Search for down-type fourth generation quarks with the ATLAS detector in events with one lepton and hadronically decaying W bosons


Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.109.032001

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for Down-Type Fourth Generation Quarks with the ATLAS Detector in Events with One Lepton and Hadronically Decaying W Bosons

G. Aad et al.*
(ADLAS Collaboration)
(Rceived 29 February 2012; published 20 July 2012)

This Letter presents a search for pair production of heavy down-type quarks decaying via \( b' \rightarrow Wl \) in the lepton + jets channel, as \( b'b' \rightarrow W^+W^- + 1 \rightarrow bbW^+W^- + 1 \rightarrow l^+vbb\bar{q}\bar{q}q\bar{q}q\bar{q} \). In addition to requiring exactly one lepton, large missing transverse momentum, and at least six jets, the invariant mass of nearby jet pairs is used to identify high transverse momentum \( W \) bosons. In data corresponding to an integrated luminosity of 1.04 \( fb^{-1} \) from \( pp \) collisions at \( \sqrt{s} = 7 \) \( TeV \) recorded with the ATLAS detector, a heavy down-type quark with mass less than 480 \( GeV \) can be excluded at the 95% confidence level.

DOI: 10.1103/PhysRevLett.109.032001
PACS numbers: 13.85.Rm, 12.60.-i, 14.65.Jk

A fourth generation of chiral quarks is a natural extension to the standard Model (SM). It can explain some discrepancies observed in meson-mixing data and can provide an additional source of \( CP \) violation in \( B_s \) decays. A review of theoretical and experimental motivations for a fourth generation of quarks can be found in Refs. [1,2].

This Letter presents a search for a fourth generation down-type quark, \( b' \). If \( b' \) is chiral and its mass is larger than \( m_t + m_W \), then it decays predominantly as \( b' \rightarrow Wl + di \). Pair production of \( b' \) quarks leads therefore to four \( W \) bosons and two \( b \) quarks in the final state. This analysis applies more broadly to any heavy quarks that decay into a \( W \) boson and a \( t \) quark, though the fourth generation \( b' \) model is chosen as the benchmark. The previous limit in the single lepton channel is \( m_W > 372 \) \( GeV \) from CDF, based on 4.8 \( fb^{-1} \) of data [3]. Searches using two or more high \( p_T \) leptons in the final state have also been done at the Tevatron [4] and at the Large Hadron Collider (LHC) [5–7] with comparable sensitivity.

In the decay mode studied here, one of the four \( W \) bosons decays leptonically and the others decay hadronically. This lepton + jets channel has more SM background than the mode with two \( W \) bosons decaying leptonically, but significantly larger acceptance. If the mass difference between the \( b' \) quark and the top quark is large, the momentum of the \( W \) boson from the \( b' \rightarrow Wl \) decay is also large, and the \( W \) boson decay products become collimated. At the mass scales relevant to this search, the two quarks from the hadronic \( W \) decay give rise to two jets close to each other but still resolvable in the detector as separate jets. The angle between the decay products is related to the transverse momentum \( (p_T) \) of the \( W \) boson by \( \Delta R \approx 2m_W/p_T^W \) [8]. To distinguish the \( b' \) signature from the SM backgrounds, the number of jet pairs with small opening angle and invariant mass close to the \( W \) boson mass is therefore used.

The major challenge for the lepton + jets mode is the estimation of the SM background. The dominant source is \( t\bar{t} \) production with additional jets, while \( W + jets \) is the next most important contribution. The significant theoretical uncertainty in the level of gluon radiation affects the prediction of these backgrounds. As the signal is distinguished from the background largely by the kinematic properties of the jets, there are also significant experimental uncertainties due to the energy scale and resolution of the jet energy measurements. Most of these uncertainties can be reduced by examining signal-depleted samples which are sensitive to them. Other backgrounds include single top, \( Z + jets \) where a lepton is not detected, and multijet production in which a jet is misidentified as a lepton.

