What goes up must come down: glucose variability and glucose control in diabetes and critical illness
Siegelaar, S.E.

Citation for published version (APA):
Siegelaar, S. E. (2011). What goes up must come down: glucose variability and glucose control in diabetes and critical illness
Chapter 8

Mean glucose during intensive care unit admission is related to mortality by a U-shaped curve in surgical and medical patients: a retrospective cohort study

Sarah E. Siegelaar, Jeroen Hermanides, Heleen M. Oudemans-van Straaten, Peter H.J. van der Voort, Robert J. Bosman, Durk F. Zandstra and J. Hans DeVries

Critical Care 2010; 14(6):R224
Abstract

Introduction: Lowering of hyperglycaemia in the intensive care unit (ICU) is widely practised. We investigated in which way glucose regulation, defined as mean glucose concentration during admission, is associated with ICU mortality in a medical and a surgical cohort.

Methods: Retrospective database cohort study including patients admitted between January 2004 and December 2007 in a 20-bed medical/surgical ICU in a teaching hospital. Hyperglycaemia was treated using a computerised algorithm targeting for glucose levels of 4.0-7.0 mmol/l. Five thousand eight hundred twenty-eight patients were eligible for analyses, of whom 1,339 patients had a medical and 4,489 had a surgical admission diagnosis.

Results: The cohorts were subdivided in quintiles of increasing mean glucose. We examined the relation between these mean glucose strata and mortality. In both cohorts we observed the highest mortality in the lowest and highest strata. Logistic regression analysis adjusted for age, sex, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, admission duration and occurrence of severe hypoglycaemia showed that in the medical cohort mean glucose levels <6.7 mmol/l and >8.4 mmol/l and in the surgical cohort mean glucose levels <7.0 mmol/l and >9.4 mmol/l were associated with significantly increased ICU mortality (OR 2.4-3.0 and 4.9-6.2 respectively). Limitations of the study were its retrospective design and possible incomplete correction for severity of disease.

Conclusions: Mean overall glucose during ICU admission is related to mortality by a U-shaped curve in medical and surgical patients. In this cohort of patients a “safe range” of mean glucose regulation might be defined approximately between 7.0 and 9.0 mmol/l.
Introduction

Owing to inflammatory and neuro-endocrine derangements in critically ill patients, stress hyperglycaemia associated with high hepatic glucose output and insulin resistance is common in the intensive care unit (ICU) \(^1\). This stress hyperglycaemia is associated with poor outcome \(^2\). Moreover, several studies report a deleterious effect of glycaemic variability over and above mean glucose after correction for severity of disease \(^3-6\).

In 2001, van den Berghe \(et\ al.\) \(^7\) published the first randomised controlled trial (RCT) comparing normalization of glycaemia by intensive insulin treatment (IIT) with conventional glycaemic control in a surgical ICU (glucose target: 4.4 to 6.1 mmol/l vs. 10.0 to 11.1 mmol/l). The authors reported an impressive reduction in mortality with IIT. The same group failed to reproduce these findings in the entire population of patients in their medical ICU \(^8\); however, mortality was lower in the predefined subgroup of patients receiving IIT for more than 3 days. After the data were pooled from both RCT’s, IIT seemed to be associated with a reduction in mortality \(^9\). On the basis of these “Leuven trials”, many hospitals decided to implement protocols and target normalization of glucose levels to improve patient care.

Recently, after the publication of two inconclusive multicentre studies (the Volume Substitution and Insulin Therapy in Severe Sepsis [VISEP] \(^10\) and the GluControl \(^11,12\) studies) followed by the NICE-SUGAR (Normoglycaemia in Intensive Care Evaluation- Survival Using Glucose Algorithm Regulation) trial \(^13\), doubt was cast upon the benefits of tight glycaemic control; the NICE-SUGAR trial investigators reported an absolute increase in deaths at 90 days with IIT (glucose target: 4.5 to 6.0 mmol/l versus 8.0 to10.0 mmol/l). A recently published meta-analysis including this latter trial showed that intensive insulin therapy significantly increased the risk of hypoglycaemia and conferred no overall mortality benefit among critically ill patients \(^14\). The goal of this study is to report glucose and mortality data from cohorts of patients with a medical and a surgical admission diagnosis from a general ICU of a teaching hospital in The Netherlands.

