Functional heterogeneity of oxygen supply with blood and hemoglobin-based oxygen carriers in porcine models of hemorrhagic shock

van Iterson, M.

Citation for published version (APA):
van Iterson, M. (2012). Functional heterogeneity of oxygen supply with blood and hemoglobin-based oxygen carriers in porcine models of hemorrhagic shock
REFERENCES

6 Lübbers DW, Baumgärtl H. Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue. Kidney Int 1997; 51 (2):372-80
9 Stern VO, Volmer M. On the quenching-time of fluorescence. Physik Zeitschr 1919; 20:183-188
13 Amberson WR. Mammalian life without red blood cell corpuscles. Science 1933; 78:106-107
17 Gutierrez G. The rate of oxygen release and its effect on capillary O2 tension: a mathematical analysis. Respir Physiol 1986; 63:79-96
18 Stein JC, Ellis CG, Ellsworth ML. Relationship between capillary and systemic PO2 during nonhypoxic and hypoxic ventilation. Am J Physiol 1993; 265:H537-42

22 Ince C, Ashruf JF, Avontuur JAM, Wieringa PA, Spaan JAE, Bruining HA. Heterogeneity of hypoxic state in rat heart is determined at capillary level. American Journal of Physiology 1993; 264:H294–301


35 Ince C, Thio JM, van Iterson M, Sinaasappel M. Microvascular PO$_2$ measured by Pd-porphyrin quenching of phosphorescence in a porcine model of slowly developing sepsis. 9th Congress of Intensive Care Medicine Monduzzi, Italy: 1996; 133–139

36 American College of Surgeons, Committee on Trauma. In: Advanced Trauma Life Support. American College of Surgeons. Chicago 1995; 75-94


Krogh A. The number and distribution of capillaries in muscle with calculations of the oxygen pressure head necessary for supplying the tissue. The Journal of Physiology 1919; 52:409–415


Cokelet GR. Speculation on the cause of low vessel hematocrits in the microcirculation. Microcirculation 1982; 2:1–18


Hoffman JIE Heterogeneity of myocardial blood flow. Basic Res Cardiol 1995; 90:103–111


65 Loncar R, Flesche CW, Deussen A. Coronary reserve of high- and low-flow regions in the dog heart left ventricle. Circ 1998; 98:262–270
69 Krogh A. The anatomy and physiology of capillaries. (Hatner, New York) 1959.
76 Ellsworth ML, Pittman RN. Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am J Physiol 1990; 258:H1240–H1243
81 Van Beek JHGM, Elzinga G. Diffusional shunting of oxygen in saline-perfused isolated rabbit hearts is negligible. Pflügers Arch 1987; 410:263–271
93 Simson MB, Harden W, Barlow C, Harken AH. Visualization of the distance between perfusion and anoxia along an ischemic border. Circ 1979; 60:1151–1155
99 Barlow CH, Chance B. Ischemic areas in perfused rat hearts; measurements by NADH fluorescence photography. Science 1976; 193:909–910
100 Coremans JMCC, Ince C, Bruining HA, Puppels GJ. (Semi-) Quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart. Biophys 1997; 72:1849–1860
101 Chapman JB. Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit. J Gen Physiol 1972; 59:135–154
107 Harken AH, Barlow CH, Harden WR, Chance B. Two and three dimensional display of myocardial ischemic ‘border zone’ in dogs. Am J Cardiol 1978; 42:954–959
113 Hulsmann WC, Ashruf JF, Bruining HA, Ince C. Imminent ischemia in normal and hyperthropic Langendorff rat hearts; effects of fatty acids and superoxide dismutase monitored by NADH surface fluorescence. Biochim Biophys Acta 1993; 1181:273–278
115 Bussemaker J, Groeneveld ABJ, Teerlink T, et al. Low- and high-blood flow regions in the normal pig heart are equally vulnerable to ischaemia during partial coronary stenosis. Pflügers Arch 1997; 434:785–794


120 Ince C. The microcirculation is the motor of sepsis. Crit Care 2005; 9 Suppl 4:S13-S19


126 Dantzker DR. The gastrointestinal tract: the canary of the body? JAMA 1993; 270:1247-8


146 Baldwin AL, Wiley EB, Alayash AI. Comparison of effects of two hemoglobin-based O(2) carriers on intestinal integrity and microvascular leakage. Am J Physiol Heart Circ Physiol 2002; 283(4):H1292-301


172 Gibson JB, Maxwell RA, Schweitzer JB, Fabian TC, Proctor KG. Resuscitation from severe hemorrhagic shock after traumatic brain injury using saline, shed blood, or a blood substitute. Shock 2002; 17(3):234-244


187 Murphy P, Heal JM, Blumberg N. Infection or suspected infection after hip replacement surgery with autologous or homologous blood transfusions. Transfusion 1991; 31:212-217


196 Burhop KE. Diaspirin cross-linked hemoglobin DCLHB is an effective low volume resuscitation fluid in a swine model of hemorrhagic shock. Crit Care Med 1993; 21:S255, abstract


199 De Venuto F, Moores WY, Zegna AI, Zuck TF. Total and partial blood exchange in the rat with hemoglobin prepared by crystallization. Transfusion 1977; 17:555-562


207 Dodds WJ. The pig model for biomedical research. Fed Proc 1982; 41:247-256.
216 Dietz NM, Martin CM, Joyner MD. Does cross-linked hemoglobin attenuate nitric oxide-mediated vasodilation in dogs? Anesthesiology 1994; 81:A774, abstract
262 Cabrales P, Tsai AG, Intaglietta M. Balance between vasoconstriction and enhanced oxygen delivery. Transfusion 2008; 48(10): 2087-2095