The data for this search were recorded with the ATLAS detector [9]. The momenta of charged particles with pseudorapidity \( |\eta| < 2.5 \) are measured with the inner detector (ID), which includes a silicon pixel detector, a silicon microstrip detector, and a straw-tube detector, all operating in a uniform 2 \( T \) axial magnetic field. Electromagnetic (EM) calorimetry is provided by a high-granularity, three-layer-depth sampling liquid argon detector in the region \( |\eta| < 3.2 \). Jet reconstruction also uses hadronic calorimetry provided by a scintillating tile detector with iron absorbers in the region \( |\eta| < 1.7 \), and liquid argon detectors over \( 1.5 < |\eta| < 4.9 \). The muon spectrometer (MS) includes tracking chambers for precision measurement in the bending plane up to \( |\eta| = 2.7 \) and fast trigger chambers up to \( |\eta| = 2.4 \). The trigger chambers measure also the coordinate in the nonbending plane. The muon detectors operate in a magnetic field generated by three superconducting air-core toroids.

The events used in this analysis were selected using inclusive single electron and muon triggers [10].
candidates are identified by localized energy deposits in the EM calorimeter with transverse energy \( E_T > 20 \text{ GeV} \) and \( |\eta| < 2.47 \). The energy cluster must satisfy shower-shape requirements [11] and should be matched with a track reconstructed in the ID. Muon candidates must have transverse momentum \( p_T > 18 \text{ GeV} \), \( |\eta| < 2.4 \), and a consistent trajectory reconstructed by combining segments in the ID and MS.

The data used in this search were collected in the first half of 2011, and correspond to a total integrated luminosity of \( 1.04 \pm 0.04 \text{ fb}^{-1} \). During this period, the average number of collisions per bunch crossing was six. The event reconstruction is affected by collisions during the same bunch crossing as the selected event (in-time pileup) and, to a lesser extent, collisions during adjacent bunch crossings, within the time the detectors are sensitive for each trigger (out-of-time pileup). The simulation takes both kinds of pileup into account.

The signal and SM backgrounds are modeled using a variety of generators. Pair-production of \( b' \) quarks decaying to \( Wt \) with subsequent showering and hadronization is generated with PYTHIA [12] using the MRST2007 LO* parton distribution function (PDF) set [13]. Seven samples with \( m_t \) masses ranging from 300 to 600 GeV are used. The cross section for each \( b' \) mass is calculated at approximate next-to-next-to-leading order (NNLO) using HATHOR [14]. For a \( b' \) quark with a mass of 350 GeV, the cross section is \( 3.20^{+0.10+0.12}_{-0.19-0.12} \text{ pb} \), where the first uncertainty comes from varying the renormalization and factorization scales by a factor of 2, and the second one from the PDFs. For a 500 GeV \( b' \) quark, the cross section is \( 0.33^{+0.01+0.01}_{-0.02-0.01} \text{ pb} \).

Top quark pair production is modeled using ALPGEN [15] where hard emission of up to three partons is described using QCD matrix elements, HERWIG [16] is used to model the parton shower, and JIMMY [17] describes multiple parton interactions. The rate of top quark production predicted by the simulation is validated with data using an event sample with three, four, or five jets, where little or no \( b' \) signal is expected.

Production of a \( W \) or \( Z \) boson in association with many jets is described in ALPGEN with hard parton emission of up to five partons and HERWIG for the parton shower. The \( W + \) jets background is normalized using a data-driven method which fits templates from simulated events to a data sample dominated by \( W \) decays [18]. The \( Z + \) jets background is normalized to a NNLO calculation [19].

Other processes considered are the production of dibosons (\( WW, WZ, ZZ \)), modeled with ALPGEN and HERWIG and normalized to next-to-leading-order (NLO) calculations [20]; single top, modeled with MC@NLO [21] and HERWIG; and \( t\bar{t}W, t\bar{t}Z, t\bar{t}WW, t\bar{t}Wj, t\bar{t}Zj, \) and \( WWjj \), all modeled with MADGRAPH [22] and PYTHIA.

The multijet background is strongly suppressed by the requirements described below. The residual contribution is estimated using a data-driven technique called the matrix method, described in detail in Ref. [23]. Validation of this background estimate is done by reversing these requirements to enhance the multijet contribution.

Electrons, jets, muons, and missing transverse momentum are used to select events for this search. Electrons are required to have \( E_T > 25 \text{ GeV} \) and be within the pseudorapidity range \( |\eta| < 2.47 \), excluding the barrel–end-cap transition region \( 1.37 < |\eta| < 1.52 \). Electrons must pass tight identification requirements [11] and also satisfy calorimeter isolation: the energy not associated with the electron cluster inside a cone of size \( \Delta R = 0.2 \) around the electron direction must be smaller than 3.5 GeV after the correction for the contributions from interactions additional to the hard process.

