamma, E_T^{\text{miss}})$. SR A, optimised for gluino/squark production with a subsequent decay to a high-mass bino, requires large E_T^{miss} and moderate H_T. SR B, optimised for gluino/squark production with a subsequent decay to a low-mass bino, requires moderate E_T^{miss} and large H_T. SR C, optimised for the electroweak production of intermediate-mass gaugino pairs that dominates the SPS8 cross section in this regime, requires moderate E_T^{miss} but makes no requirement on H_T. In addition, a requirement of $\Delta\phi_{\text{min}}(\gamma, E_T^{\text{miss}}) > 0.5$ was imposed on events in SR A and C; for the low-mass bino targeted by SR B, the separation between the photon and gravitino daughters of the bino is too slight to allow for the efficient separation of signal from background through the use of this observable. The selection requirements of the three SRs are summarised in Table 1. Of the three SRs, SR A provides the greatest sensitivity to the UED model, and is thus the SR used to test this model.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig1.png}
\caption{The E_T spectrum of the leading photon in the $\gamma\gamma$ candidate events in the data (points, statistical uncertainty only) together with the spectra from simulated GGM ($m_3 = 1000$ GeV, $m_\tilde{g} = 450$ GeV), SPS8 ($\Lambda = 190$ TeV), and UED ($1/R = 1.3$ TeV) samples after the diphoton requirement. The signal samples are scaled by a factor of 100 for clarity.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig2.png}
\caption{The E_T spectrum of the sub-leading photon in the $\gamma\gamma$ candidate events in the data (points, statistical uncertainty only) together with the spectra from simulated GGM ($m_3 = 1000$ GeV, $m_\tilde{g} = 450$ GeV), SPS8 ($\Lambda = 190$ TeV), and UED ($1/R = 1.3$ TeV) samples after the diphoton requirement. The signal samples are scaled by a factor of 100 for clarity.}
\end{figure}

\footnote{An excess of events relative to a smoothly-falling distribution of the leading-photon spectrum was observed for $E_T < 285$ GeV. Searching over the range 100 GeV < $E_T < 500$ GeV, a significance of 1.8g was found using BumpHunter [60], while the local significance was found to be 3.1g. No correlation between the excess and the LHC running period or luminosity was observed. A comparison of other observables (e.g. diphoton mass, E_T^{miss}, leading-photon η, $\Delta\phi(\gamma, \gamma_2)$) between the excess and sideband regions exhibited no appreciable differences. It was concluded that the observed excess of events is compatible with a statistical fluctuation.}
contribution from the SPS8 MC sample with
and C, respectively. After imposing the final
tical uncertainty only) together with the spectra from simulated GGM (m\(_{\chi}\) = 1000 GeV, m\(_{\tilde{g}}\) = 450 GeV), SPS8 (A = 190 TeV), and UED (1/R = 1.3 TeV) samples after the diphoton requirement. The signal samples are scaled by a factor of 100 for clarity.

![Fig. 3. The H\(_{T}\) spectrum of \(\gamma\gamma\) candidate events in the data (points, statistical uncertainty only) together with the spectra from simulated GGM (m\(_{\chi}\) = 1000 GeV, m\(_{\tilde{g}}\) = 450 GeV), SPS8 (A = 190 TeV), and UED (1/R = 1.3 TeV) samples after the diphoton requirement. The signal samples are scaled by a factor of 100 for clarity.](image)

The minimum \(\Delta\phi(\gamma, E_{T}^{\text{miss}})\) spectrum of \(\gamma\gamma\) candidate events in the data (points, statistical uncertainty only) together with the spectra from simulated GGM (m\(_{\chi}\) = 1000 GeV, m\(_{\tilde{g}}\) = 450 GeV), SPS8 (A = 190 TeV), and UED (1/R = 1.3 TeV) samples after the diphoton requirement. The signal samples are scaled by a factor of 100 for clarity.

