What goes up must come down: glucose variability and glucose control in diabetes and critical illness
Siegelaar, S.E.

Citation for published version (APA):
Siegelaar, S. E. (2011). What goes up must come down: glucose variability and glucose control in diabetes and critical illness

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 7

A decrease in glucose variability does not reduce cardiovascular event rates in type 2 diabetes patients after acute myocardial infarction: a reanalysis of the HEART2D study

Sarah E. Siegelaar, Lisa Kerr, Scott J. Jacober and J. Hans DeVries

Diabetes Care 2011; 34(4): 855-857
Abstract

Objective: To assess the effect of intraday glucose variability (GV) on cardiovascular outcomes in a reanalysis of Hyperglycaemia and Its Effect After Acute Myocardial Infarction on Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus (HEART2D) study data.

Research Design and Methods: Type 2 diabetes patients after acute myocardial infarction were randomised to an insulin treatment strategy targeting postprandial (PRANDIAL; n = 557) or fasting/interprandial (BASAL; n = 558) hyperglycaemia. GV was calculated as mean amplitude of glycaemic excursions (MAGE), mean absolute glucose (MAG) change, and standard deviation (SD).

Results: The PRANDIAL strategy resulted in an 18% lower MAG than BASAL (mean [SEM] difference 0.09 [0.04] mmol/l/hr, \(P = 0.02 \)). Also, MAGE and SD were lower in the PRANDIAL group, however not significantly. HbA1c levels and cardiovascular event rates were comparable between groups.

Conclusions: A PRANDIAL strategy demonstrated lower intraday GV vs. a BASAL strategy with similar overall glycaemic control but did not result in a reduction in cardiovascular outcomes. This does not support the hypothesis that targeting GV would be beneficial in reducing subsequent secondary cardiovascular events.
Decreasing glucose variability does not reduce cardiovascular event rates in T2DM after MI

Introduction

Short-term variation in blood glucose (BG) levels is a daily challenge to patients with diabetes. It confers a possible increased risk for hypoglycaemia, and it has been suggested that glucose variability (GV) is related to cardiovascular risk. However, reanalysis of the Diabetes Control and Complications Trial (DCCT) and DCCT/Epidemiology of Diabetes Interventions and Complications (EDIC) dataset examining the predictive value of GV on microvascular and neurological complications did not show an effect of GV independent from mean glucose and HbA1c, and randomised controlled trials (RCTs) specifically targeting GV are lacking.

To assess the effect of intraday GV on cardiovascular outcomes we re-examined data from Hyperglycaemia and Its Effect After Acute Myocardial Infarction on Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus study (HEART2D; clinical trial registry number NCT00191282, clinicaltrials.gov).

Research Design and Methods

The HEART2D study included 1,115 type 2 diabetic patients who had had a recent myocardial infarction; patients well-controlled with diet or treated with intensive insulin therapy were excluded. It was designed to investigate possible differences between two insulin treatment strategies on time until first combined cardiovascular event (a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or hospitalization for acute coronary syndrome). Within 21 days after admission for acute myocardial infarction, patients were randomised to one of two insulin treatment strategies: one targeted postprandial hyperglycaemia with thrice-daily premeal insulin lispro (PRANDIAL; n = 557), and the other targeted fasting/interprandial hyperglycaemia with once-daily insulin glargine or twice-daily NPH (BASAL; n = 558). The study succeeded in achieving similar HbA1c levels in both strategies, which allowed the authors to look at effects of targeting postprandial glucose values independent from glycaemic control. There was no significant difference between groups in time to first combined cardiovascular event (hazard ratio 0.98 [95% CI 0.8-1.21]). Though the PRANDIAL group achieved significantly lower mean postprandial blood glucose values, the between-group difference was less than expected. The trial was halted early due to futility with a lower than expected overall number of cardiovascular events. We evaluated the effect of glycaemic variability to help further the interpretation of HEART2D results.