Jets are reconstructed from topological calorimeter clusters using the anti-\( k_t \) algorithm [24] with radius parameter 0.4. These jets are then calibrated to the hadronic energy scale using \( p_T \) and \( \eta \)-dependent correction factors obtained from simulation and validated with collision data [25]. For this analysis, jets are required to satisfy \( p_T > 25 \text{ GeV} \) and \( |\eta| < 2.5 \). The closest jet within an \( \eta-\phi \) cone of 0.2 around an electron candidate is removed.

Muon candidates must satisfy \( p_T > 20 \text{ GeV} \) and \( |\eta| < 2.5 \) and pass tight identification requirements [23]. Muons must also satisfy calorimeter isolation, which requires that the energy, excluding the estimated energy deposited by the muon, is smaller than 4 GeV in a cone of size \( \Delta R = 0.3 \) around the muon direction, and track isolation, which requires that the summed momentum of all tracks excluding the muon track is smaller than 4 GeV in a cone of size \( \Delta R = 0.3 \). Finally, all muons within a cone of size \( \Delta R = 0.4 \) around any jet with \( p_T > 20 \text{ GeV} \) are removed.

The missing transverse momentum (\( E_T^{\text{miss}} \)) is constructed from the vector sum of topological calorimeter energy deposits and muon momenta, projected onto the transverse plane [26].

If each \( b' \) quark decays to a top quark and a \( W \) boson, the resulting final state is \( t\bar{t}W^+W^- \). In the lepton + jets channel, the final state contains one lepton, \( E_T^{\text{miss}} \) from the undetected neutrino, and many jets from the eight quarks. Exactly one lepton (\( e \) or \( \mu \)) must pass the selection described above. Since not all jets are expected to satisfy the momentum and rapidity requirements, at least six jets are required.

To reduce the multijet background, additional requirements are placed on the \( E_T^{\text{miss}} \) and the transverse mass of the leptonically decaying \( W \) boson, \( m_W^T = \sqrt{2E_T^{\text{miss}}p_T\{1 - \cos[\Delta \phi(E_T^{\text{miss}}, p_T^j)\]} \). In the electron channel, \( E_T^{\text{miss}} > 35 \text{ GeV} \) and \( m_W^T > 25 \text{ GeV} \) are required, and in the muon channel, \( E_T^{\text{miss}} > 20 \text{ GeV} \) and \( E_T^{\text{miss}} + m_W^T > 60 \text{ GeV} \) are required. Only events with six or more jets are considered. For a \( b' \) quark with a mass of 350 GeV, 11.2 ± 1.7% of signal events are accepted with this selection. For a
b' quark with a mass of 500 GeV, 13.5 ± 2.0% of signal events are retained.

At this stage of the selection, pair production of b' quarks is distinguished mostly by the large number of energetic jets, as shown in Fig. 1. Events with b' decays contain jets from three hadronic W decays, while tt backgrounds contain only one hadronic W decay.

To identify these hadronic W decays, pairs of jets separated by ΔR < 1.0 are examined. This choice of ΔR selects W bosons with high p_T and reduces the combinatorial background in events with large jet multiplicity. The number of reconstructed W bosons (N_W) is defined as the number of such jet pairs with an invariant mass in the range 70–100 GeV. This range is not symmetric around the W boson mass as additional energy is often included in the cone. Each jet may contribute to only one identified hadronic W decay. In Fig. 2, the invariant masses of dijet pairs in a control sample of events with only three to five jets are shown. Good agreement is observed between the data and simulation across the entire spectrum including the region close to the W boson mass, where a bump can be seen in the tt simulation.

The efficiency of finding a simulated W decay with both quarks matched to separate reconstructed jets depends on the W boson p_T. For simulated tt and b' events passing the selection described above and containing a W boson with a p_T of about 250 GeV the two jets from the W boson are found approximately 80% of the time. Once both jets are found, the efficiency that the jets have ΔR < 1.0 and a dijet mass within the specified invariant mass range is approximately 70%, as can be seen in Fig. 3.
TABLE I. Systematic uncertainties in the predicted total background in the signal region. Some of the uncertainties have been constrained in background-dominated regions, profiled as described in the text. Smaller systematic uncertainties, such as those related to lepton identification and theory, and small uncertainties on the rate, are not profiled and are not included here. For the profiled systematics, the uncertainty before profiling is given in parentheses.