![Fig. 4. The minimum \(\Delta\phi(\gamma, E_{T}^{\text{miss}})\) spectrum of \(\gamma\gamma\) candidate events in the data (points, statistical uncertainty only) together with the spectra from simulated GGM (m\(_{\chi}\) = 1000 GeV, m\(_{\tilde{g}}\) = 450 GeV), SPS8 (A = 190 TeV), and UED (1/R = 1.3 TeV) samples after the diphoton requirement. The signal samples are scaled by a factor of 100 for clarity.](image)

Table 1

<table>
<thead>
<tr>
<th></th>
<th>SR A</th>
<th>SR B</th>
<th>SR C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{T}^{\text{miss}}) ></td>
<td>200 GeV</td>
<td>100 GeV</td>
<td>125 GeV</td>
</tr>
<tr>
<td>(H_{T}) ></td>
<td>600 GeV</td>
<td>1100 GeV</td>
<td>-</td>
</tr>
<tr>
<td>(\Delta\phi_{\text{min}}(\gamma, E_{T}^{\text{miss}})) ></td>
<td>0.5</td>
<td>-</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 2 shows the numbers of events remaining after several stages of the selection. A total of 117, 9 and 7293 candidate events were observed to pass all but the \(E_{T}^{\text{miss}}\) requirement of SR A, B and C, respectively. After imposing the final \(E_{T}^{\text{miss}}\) requirement, no events remained for SR A and B, while two events remained for SR C.

![Fig. 5. \(E_{T}^{\text{miss}}\) spectra in SR C for the \(\gamma\gamma\) candidate events in the data (points, statistical uncertainty only) and the estimated QCD background (normalised to the number of \(\gamma\gamma\) candidates with \(E_{T}^{\text{miss}}\) = 20 GeV), the \(W(\rightarrow e\nu) + \text{jets}(\gamma)\) and \(H(\rightarrow e\nu) + \text{jets}\) backgrounds as estimated from the electron–photon control sample, and the irreducible background of \(Z(\rightarrow \nu\bar{\nu}) + \gamma\gamma\) and \(W(\rightarrow e\nu) + \gamma\gamma\). The hatched region represents the extent of the uncertainty on the total background prediction. Also shown is the expected signal from the SPS8 (A = 190 TeV) sample.](image)

8. Background estimation

Following the procedure described in Ref. [61], the contribution to the large \(E_{T}^{\text{miss}}\) diphoton sample from SM sources can be grouped into three primary components. The first of these, referred to as "QCD background", arises from a mixture of processes that include \(\gamma\gamma\) production as well as \(\gamma + \text{jet}\) and multijet events with at least one jet mis-reconstructed as a photon. The second background component, referred to as "EW background", is due to \(W + \tau + \ell\) events (here \(\tau\) can be any number of photons or jets) for which mis-reconstructed photons arise from electrons and jets, and for which final-state neutrinos produce significant \(E_{T}^{\text{miss}}\). The QCD and EW backgrounds were estimated via dedicated control samples of data events. The third background component, referred to as "irreducible", consists of \(W + Z\) bosons produced in association with two real photons, with a subsequent decay into one or more neutrinos.

To estimate the QCD background from \(\gamma\gamma\), \(\gamma + \text{jet}\), and multijet events, a "QCD control sample" was selected from the diphoton trigger sample by selecting events for which at least one of the photon candidates passes the loose but not the tight photon identification. Events with electrons were vetoed to remove contamination from \(W \rightarrow e\nu\) decays. The \(H_{T}\) and \(\Delta\phi_{\text{min}}(\gamma, E_{T}^{\text{miss}})\) requirements associated with each of the three SRs were then applied, yielding three separate QCD samples, or "templates". An estimate of the QCD background contamination in each SR was obtained from imposing the \(E_{T}^{\text{miss}}\) requirement associated with the given SR upon the corresponding QCD template, after normalising each template to the diphoton data with \(E_{T}^{\text{miss}} < 20\) GeV from the given SR. This yielded a QCD background expectation of 0.85 ± 0.30(stat) events for SR C. No events above the corresponding \(E_{T}^{\text{miss}}\) requirement were observed for the A and B control samples, yielding an
estimate of 0 events with a 90% confidence-level (CL) upper limit of less than 1.01 and 1.15 background events for SR A and SR B, respectively.

To improve the constraint on the estimated background for SRs A and B, a complementary method making use of H_T sidebands of the QCD control sample was employed. The H_T requirement applied to the QCD templates of SR A and B was relaxed in three steps: to 400 GeV, 200 GeV and 0 GeV for the SR A control sample, and to 800 GeV, 400 GeV and 200 GeV for the SR B control sample. For each SR, the E_T^{miss} distribution of each of these relaxed control samples was scaled to the diphoton distribution for the given SR, yielding a series of three expected values for the QCD background as a function of the applied H_T requirement. The complementary estimate for the background contribution to the signal region employed a parabolic extrapolation to the actual H_T requirement used for the analysis (600 GeV and 1100 GeV for SRs A and B, respectively); a linear fit yielded a significantly lower background estimate for both SRs. The parabolic extrapolation yielded conservative upper estimates of 0.14 and 0.54 events for SRs A and B, respectively. The overall QCD background estimates for SRs A and B were taken to be 0.07 ± 0.07(syst) and 0.27 ± 0.27(syst) events, respectively, half of the value of this upper estimate, with systematic uncertainty assigned to cover the entire range between 0 and the upper estimate. The choice of a parabolic function constrained by three H_T points does not permit an estimation of statistical uncertainty on the extrapolation.