Materials and methods

Cohorts, setting, and data collection

We collected information about patients admitted between January 2004 and December 2007 in a 20-bed medical/surgical ICU in a teaching hospital (Onze Lieve Vrouwe Gasthuis [OLVG], Amsterdam, the Netherlands) (the OLVG cohort). All data was anonymous and collected retrospectively, so no ethical approval was necessary. On average, one nurse took care of two patients, depending on the severity of disease. All beds were equipped
with a clinical information system (MetaVision; iMDsoft, Tel Aviv, Israel) from which all clinical and laboratory data were extracted. The glucose regulation algorithm was implemented successfully in 2001, targeting for glucose values of between 4.0 and 7.0 mmol/l. The glucose protocol was started for every patient at the time of arrival at the ICU. Insulin infusion was started when admission blood glucose exceeded 7.0 mmol/l. When admission glucose was lower than 7.0 mmol/l, blood glucose was further measured every 2 hrs and insulin was started when necessary (that is, when blood glucose exceeded 7.0 mmol/l). The nursing staff was instructed to use a dynamic computerised algorithm to adjust the insulin infusion rate, depending on the current glucose value and the rate of glucose change (based on the previous five measurements). The software also provided the time the next glucose measurement was due, which could vary from 15 min up to 4 hrs. Routinely, enteral feeding was started within 24 hrs after admission, aiming at 1,500 kcal per 24 hrs, and subsequently adjusted to the patient’s requirements, except for the uncomplicated cardiac surgery patients who do not receive enteral feeding if extubated within 24 hrs. A duodenal feeding tube was inserted in case of persistent gastric retention. The tight glucose algorithm was deactivated when patients resumed normal eating.

We excluded readmissions, patients with a withholding care policy, and patients with only one glucose value measured during admission. From the clinical information system, we collected demographic variables, mortality rates in the ICU, and glucose values. As severity of disease measure, we used the Acute Physiology and Chronic Health Evaluation II (APACHE II) score. Informed consent was not required according to Dutch Ethical Review Board regulations, because a retrospective analysis of anonymous data was performed.

Glucose measures

For each patient, we calculated the mean overall glucose during admission from all glucose values measured during admission and the mean morning glucose from the first value available between 5:00 and 7:00 hrs per patient per day. Glucose values mentioned in this paper stand for mean overall glucose unless stated otherwise. We calculated the standard deviation (SD) and the mean absolute glucose (MAG) change per patient as markers of glycaemic variability. Glucose was obtained from arterial blood samples by means of a handheld glucose measurement device (AccuChek; Roche/Hitachi, Basel, Switzerland). Results were automatically stored in the clinical information system.

Data interpretation

The cohort characteristics are presented as mean (SD) or as median and interquartile range (IQR), depending on the distribution of the data. The mean glucose values and SD’s were divided into five strata with equal numbers of patients per group. For each stratum, the ICU mortality was calculated. Subsequently, we performed a logistic regression analysis to calculate the odds ratio (OR) with 95% confidence intervals (CI) for ICU mortality per
Mean glucose during ICU admission is related to mortality by a U-shaped curve

Mean glucose during ICU admission is related to mortality by a U-shaped curve. The stratum with the lowest mortality incidence was used as a reference. In this model we adjusted for age, sex, severity of disease (APACHE II score), occurrence of severe hypoglycaemia (≤2.2 mmol/l), and admission duration (that is, ≤ or > 24 hrs). The last adjustment was done because glucose values are higher and have a wider range in the first 24 hrs of admission, biasing the patients with longer admission times and corresponding lower mean glucose values. In a second model, adjustment for occurrence of mild hypoglycaemia (≤4.7 mmol/l), which is also independently associated with mortality, was made.

Results

In total, 5,828 patients were eligible for analyses of the mean glucose for the OLVG population after excluding 656 readmissions, 86 patients with a withholding care policy, and 160 patients with only one glucose value measured. This cohort consisted of 1,339 patients with a medical admission diagnosis (the “medical” population) and 4,489 patients with a surgical admission diagnosis (the “surgical” population). In the medical cohort, a median (IQR) of 34 (15-65) glucose values per patient were collected and in the surgical cohort a median (IQR) of 10 (5-14) values. The median (IQR) admission duration was 64 (30-129) hrs in the medical and 22 (18-28) hrs in the surgical cohort.