<table>
<thead>
<tr>
<th>Uncertainty on background</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Profiled uncertainties</strong></td>
</tr>
<tr>
<td>$W +$ jets normalization $\pm 5%$ ($\pm 16%$)</td>
</tr>
<tr>
<td>ISR/FSR $\pm 12%$ ($\pm 17%$)</td>
</tr>
<tr>
<td>Jet energy resolution $\pm 3%$ ($\pm 6%$)</td>
</tr>
<tr>
<td>Jet reconstruction efficiency $\pm 2%$ ($\pm 3%$)</td>
</tr>
<tr>
<td><strong>Not-profiled uncertainties</strong></td>
</tr>
<tr>
<td>Jet energy scale $\pm 31%$</td>
</tr>
<tr>
<td>$t\bar{t}$ simulation generator $\pm 6%$</td>
</tr>
<tr>
<td>$t\bar{t}$ showering model $\pm 3%$</td>
</tr>
</tbody>
</table>

The $W +$ jets normalization uncertainty is 4%, plus 24% per jet added in quadrature [18]. The uncertainties in lepton reconstruction efficiency and energy scale are derived in dilepton samples dominated by $Z \rightarrow \ell\ell$ decays and applied to the simulated background and signal samples. The systematic uncertainties are treated as correlated between signal and background, and between electron and muon channels, except where they are specific to the background model (e.g. $W +$ jets normalization) or to a channel (e.g. electron or muon efficiencies).

To extract the most likely value of the $b'$ cross section in the nine bins of $(N_W, N_{\text{jet}})$ multiplicity, a binned maximum likelihood fit using a profile likelihood ratio is performed, varying each background rate within its uncertainty, and allowing shape and rate variation due to the systematic uncertainties described above. The signal and background rates are fitted simultaneously.

Events in the final selection which have low hadronic $W$ boson or jet multiplicity ($N_W < 2$ and $N_{\text{jet}} < 8$) are dominated by background processes and serve to constrain some of the systematic uncertainties. The likelihood is maximized with respect to the variation due to the systematic uncertainties. This procedure serves to reduce some of the systematic uncertainties, those listed as profiled in Table I.

The expected background and signal contributions, as well as the observed numbers of events in the data, are shown in Fig. 4 and given in Table II for the nine bins of jet and hadronic $W$-boson multiplicity. No evidence for the production of $b'$ quarks is observed. The CLs method [28] is used to set 95% confidence level (C.L.) cross section limits.

![FIG. 4 (color online). Distribution of the numbers of events observed in the data and expected from SM processes for jet multiplicity $N_{\text{jet}} = 6, 7, \geq 8$ with hadronic $W$ multiplicity $N_W = 0, 1, \geq 2$. The expected $b'$ signals for two masses are also shown, stacked on top of the backgrounds.](https://example.com/figure4)

TABLE II. Expected and observed number of events in each bin of jet and hadronic $W$ decay multiplicity. Estimates for two signal samples with different $b'$ masses are also shown. The contributions from different background sources are shown in Fig. 4.

<table>
<thead>
<tr>
<th>$N_{\text{jet}}$</th>
<th>$N_W$</th>
<th>Expected background</th>
<th>Observed events</th>
<th>$b'$ 350 GeV</th>
<th>$b'$ 500 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
<td>$2060^{+850}_{-750}$</td>
<td>1839</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>$410^{+194}_{-210}$</td>
<td>410</td>
<td>47</td>
<td>8</td>
</tr>
<tr>
<td>$\geq 2$</td>
<td>7</td>
<td>$28^{+10}_{-16}$</td>
<td>32</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>$570^{+320}_{-230}$</td>
<td>521</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>$166^{+49}_{-68}$</td>
<td>142</td>
<td>46</td>
<td>7</td>
</tr>
<tr>
<td>$\geq 2$</td>
<td>7</td>
<td>$17.9^{+6.6}_{-5.8}$</td>
<td>21</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>$\geq 8$</td>
<td>0</td>
<td>$170^{+180}_{-70}$</td>
<td>173</td>
<td>56</td>
<td>3</td>
</tr>
<tr>
<td>$\geq 8$</td>
<td>1</td>
<td>$69^{+72}_{-27}$</td>
<td>57</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>$\geq 8$</td>
<td>$\geq 2$</td>
<td>$12.1^{+8.6}_{-3.2}$</td>
<td>11</td>
<td>22</td>
<td>6</td>
</tr>
</tbody>
</table>
upper limits for the pair production of fourth generation quarks, $b'$. The median expected upper limit is extracted in the background-only hypothesis. The results are shown in Fig. 5 as a function of the $b'$ mass. Systematic uncertainties are taken into account and it is assumed that the branching ratio (BR) for $b' \rightarrow W t$ is 100%. These cross section limits are interpreted as limits on the $b'$ mass by finding the intersection of the limit curves with the theoretical cross section curve. Uncertainty in the theoretical cross section includes renormalization and factorization scale and PDF uncertainties calculated with HATHOR [14].