Other sources of systematic uncertainty in the estimated QCD background were considered. Using the E_T^{miss} distribution from a sample of $Z \rightarrow e^+e^-$ events instead of that of the QCD sample yielded estimates of 0, 0 and 0.15 events for SRs A, B and C, respectively. The difference between this estimate and that of the QCD sample was incorporated as a systematic uncertainty of ±0.71 on the SR C QCD background estimate. Making use of the alternative ranges 5 GeV < E_T^{miss} < 25 GeV and 10 GeV < E_T^{miss} < 30 GeV over which the QCD sample was normalised to the $\gamma\gamma$ sample resulted in a further systematic uncertainty of ±0.03 events on the QCD background estimate for SR C. The resulting QCD background estimates for the three SRs, along with their uncertainties, are compiled in Table 3.

The EW background, from $W + X$ and $t\bar{t}$ events, was estimated via an "electron–photon" control sample composed of events with at least one tight photon and one electron, each with $E_T > 50$ GeV, and scaled by the probability for an electron to be mis-reconstructed as a tight photon, as estimated from a "tag-and-probe" study of the Z boson in the ee and $\gamma\gamma$ sample. The scaling factor varies between 2.5% (0 < $|\eta|$ < 0.6) and 7.0% (1.52 < $|\eta|$ < 1.81), since it depends on the amount of material in front of the calorimeter. Events with two or more tight photons were vetoed from the control sample to preserve its orthogonality to the signal sample. In case of more than one electron, the one with the highest p_T was used.

After applying corresponding selection requirements on H_T, $\Delta\phi_{\text{min}}(\gamma, E_T^{\text{miss}})$ and E_T^{miss}, a total of 1, 3 and 26 electron–photon events were observed for SRs A, B and C, respectively. After multiplying by the η-dependent electron-to-photon mis-reconstruction probability, the resulting EW background contamination was estimated to be 0.03 ± 0.03, 0.09 ± 0.05 and 0.80 ± 0.16 events for SRs A, B and C, respectively, where the uncertainties are statistical only.

The systematic uncertainty on the determination of the electron-to-photon mis-reconstruction probability is assessed by performing an independent tag-and-probe analysis with looser electron E_T and identification requirements. Differences with the nominal tag-and-probe analysis are taken as systematic uncertainty on the EW background estimate, resulting in relative systematic uncertainties of ±6.9%, ±7.1% and ±10.0% for SRs A, B and C, respectively. MC studies suggest that approximately 25% of the EW background involves no electron-to-photon mis-reconstruction, and thus are not accounted for with the electron–photon control sample. These events, however, typically involve a jet-to-photon mis-reconstruction (for example, an event with one radiated photon and a hadronic τ decay with an energetic leading π^0 mis-reconstructed as a photon), and are thus potentially accounted for in the QCD background estimate. A relative systematic uncertainty of ±25% is conservatively assigned to the EW background estimates for all three SRs to account for this ambiguity. The resulting EW background estimates for the three SRs, along with their uncertainties, are compiled in Table 3.

The contribution of the irreducible background from $Z \rightarrow \ell\ell + \gamma\gamma$ and $W(\rightarrow \ell\nu) + \gamma\gamma$ processes was estimated using MC samples. It was found to be negligible for SRs A and B, and estimated to be 0.46 ± 0.16 ± 0.19 events for SR C, where the first uncertainty is due to the limited number of events in the MC sample and the second to the uncertainty on the applied K-factor. These estimates, along with the resulting estimates for the total background from all sources, are reported in Table 3.

The contamination from cosmic-ray muons, estimated using events triggered in empty LHC bunches, was found to be negligible.