In the present analysis we calculated mean GV in both strategies from seven-point self-measured BG profiles collected prior to study visits during the study period, obtained
over 24 hrs from breakfast to breakfast the next morning. This adds to the original analysis since postprandial excursions contribute to GV, but GV encompasses more than postprandial excursions alone. Since no gold standard for quantifying GV exists we calculated mean absolute glucose (MAG) change, mean amplitude of glycaemic excursions (MAGE) and standard deviation (SD). MAG is the summated change in glucose per unit of time (\(\text{MAG} = |\Delta \text{Glucose}|/\Delta \text{Time} \)) (Figure 1), which showed in the intensive care unit a stronger association with mortality than SD. This is the first time MAG is used in a diabetic population. MAGE is the average of all BG increases or decreases that are >1 SD of all BG measures. Differences between regimens and those experiencing vs. those not experiencing a cardiovascular event were assessed using a pattern mixed-model repeated-measurement analysis. The model included strategy, baseline GV, randomisation factors, and an additional factor for study duration (defined as ≤30, >30 and ≤42, and >42 months).

Results

The original HEART2D study analysis showed that HbA1c did not differ between groups during the study (mean [SEM] PRANDIAL 7.7% [0.1], BASAL 7.8% [0.1], \(P = 0.4 \)). We found that the PRANDIAL strategy resulted in a significantly lower MAG compared with the BASAL strategy (mean [SEM] PRANDIAL 0.40 [0.03] mmol/l/hr, BASAL 0.49 [0.02] mmol/l/hr, difference 0.09 [0.04] mmol/l/hr, \(P = 0.02 \)). Also MAGE and SD were lower in the PRANDIAL group, however not significantly (MAGE, PRANDIAL 3.14 [0.22] mmol/l, BASAL 3.32 [0.17] mmol/l, difference 0.18 [0.27] mmol/l, \(P = 0.50 \); SD, PRANDIAL 1.42 [0.09] mmol/l, BASAL 1.58 [0.07] mmol/l, difference 0.16 [0.11] mmol/l, \(P = 0.15 \)). Additionally, taking the two randomization groups together, there was no difference in GV between those experiencing vs. those not experiencing a cardiovascular event (mean [SEM] MAG 0.47 [0.03] mmol/l/hr vs. 0.44 [0.02] mmol/l/hr, \(P = 0.57 \); MAGE 3.35 [0.23] mmol/l vs. 3.16 [0.16] mmol/l, \(P = 0.49 \); SD 1.56 [0.10] mmol/l vs. 1.48 [0.07] mmol/l, \(P = 0.52 \)).

Conclusions

We found that in type 2 diabetes patients after acute myocardial infarction an insulin regimen targeting postprandial hyperglycaemia lowered intraday GV compared with a basal insulin strategy, with similar overall glycaemic control. However, GV decreases shown in the PRANDIAL strategy did not translate into a reduction in cardiovascular outcomes compared with treatment with BASAL strategy.
It might be possible that these negative results are explained by the patient group studied, i.e., type 2 diabetic patients with advanced atherosclerosis. Another possibility is that patients with diabetes, in contrast with critically ill patients without previously diagnosed diabetes \(^9\), are not affected by GV because of the ability of cells to adapt to the harmful effects of changing ambient glucose.

A strong point of the present study is the assessment of GV by MAG. MAG takes GV into account to its fullest extent as opposed to MAGE, which neglects glycaemic swings smaller than 1 SD and assesses only the increases or decreases of the glucose profile \(^10\). Furthermore, MAG calculates glucose change over time, whereas SD does not take time into account (Figure 1).

In conclusion, the results of the present analysis showed that targeting postprandial glucose decreased intraday GV by 18% without a corresponding reduction in subsequent secondary cardiovascular events at least in this population. Further studies looking at different groups of patients are needed to investigate whether reducing GV will reduce cardiovascular risk independently from HbA1c.

Figure 1
Two fictitious patients with identical mean glucose, SD, and mean amplitude of glycaemic excursions (MAGE), but different patterns of variability expressed by mean absolute glucose change (MAG).
References