Masses below 480 GeV are excluded at the 95% confidence level, while the expected limit is $m_{b'} > 470$ GeV. For a particle with a mass of 480 GeV, the expected exclusion limit on the pair production cross section is $\sigma < 0.54^{+0.45}_{-0.22}$ pb, while the observed exclusion is $\sigma < 0.47$ pb.

In conclusion, a search for pair production of heavy down-type quarks decaying via $b' \rightarrow W t$ in the lepton + jets channel has been performed using 1.04 fb$^{-1}$ of $\sqrt{s} = 7$ TeV pp collision data recorded with the ATLAS detector, selecting events based on the number of jets and hadronic $W$ decays. A heavy down-type quark with mass less than 480 GeV is excluded at the 95% confidence level, improving significantly on previous limits.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNR, DNSRC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNI$\!\!$SW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CERN-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

[8] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the $z$-axis along the beam pipe. The $x$-axis points from the IP to the center of the LHC ring; the $y$-axis points upward. Cylindrical coordinates ($r, \phi$) are used in the transverse plane, $\phi$ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle $\theta$ as $\eta = -\ln \tan(\theta/2)$. A cone in $\eta-\phi$ is defined as $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.


55 Department of Physics, Hampton University, Hampton Virginia, USA
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge Massachusetts, USA
57 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
58 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
59 ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
60 Faculty of Science, Hiroshima University, Hiroshima, Japan
61 Department of Physics, Indiana University, Bloomington Indiana, USA
62 University of Iowa, Iowa City Iowa, USA
63 Department of Physics and Astronomy, Iowa State University, Ames Iowa, USA
64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
66 Graduate School of Science, Kobe University, Kobe, Japan
67 Faculty of Science, Kyoto University, Kyoto, Japan
68 Kyotou University of Education, Kyoto, Japan
69 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
70 Physics Department, Lancaster University, Lancaster, United Kingdom
71 a INFN Sezione di Lecce, Italy
71 b Dipartimento di Fisica, Università del Salento, Lecce, Italy
72 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
73 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
74 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
75 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
76 Department of Physics and Astronomy, University College London, London, United Kingdom
77 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
78 Fysiska institutionen, Lunds Universitet, Lund, Sweden
79 Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
80 Institut für Physik, Universität Mainz, Mainz, Germany
81 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
82 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
83 Department of Physics, University of Massachusetts, Amherst Massachusetts, USA
84 Department of Physics, McGill University, Montreal Quebec, Canada
85 School of Physics, University of Melbourne, Victoria, Australia
86 Department of Physics, The University of Michigan, Ann Arbor Michigan, USA
87 Department of Physics and Astronomy, Michigan State University, East Lansing Michigan, USA
88 a INFN Sezione di Milano, Italy
88 b Dipartimento di Fisica, Università di Milano, Milano, Italy
89 B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
90 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
91 Department of Physics, Massachusetts Institute of Technology, Cambridge Massachusetts, USA
92 Group of Particle Physics, University of Montreal, Montreal Quebec, Canada
93 P. N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
94 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
95 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
96 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
97 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
99 Nagasaki Institute of Applied Science, Nagasaki, Japan
100 Graduate School of Science, Nagoya University, Nagoya, Japan
101 a INFN Sezione di Napoli, Italy
101 b Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
102 Department of Physics and Astronomy, University of New Mexico, Albuquerque New Mexico, USA
103 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
104 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
105 Department of Physics, Northern Illinois University, DeKalb Illinois, USA
106 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
107 Department of Physics, New York University, New York New York, USA
108 Ohio State University, Columbus Ohio, USA
109 Faculty of Science, Okayama University, Okayama, Japan
110 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman Oklahoma, USA