9. Signal efficiencies and systematic uncertainties

Signal efficiencies were estimated using MC simulation. GGM signal efficiencies were estimated over an area of the GGM parameter space that ranges from 800 GeV to 1300 GeV for the gluino or squark mass, and from 50 GeV to within 10 GeV of the gluino or squark mass for the neutralino mass. For SR A the efficiency increases smoothly from 1.2% to 25% for $(m_{\tilde{g}}, m_{\tilde{g}}) = (800, 50)$ GeV to $(1300, 1280)$ GeV, but then drops to 20% for the case for which the gluino and neutralino masses are only separated by 10 GeV. For SR B the efficiency increases smoothly from 2.8% to 26% for $(m_{\tilde{g}}, m_{\tilde{g}}) = (800, 790)$ GeV to $(1300, 50)$ GeV. The SP8 signal efficiency in SR C increases smoothly from 5.9% ($A = 100$ TeV) to

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>The expected number of $\gamma\gamma$ events for each of the three signal regions. The uncertainties are statistical, arising from the limited numbers of events in the control samples, and systematic, the details of which are given in the text. For the irreducible background, the statistical uncertainty is due to limited numbers of events in the corresponding MC samples.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>QCD</td>
</tr>
<tr>
<td>Electroweak</td>
</tr>
<tr>
<td>$W^\pm(\rightarrow \ell\nu) + \gamma\gamma$</td>
</tr>
<tr>
<td>$Z(\rightarrow \nu\bar{\nu}) + \gamma\gamma$</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Observed events</td>
</tr>
</tbody>
</table>
Table 4
Relative systematic uncertainties on the expected signal yield for the GGM model with $m_{\tilde{g}} = 1000$ GeV and $m_{\tilde{q}} = 450$ GeV, the SPS8 model with $A = 190$ TeV, and the UED model with $1/R = 1.3$ TeV. For the GGM model, when the uncertainty differs for SRs A and B, it is presented as SRA/SRB. No PDF and scale uncertainties are given for the UED case as the cross section is evaluated only to LO.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Uncertainty</th>
<th>GGM</th>
<th>SPS8</th>
<th>UED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity</td>
<td>3.9%</td>
<td>3.9%</td>
<td>3.9%</td>
<td></td>
</tr>
<tr>
<td>Trigger</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>Photon identification</td>
<td>4.4%</td>
<td>4.4%</td>
<td>4.4%</td>
<td></td>
</tr>
<tr>
<td>Photon isolation</td>
<td>0.9%</td>
<td>0.2%</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>Pile-up</td>
<td>0.8%</td>
<td>0.5%</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>E_T^{miss} reconstruction</td>
<td>3.9/1.1%</td>
<td>2.8%</td>
<td>1.5%</td>
<td></td>
</tr>
<tr>
<td>H_T</td>
<td>0.0/2.1%</td>
<td>-</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>Signal MC statistics</td>
<td>3.0%</td>
<td></td>
<td>2.1%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Total signal uncertainty</td>
<td>7.6/7.1%</td>
<td>6.8%</td>
<td>6.3%</td>
<td></td>
</tr>
<tr>
<td>PDF and scale</td>
<td>31%</td>
<td>5.5%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>32%</td>
<td>8.7%</td>
<td>6.3%</td>
<td></td>
</tr>
</tbody>
</table>

21% ($A = 250$ TeV). For SR A the UED signal efficiency increases smoothly from 28% ($1/R = 1.0$ TeV) to 37% ($1/R = 1.5$ TeV).

The various relative systematic uncertainties on the GGM, SPS8 and UED signal cross sections are summarised in Table 4 for the chosen reference points: $(m_{\tilde{g}}, m_{\tilde{q}}) = (1000, 450)$ GeV for GGM, $A = 190$ TeV for SPS8, and $1/R = 1.3$ TeV for UED. The uncertainty on the luminosity is ±3.9% [58,59]. The efficiency of the required diphoton trigger was estimated using a single photon trigger according to [62], yielding 99.8±0.2% for events passing the diphoton selection. To estimate the systematic uncertainty due to the unknown composition of the data sample, the trigger efficiency was also evaluated on MC events using mis-reconstructed photons from filtered multijet samples and photons from signal (GGM, SPS8 and UED) samples. A conservative systematic uncertainty of ±0.5% was derived from the difference between the obtained efficiencies. Uncertainties on the photon selection, the photon energy scale, and the detailed material composition of the detector, as described in Ref. [61], result in an uncertainty of ±4.4% for the GGM, SPS8 and UED signals. The uncertainty due to the photon isolation requirement was estimated by varying the energy leakage and the pile-up corrections independently, resulting in an uncertainty of ±0.9%, ±0.2% and ±0.4% for the GGM, SPS8 and UED signals, respectively. The influence of pile-up on the signal efficiency, evaluated by scaling the number of pile-up events in the MC simulation by a factor of 0.9 (chosen to reflect the range of uncertainty inherent in estimating and modelling the effects of pile-up), leads to a systematic uncertainty of ±0.8% (GGM), ±0.5% (SPS8) and ±0.5% (UED). Systematic uncertainties due to the E_T^{miss} reconstruction, estimated by varying the cluster energies and the E_T^{miss} resolution between the measured performance and MC expectations [55], contribute an uncertainty of ±0.1/0.5% to ±5.3/16.1% (GGM, SR A/B), ±1.6% to ±9.7% (SPS8) and ±0.9% to ±2% (UED). Systematic uncertainties due to the H_T reconstruction, estimated by varying the energy scale and resolution of the individual objects entering H_T, are below ±0.3% (GGM, SR A), ±0.1% to ±7.3% (GGM, SR B) and ±0.1% to ±1.1% (UED). The systematic uncertainties from E_T^{miss} and H_T are taken to be fully correlated. Added in quadrature, the total systematic uncertainty on the signal yield varies between ±6% and ±20% (GGM), ±6% and ±15% (SPS8), and ±6% and ±7% (UED).