Mean glucose

The overall mean (SD) glucose values of the medical and surgical populations were 7.9 (2.7) and 8.1 (1.6) mmol/l (Table 1). The mean glucose values of the first 24 hrs of admission were higher and had a wider range than did the mean glucose values after 24 hrs (medical: mean [SD] 8.4 [3.3] mmol/l, range 3.7-40.2 mmol/l and 7.0 [1.4] mmol/l, range 3.2-31.1 mmol/l; surgical: mean [SD] 8.3 [1.9] mmol/l, range 0.6-27.5 mmol/l and 7.6 [1.7] mmol/l, range 3.2-15.7 mmol/l). The mean morning glucose was 7.4 [2.6] mmol/l in the medical population and 7.7 [2.3] mmol/l in the surgical population. After dividing the mean glucose of both populations into five equally sized strata, the lowest mean glucose stratum ranged from 6.7 mmol/l and lower in the medical cohort and from 7.0 mmol/l and lower in the surgical cohort. The highest stratum ranged 8.5 mmol/l and higher in the medical cohort and 9.5 mmol/l and higher in the surgical cohort. Mean glucose ranges per stratum and corresponding mortality rates per cohort are displayed in Figure 1. This results in a U-shaped curve relationship between mean glucose and mortality in both cohorts, with high ICU mortality in the lowest and highest glucose strata (medical: 26.9% and 35.6%; surgical: 3.6% and 1.4%). Logistic regression analysis showed that in both populations mean glucose values in the lowest and highest strata were associated with a significant higher OR for ICU mortality compared to the stratum with the lowest mortality (Figure 2). This results in “safe ranges” of 6.7 to 8.5 mmol/l in the medical, and 7.0 to 9.5 mmol/l in the surgical cohort. The non-linear U-shaped
Table 1 Characteristics of the studied cohorts, divided by mean glucose ranges

<table>
<thead>
<tr>
<th></th>
<th>Medical population</th>
<th>Surgical population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total n = 1,339</td>
<td>≤ 6.6 mmol/l n = 268</td>
</tr>
<tr>
<td>Age, years (mean ± SD)</td>
<td>61.8 ± 16.9</td>
<td>59.0 ± 18.4</td>
</tr>
<tr>
<td>Gender, female (%)</td>
<td>38.2</td>
<td>37.3</td>
</tr>
<tr>
<td>APACHE II score (mean ± SD)</td>
<td>24.6 ± 8.8</td>
<td>24.8 ± 9.1</td>
</tr>
<tr>
<td>Diabetes Mellitus (%)</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Died ICU (%)</td>
<td>20.9</td>
<td>26.9</td>
</tr>
<tr>
<td>Died hospital (%)</td>
<td>31.3</td>
<td>35.4</td>
</tr>
<tr>
<td>Morning glucose, mmol/l (mean ± SD)</td>
<td>7.4 ± 2.6</td>
<td>5.9 ± 1.0</td>
</tr>
<tr>
<td>Overall glucose, mmol/l (mean ± SD)</td>
<td>7.9 ± 2.7</td>
<td>6.0 ± 0.6</td>
</tr>
<tr>
<td>Hypoglycaemia incidence (%)</td>
<td>9.9</td>
<td>18.7</td>
</tr>
<tr>
<td>SD, mmol/l (median [IQR])</td>
<td>2.0 [1.5-2.9]</td>
<td>1.6 [1.2-1.9]</td>
</tr>
<tr>
<td>MAG, mmol/l/hr (median [IQR])</td>
<td>0.8 [0.5-1.1]</td>
<td>0.5 [0.3-0.8]</td>
</tr>
<tr>
<td>Caloric intake per 24 hrs (mean ± SD)</td>
<td>1103.0 ± 758.4</td>
<td>1159.3 ± 1108.6</td>
</tr>
<tr>
<td>Use of insulin (%)</td>
<td>88.5</td>
<td>79.5</td>
</tr>
<tr>
<td>Insulin dose, IU/hour (median [IQR])</td>
<td>1.4 [0.8-2.4]</td>
<td>0.6 [0.4-1.0]</td>
</tr>
<tr>
<td>Use of vasopressor drugs (%)</td>
<td>86.0</td>
<td>19.4</td>
</tr>
<tr>
<td>Use of corticoids (%)</td>
<td>92.5</td>
<td>91.0</td>
</tr>
<tr>
<td>Mechanical ventilation (%)</td>
<td>81.6</td>
<td>81.7</td>
</tr>
<tr>
<td>CVVH (%)</td>
<td>16.7</td>
<td>20.1</td>
</tr>
</tbody>
</table>

