Functional heterogeneity of oxygen supply with blood and hemoglobin-based oxygen carriers in porcine models of hemorrhagic shock
van Iterson, M.

Citation for published version (APA):
vан Iterson, M. (2012). Functional heterogeneity of oxygen supply with blood and hemoglobin-based oxygen carriers in porcine models of hemorrhagic shock
REFERENCES

144 References


22 Ince C, Ashraf JF, Avontuur JAM, Wieringa PA, Spaan JAE, Bruining HA. Heterogeneity of hypoxic state in rat heart is determined at capillary level. American Journal of Physiology 1993; 264:H294–301


35 Ince C, Thio JM, van Iterson M, Sinaasappel M. Microvascular PO2 measured by Pd-porphyrin quenching of phosphorescence in a porcine model of slowly developing sepsis. 9th Congress of Intensive Care Medicine Monduzzi, Italy: 1996; 133–139

36 American College of Surgeons, Committee on Trauma. In: Advanced Trauma Life Support. American College of Surgeons. Chicago 1995; 75-94


Bohlen HG. Intestinal tissue PO$_2$ and microvascular responses during glucose exposure. American Journal of Physiology 1980; 238:H164–171

Krogh A. The number and distribution of capillaries in muscle with calculations of the oxygen pressure head necessary for supplying the tissue. The Journal of Physiology 1919; 52:409–415


Cokelet GR. Speculation on the cause of low vessel hematocrits in the microcirculation. Microcirculation 1982; 2:1–18


Hoffman JIE Heterogeneity of myocardial blood flow. Basic Res Cardiol 1995; 90:103–111


65 Loncar R, Flesche CW, Deussen A. Coronary reserve of high- and low-flow regions in the dog heart left ventricle. Circ 1998; 98:262–270
69 Krogh A. The anatomy and physiology of capillaries. (Hatner, New York) 1959.
76 Ellsworth ML, Pittman RN. Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am J Physiol 1990; 258:H1240–H1243
81 Van Beek JHGM, Elzinga G. Diffusional shunting of oxygen in saline-perfused isolated rabbit hearts is negligible. Pflügers Arch 1987; 410:263–271
93 Simson MB, Harden W, Barlow C, Harken AH. Visualization of the distance between perfusion and anoxia along an ischemic border. Circ 1979; 60:1151–1155
Barlow CH, Chance B. Ischemic areas in perfused rat hearts; measurements by NADH fluorescence photography. Science 1976; 193:909–910

Coremans JMCC, Ince C, Bruining HA, Puppels GJ. (Semi-) Quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart. Biophys 1997; J 72:1849–1860

Chapman JB. Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit. J Gen Physiol 1972; 59:135–154


Harken AH, Barlow CH, Harden WR, Chance B. Two and three dimensional display of myocardial ischemic ‘border zone’ in dogs. Am J Cardiol 1978; 42:954–959


Hulsmann WC, Ashruf JF, Bruining HA, Ince C. Imminent ischemia in normal and hypertrophic Langendorff rat hearts; effects of fatty acids and superoxide dismutase monitored by NADH surface fluorescence. Biochim Biophys Acta 1993; 1181:273–278


Bussemaaker J, Groeneveld ABJ, Teerlink T, et al. Low- and high-blood flow regions in the normal pig heart are equally vulnerable to ischaemia during partial coronary stenosis. Pflügers Arch 1997; 434:785–794


120 Ince C. The microcirculation is the motor of sepsis. Crit Care 2005; 9 Suppl 4:S13-S19
126 Dantzker DR. The gastrointestinal tract: the canary of the body? JAMA 1993; 270:1247-8
135 Wettstein R, Tsai AG, Erni D, Winslow RM, Intaglietta M. Resuscitation with poly-
ethylene glycol-modified human hemoglobin improves microcirculatory blood flow and
tissue oxygenation after hemorrhagic shock in awake hamsters. Crit Care Med 2003;
31(6):1824-1830
136 Boura C, Caron A, Longrois D, Mertes PM, Labrude P, Menu Volume expansion with
modified hemoglobin solution, colloids, or crystalloid after hemorrhagic shock in rab-
bits: effects in skeletal muscle oxygen pressure and use versus arterial blood velocity and
resistance. Shock 2003; 19(2):176-182
137 Sakai H, Takeoka S, Wettstein R, Tsai AG, Intaglietta M, Tsuchida E. Systemic and mi-
crovascular responses to hemorrhagic shock and resuscitation with Hb vesicles. Am J
Physiol Heart Circ Physiol 2002; 283(3):H1191-199
138 Gladwin MT, Lancaster, JR Jr., Freeman BA, Schechter AN. Nitric oxide’s reactions with
139 Durner J, Gow AJ, Stamler JS, Glazebrook J. Ancient origins of nitric oxide signaling in
biological systems. Proc Natl Acad Sci USA 1999; 96(25):14206-14207
140 Schwarte LA, Burhop K, Ince C. Blood pressure effects of modified haemoglobin (DCL-
Hb) in endothelial NO-synthase-knockout mice. European Journal of Anaesthesiology
2000; 17(S19):55-56
141 Doherty DH, Doyle MP, Curry SR, et al. Rate of reaction with nitric oxide determines the
142 Resta TC, Walker BR, Eichinger, MR, Doyle MP. Rate of NO scavenging alters effects
93(4):1327-1336
143 Matheson B, Kwansa HE, Bucci E, Rebel A, Koehler RC. Vascular response to infusions
144 Leppaniemi A, Soltero R, Burris D, et al. Early resuscitation with low-volume Poly-
DCLHb is effective in the treatment of shock induced by penetrating vascular injury.
J Trauma 1996; 40:242–248
145 Baldwin AL. Modified hemoglobins produce venular interendothelial gaps and albumin
146 Baldwin AL, Wiley EB, Alayash AI. Comparison of effects of two hemoglo-
bin-based O(2) carriers on intestinal integrity and microvascular leakage. Am J
Physiol Heart Circ Physiol 2002; 283(4):H1292-301
148 Gulati A, Sen AP, Sharma AC, Singh G. Role of ET and NO in resuscitative effect of di-
H836
149 Gulati A, Rebello S. Role of adrenergic mechanisms in the pressor effect of diaspirin
150 van der Linden P, Gilbart E, Paques P, Simon C, Vincent JL. Influence of he-
matocrit on tissue O_{2} extraction capabilities during actue hemorrhage. Am J
Physiol 1993; 264:H1942-7
and rheologic behavior of RBCs: comparison with clinically used volume expanders.
Transfusion 2000; 40:1095–1103
152 Kuchan MJ, Frangos JA. Shear stress regulates endothelin-1 release via protein kinase C
and cGMP in cultured endothelial cells. Am J Physiol 1993; 264(1 Pt 2):H150-156