The PDF and factorisation and renormalisation scale uncertainties on the GGM (SPS8) cross sections were evaluated as described in Section 4, leading to a combined systematic uncertainty between ±23–39%, ±29–49% and ±4.7–6.4% for the GGM (gluino), GGM (squark) and SPS8 models, respectively. The different impact of the PDF and scale uncertainties on the GGM and SPS8 yields is related to the different production mechanisms in the two models (see Section 2). In the case of UED, the PDF uncertainties were evaluated by using the MSTW2008 LO [63] PDF error sets in the LO cross-section calculation and are about ±4%. The scale of α_s in the LO cross section calculation was increased and decreased by a factor of two, leading to a systematic uncertainty of ±4.5% and ±9%, respectively. NLO calculations are not yet available, so the LO cross sections were used for the limit calculation without any theoretical uncertainty, and the effect of PDF and scale uncertainties on the final limit is discussed separately.

10. Results

No evidence for physics beyond the SM was observed in any of the SRs. Based on the numbers of observed events in SR A, B and C and the background expectation shown in Table 3, 95% CL upper limits are set on the numbers of events in the different SRs from any scenario of physics beyond the SM using the profile likelihood and CLs prescriptions [64]. Uncertainties on the background expectation are treated as Gaussian-distributed nuisance parameters in the maximum likelihood fit, resulting in observed upper limits of 3.1, 3.1 and 4.9 events for SRs A, B and C, respectively. In the context of the GGM model, these limits translate into 95% upper limits on the visible cross section for new physics, defined by the product of cross section, branching ratio, acceptance and efficiency for the different SR definitions, of 0.6, 0.6 and 1.0 fb, respectively. As for background uncertainties, uncertainties on the luminosity, acceptance and efficiency are taken into account as Gaussian-distributed nuisance parameters in the maximum likelihood fit. Because the observed numbers of events are close to the expected numbers of background events for all three SRs, expected limits on the numbers of events from and visible cross section for new physics are, to the quoted accuracy, identical to the observed limits.

Limits are also set on the GGM squark and gluino masses as a function of the bino-like neutralino mass, making use of the SR (A or B) that provides the most stringent expected limit for the given neutralino mass. Figs. 6 and 7 show the expected and observed lower limits on the GGM gluino and squark masses, respectively, as a function of the neutralino mass. Three observed-limit contours are shown, corresponding to the nominal assumption for the SUSY production cross section as well as those derived by
cross-section dependence as a function of the lightest neutralino cross section and its theoretical uncertainty. For illustration the 1σ limit calculated using the LO cross-section prediction times branching ratio, as a function of 1/R and the KK quark (Q) and KK gluon (g*) masses. The ±1σ expected-limit error band overlaps the observed limit contour and is too narrow to be distinguished. No error is shown for the UED cross section since the cross-section calculation is available only to LO (see text for further discussion). The UED model parameters are N = 6, MMD = 5 TeV and AR = 20. Limits are set based on SR A.

computed at LO, in the limit calculation degrades the limit on 1/R by a few GeV.