The “safe range” refers to the mean glucose levels associated with the lowest mortality rates: 6.7 to 8.4 mmol/l in the medical and 7.0 to 9.4 mmol/l in the surgical cohort. Hypoglycaemia was defined as at least one glucose value of not more than 2.2 mmol/l. APACHE II, Acute Physiology and Chronic Health Evaluation II; CVVH, continuous veno-venous haemofiltration; ICU, Intensive Care Unit; MAG, mean absolute glucose change; SD, standard deviation.
relationship between mean glucose and ICU mortality was supported by significance of the quadratic transformation of the mean glucose levels in this logistic regression model \((P<0.001) \). The characteristics of our populations, also subdivided in groups with low, “safe range” and high glucose values, are displayed in Tables 1 and 2.

![Figure 1 ICU mortality (y-axis) per mean glucose stratum (x-axis)](image)

(A) Medical population. (B) Surgical population.

Other glycaemic measures

Overall, 9.9% and 1.8% of the medical and surgical patients, respectively, sustained at least one hypoglycaemic episode, defined as a glucose value of not more than 2.2 mmol/l, during ICU admission. Seventeen point five percent of all deaths during ICU admission concerned patients who had experienced severe hypoglycaemia (both groups). Twenty-eight percent of the patients who were in the lowest mean glucose strata and who died in the ICU experienced hypoglycaemia, and 72% did not. The incidence of severe and mild (≤4.7 mmol/l) hypoglycaemia in the different mean glucose strata is reported in Figure 3. When we adjusted the logistic regression model for occurrence of mild hypoglycaemia with a cutoff value of 4.7 mmol/l, which is also independently associated with mortality \(^17\), the OR (CI) for ICU mortality in the lowest glucose stratum remained significant (medical: 2.6 [1.6-4.4], \(P < 0.001 \); surgical: 4.9 [1.1-22.1], \(P = 0.04 \)).

In the medical cohort, glucose variability, both when expressed as the median of individual SD’s and MAG changes \(^6\), linearly increased with increasing glucose strata (SD median [IQR] 1.6 [1.2-1.9] to 3.8 [2.7-5.4] mmol/l, \(P \) for trend <0.001; MAG 0.5 [0.3-0.8] to 1.4 [0.9-2.0] mmol/l/h, \(P \) for trend 0.007). However, in the surgical cohort, no consistent trend in glucose variability across the glucose strata was seen (SD median [IQR] 1.8 [1.3-2.3] mmol/l; MAG 0.6 [0.4-0.8] mmol/l/hr). Adjusting the logistic regression model for variability did not change the above-described relationship between mean glucose and mortality (data not shown).
Figure 2 Odds ratio (OR) for mortality (y-axis) per glucose stratum (x-axis) with the highest OR in the lowest and highest strata
(A) Medical population. (B) Surgical population. Logistic regression model was adjusted for age, sex, APACHE II (Acute Physiology and Chronic Health Evaluation II) score, admission duration (≤ and > 24 hrs), and occurrence of severe hypoglycaemia. *P <0.05, **P <0.001. CI, confidence interval

Figure 3 Hypoglycaemia incidence (y-axis) per mean glucose stratum (x-axis)
(A) Medical population. (B) Surgical population. The y-axis represents the percentage of patients experiencing at least one severe (≤2.2 mmol/l, left bars) and mild (≤4.7 mmol/l, right bars) hypoglycaemic event.