172 Gibson JB, Maxwell RA, Schweitzer JB, Fabian TC, Proctor KG. Resuscitation from severe hemorrhagic shock after traumatic brain injury using saline, shed blood, or a blood substitute. Shock 2002; 17(3):234-244


187 Murphy P, Heal JM, Blumberg N. Infection or suspected infection after hip replacement surgery with autologous or homologous blood transfusions. Transfusion 1991; 31:212-217


196 Burhop KE. Diaspirin cross-linked hemoglobin DCLHB is an effective low volume resuscitation fluid in a swine model of hemorrhagic shock. Crit Care Med 1993; 21:S255, abstract


199 De Venuto F, Moores WY, Zegna AI, Zuck TF. Total and partial blood exchange in the rat with hemoglobin prepared by crystallization. Transfusion 1977; 17:555-562


203 Sassen LMA, Soei LK, Koning MMG, Verdouw PD. The central and regional cardiovas-
cular responses to intravenous and intra-coronary administration of the phenyldihydro-
204 Achterberg PW, Nieukoop AS, Schoutsen B, de Jong JW. Different ATP-catabolism in
205 Bakker JC, Berbers GAM, Bleeker WK, den Boer PJ, Biessels PTM. Preparation and
characterization of cross linked and polymerized hemoglobin solutions, Blood substi-
tutes and oxygen carriers. Edited by Chang TMS. New York, Marcel Dekker Inc., 1993;
67-75
characteristics of hemoglobin intramolecularly cross-linked and polymerized. J Lab Clin
207 Dodds WJ. The pig model for biomedical research. Fed Proc 1982; 41:247-256.
208 Schultz SC, Grady B, Cole F, Hamilton I, Burhop K, Malcolm DS. A role for endothelin
and nitric oxide in the pressor response to diaspirin cross-linked hemoglobin. J Lab Clin
Med 1993; 122:301-308
209 Muldoon SM, Ledvina MS, Jing M, Hart JL. Effects of inhalation and intravenous anes-
thesics on diaspirin cross linked hemoglobin-induced contractions of porcine pulmonary
veins. Anesthesiology 1994; 81:A459, abstract
210 Vlahakes GJ, Lee R, Jacobs EE, LaRaia PJ, Austen WJ. Hemodynamic effects and oxy-
gen transport of a new blood substitute in a model of massive blood replacement. J Tho-
rac Surg 1990; 100:379-388
211 Van Woerkens ECSM, Trouwborst A, Duncker DJGM, Koning MMG, Boomsma F, Ver-
douw PD. Catecholamines and regional hemodynamics during isovolemic hemodilution
212 Van Iterson M, van der Waart FJM, Erdmann W, Trouwborst A. Systemic haemodynam-
213 Thompson A, McGarry AE, Valeri CR, Lieberthal W. Stroma-free hemoglobin
214 Lenz G, Bissinger U, Benzing H. Oxygen transport by pyridoxylated polyhemoglobin
215 Bleeker WK, van der Plas J, Feitsma IJ, Agterberg J, Rigter G, de Vries-van Rossen A,
Pauwels EKJ, Bakker JC. In vivo distribution and elimination of hemoglobin modified
by intramolecular cross-linking with 2-nor-2-formylpyridoxal 5'-phosphate. J Lab Clin
Med 1989; 113:151-161
216 Dietz NM, Martin CM, Joyner MD. Does cross-linked hemoglobin attenuate nitric oxide-
mediated vasodilation in dogs? Anesthesiology 1994; 81:A774, abstract
217 De Jong JW, Keyzer E, Huizer T, Schoutsen B. Ischemic nucleotide breakdown increases
during cardiac development due to drop in adenosine anabolism/catabolism ratio. J Mol
Cell Card 1990; 22:1065-1070
218 Lacritz EM, Satten GA, Aberle-Grasse J, Dodd RY, Raimondi VP, Janssen RS, et al. Es-
timated risk of transmission of the human immunodeficiency virus by screened blood in
1990; 30:583-90


Cabrales P, Tsai AG, Intaglietta M. Balance between vasoconstriction and enhanced oxygen delivery. Transfusion 2008; 48(10): 2087-2095