11. Conclusions

A search for events with two photons and substantial E\text{miss} TeV, performed using 4.8 fb\(^{-1}\) of 7 TeV pp collision data recorded with the ATLAS detector at the LHC, is presented. The sensitivity to different new physics models producing this final state was optimised by defining three different signal regions. No significant excess above the expected background is found in any signal region. The results are used to set model-independent 95% CL upper limits on possible contributions from new physics. In addition, under the GGM hypothesis, considering cross sections one standard deviation of theoretical uncertainty below the nominal value, a lower limit on the gluino/squark mass of 1.07 TeV/0.87 TeV is determined for bino masses above 50 GeV. Under similar assumptions, a lower limit of 196 TeV is set on the SUSY-breaking scale 1/R. These results provide the most stringent tests of these models to date.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; CONICETI, Colombia; MDM, CR, MPO CR and VSC CR, Czech Republic; CNRS, CEA-DSM/IRFU, France; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and
References

ATLAS Collaboration

Department of Physics, Carleton University, Ottawa, ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States
31 Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
32 Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
33 Instituto de High Energy Physics, Chinese Academy of Sciences, Beijing, China
34 Department of Physics, University of science and Technology of China, Anhui, China
35 Laboratory of Heavy Ion Physics, Shanghai Jiao Tong University, Shanghai, China
36 Labo de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
37 Nevis Laboratory, Columbia University, Irvington, NY, United States
38 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
39 INFN Gruppo Collegato di Cosenza; INFN Dipartimento di Fisica, Università della Calabria, Arcavacata di Rende, Italy
40 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
41 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
42 Physics Department, Southern Methodist University, Dallas, TX, United States
43 Physics Department, University of Texas at Dallas, Richardson, TX, United States
44 DESY, Hamburg and Zeuthen, Germany
45 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
46 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
47 Department of Physics, Duke University, Durham, NC, United States
48 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
49 INFN Laboratori Nazionali di Frascati, Frascati, Italy
50 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
51 Section de Physique, Université de Genève, Geneva, Switzerland
52 INFN Sezione di Genova; INFN Dipartimento di Fisica, Università di Genova, Genova, Italy
53 E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi, Georgia
54 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
55 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
56 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
57 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
58 Department of Physics, Hampton University, Hampton, VA, United States
59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States
60 KICorr-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
61 ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
62 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
63 Department of Physics, Indiana University, Bloomington, IN, United States
64 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
65 University of Iowa, Iowa City, IA, United States
66 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States
67 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
68 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
69 Graduate School of Science, Kobe University, Kobe, Japan
70 Faculty of Science, Kyoto University, Kyoto, Japan
71 Kyoto University of Education, Kyoto, Japan
72 Department of Physics, Kyushu University, Fukuoka, Japan
73 Instituto de Física Le Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
74 Physics Department, Lancaster University, Lancaster, United Kingdom
75 INFN Sezione di Lecce; INFN Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
76 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
77 Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
78 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
79 Department of Physics, Royal Holloway University of London, Egham, United Kingdom
80 Department of Physics, University College London, London, United Kingdom
81 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
82 Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany
83 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
84 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
85 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
86 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
87 Nagasaki Institute of Applied Science, Nagasaki, Japan
88 Graduate School of Science and Kobayashi–Maskawa Institute, Nagoya University, Nagoya, Japan
89 INFN Sezione di Napoli; INFN Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
90 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
91 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
92 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas – LIP, Lisboa, Portugal.

Also at Faculdade de Ciencias and CFINUL, Universidade de Lisboa, Lisboa, Portugal.

Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at TRIUMF, Vancouver, BC, Canada.

Also at Department of Physics, California State University, Fresno, CA, United States.

Also at Novosibirsk State University, Novosibirsk, Russia.

Also at Fermilab, Batavia, IL, United States.

Also at Department of Physics, University of Coimbra, Coimbra, Portugal.

Also at Department of Physics, UASLP, San Luis Potosi, Mexico.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at Department of Physics, Middle East Technical University, Ankara, Turkey.

Also at Louisiana Tech University, Ruston, LA, United States.

Also at Dep. Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.

Also at Department of Physics and Astronomy, University College London, London, United Kingdom.

Also at Group of Particle Physics, University of Cape Town, Cape Town, South Africa.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at Manhattan College, New York, NY, United States.

Also at School of Physics, Shandong University, Shandong, China.

Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.

Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.

Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.

Also at DSM/INR (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.

Also at Section de Physique, Université de Genève, Geneva, Switzerland.

Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.

Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at California Institute of Technology, Pasadena, CA, United States.

Also at Institute of Physics, Jagiellonian University, Krakow, Poland.

Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.

Also at Nevis Laboratory, Columbia University, Irvington, NY, United States.

Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.

Also at Department of Physics, Oxford University, Oxford, United Kingdom.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.

Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.

* Deceased.