Discussion

The salient finding of this investigation is that in this mixed medical and surgical cohort of critically ill patients, mean glucose values of between approximately 7.0 and 9.0 mmol/l during ICU stay were associated with the lowest OR for ICU mortality, while mean values of below 7.0 and greater than 9.0 mmol/l confer significantly higher OR’s. These results were attained while using a dynamic glucose algorithm that targeted for glucose values of between 4.0 and 7.0 mmol/l. The finding that hyperglycaemia is associated with increased mortality is in accordance with published literature \(^2\,18\,19\). Also, the U-shaped curve we found, with increased mortality in the lower and upper parts, is described earlier in
Mean glucose during ICU admission is related to mortality by a U-shaped curve

patients with myocardial infarction during admission \(^{20-22}\), more generally in patients with type 2 diabetes mellitus \(^{23}\), and in the ICU setting \(^{24-26}\), corroborating this finding. The optimum glucose levels in the ICU setting reported previously are somewhat lower than we found. This is possibly due to differences in inclusion criteria or uncertainty about the practice of tight glycaemic control \(^{26}\), lack of regression analysis between the strata \(^{25}\), or a different method to assess mean glucose \(^{24}\). Another difference between our and other ICU cohorts is the high percentage of patients admitted after cardiac arrest (Table 2), a population with a high mortality rate. Also, the percentage of patients with diabetes in our cohort might be underestimated since we scored diabetes only when the patient used anti-hyperglycaemic drugs. However, how these factors might influence the position of the U-curve in relation to the x-axis is not known.

Hypoglycaemia is associated with increased risk of ICU and hospital mortality \(^{17;27-29}\). In our population, the incidence of hypoglycaemia was highest in the lowest mean glucose cohorts in which mortality was higher as well. In addition, a significant percentage of the patients who died had experienced a hypoglycaemic episode. However, hypoglycaemia can account only partially for the high mortality rate in the lowest mean overall glucose stratum since 72.0% of the non-survivors did not experience severe hypoglycaemia. Also, when the logistic regression model was adjusted for occurrence of severe or mild hypoglycaemia, the OR for mortality remained significantly higher for those patients with a mean glucose in the lowest quintile. However, it might be possible that some hypoglycaemic episodes were not recorded due to intermittent sampling, or were underestimated because of the AccuChek point-of-care meter used for glucose measurements, the results of which tend to be higher than those obtained from the laboratory \(^{30;31}\). Therefore, the contribution of hypoglycaemia to ICU death could be underestimated and needs further research using continuous glucose measurement. An alternative explanation for increased mortality at lower glucose values might be that tissues with insulin-independent glucose uptake may suffer from insufficient glucose availability at lower concentrations. In our cohort, glucose variability increased with increasing glucose strata in the medical cohort. In the surgical cohort, no consistent relationship was found. Since glucose variability is associated with mortality \(^6\), it is unlikely that this contributes to the higher mortality in the lower glucose strata.

In the NICE-SUGAR study, the mean glucose of the IIT group (6.4 mmol/l) falls into the stratum with increased mortality compared to the conventional group (8.0 mmol/l), which lies in the safe range of both OLVG populations (Figure 1) \(^{13}\). Thus, the findings of the NICE-SUGAR trial are in accordance with the mortality data from our cohort. This is in contrast with the data of both Leuven studies. The means of the IIT groups of both the Leuven studies (6.1 mmol/l in the medical population \(^8\) and 5.7 mmol/l in the surgical population \(^7\)) fall into the lowest mean glucose stratum in the corresponding
Table 2 Percentage of patients per APACHE II admission category

<table>
<thead>
<tr>
<th>Medical population</th>
<th>Surgical population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total n = 1,339</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>18.0</td>
</tr>
<tr>
<td>Sepsis</td>
<td>16.5</td>
</tr>
<tr>
<td>After cardiac arrest</td>
<td>21.6</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>4.3</td>
</tr>
<tr>
<td>Haematological</td>
<td>0.6</td>
</tr>
<tr>
<td>Renal</td>
<td>1.9</td>
</tr>
<tr>
<td>Metabolic</td>
<td>3.6</td>
</tr>
<tr>
<td>Neurological</td>
<td>11.5</td>
</tr>
<tr>
<td>Respiratory</td>
<td>22.0</td>
</tr>
</tbody>
</table>

The “safe range” refers to the mean glucose levels associated with the lowest mortality rates: 6.7 to 8.4 mmol/l in the medical, and 7.0 to 9.4 mmol/l in the surgical cohort.
Mean glucose during ICU admission is related to mortality by a U-shaped curve

OLVG cohorts, in which mortality is highest. The means of the conventional groups in the Leuven studies (8.5 mmol/l in the medical as well as in the surgical population7-8) lie in the safe ranges of both OLVG populations (Figure 1).

A possible explanation for the low mortality of the Leuven IIT group might be the way of feeding. In a recent paper, Marik and Preiser32 suggested that the use of intravenous calories could explain differences between populations treated with IIT, with a positive effect of IIT in patients who receive most of their calories intravenously. In our population, as opposed to the Leuven studies, only 0.7% of carbohydrates were given parenterally. In populations predominantly fed parenterally, the relationship between mean overall glucose and mortality might be different. Also, glycaemic swings are a known risk factor of ICU death and might contribute to differences in mortality rate45. However, it is unlikely that differences in glucose variability explain the higher mortality in our cohort compared with the Leuven IIT group as the medians [IQR] of the individual median SD’s are roughly comparable (Leuven medical 1.99 [1.57-2.66] mmol/l33 and OLVG medical 2.03 [1.54-2.86] mmol/l). In addition, other explanations have been proposed to explain the diverging outcomes of Leuven and NICE-SUGAR34.

The mean glucose of the OLVG population (medical: 7.9 mmol/l; surgical: 8.1 mmol/l) was higher than the target range, which was between 4.0 and 7.0 mmol/l. Other studies of IIT also did not reach their target range, illustrating the difficult implementation of this therapy10,12,13. The high percentage of corticosteroid treatment in our population might have contributed (Table 1). Also, the relatively short ICU duration of stay in the predominantly surgical population of the OLVG explains that mean glucose is slightly higher than the target (median ICU stay was 22 hrs in our cohort compared to 3 days in the Leuven cohort and 4.2 days “on algorithm” in the NICE SUGAR study) because of the time needed to reach target. Glucose values were indeed higher and had a wider range in the first 24 hrs of admission. Furthermore, our patients were treated in a normal-care setting without the extra stimuli of a trial setting to achieve the target. It should be noted that mean glucose does not equal time in target range, since the protocol requires more frequent sampling when not in target, thus falsely inflating the mean.

In our logistic regression model, we adjusted for severity of disease and admission duration less or more than 24 hrs, since both high and low glucose levels could be a manifestation, rather than a cause, of severe disease. Glucose values are higher and have a wider range in the first 24 hrs of admission, biasing the patients with longer admission times and corresponding lower mean glucose values. A limitation of our correction for severity of disease is the use of the APACHE II score, because the use of APACHE II to predict mortality is not validated for cardiac surgery patients. However, this adjustment is the best available method35.
Conclusions

In our mixed cohort of surgical and medical patients, the mean glucose during ICU stay was related to mortality by a U-shaped curve; a “safe range” for mean glucose can be defined as between approximately 7.0 and 9.0 mmol/l, while both higher and lower mean values are associated with higher mortality. This finding applied to the surgical as well as the medical patients. Hypoglycaemia seems to only partially explain the high mortality rate in the lowest mean glucose quintile, and glucose variability does not. Second, comparison of the combined Leuven, NICE-SUGAR, and our cohorts demonstrates that the increased mortality in the IIT group of NICE-SUGAR is in line with our U-shaped curve but that the low mortality in the intensively treated Leuven group is not. The percentage of calories given parenterally may influence the relationship between mean glucose and mortality. We await further studies, but according to these findings, we recommend treating hyperglycaemia at the ICU in a moderately intensive way in both medical and surgical patients, targeting for mean glucose values of between approximately 7.0 and 9.0 mmol/l and avoiding hypoglycaemia. This “safe range” should be studied prospectively in randomised clinical trials.

Key Messages

- During ICU admission, mean glucose relates to mortality by a U-shaped curve.
- A mean glucose range of 7.0 to 9.0 mmol/l is associated with the lowest mortality in our cohort.
- Occurrence of hypoglycaemia does not fully explain the high mortality in the lower glucose strata.
References

critically ill patients varies with admission diagnosis. Crit Care Med 37: 3001-3009