Search for a light Higgs boson decaying to long-lived weakly interacting particles in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

DOI
10.1103/PhysRevLett.108.251801

Publication date
2012

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for a Light Higgs Boson Decaying to Long-Lived Weakly Interacting Particles in Proton-Proton Collisions at $\sqrt{s} = 7$ TeV with the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 6 March 2012; published 19 June 2012)

A search for the decay of a light Higgs boson (120–140 GeV) to a pair of weakly interacting, long-lived particles in 1.94 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 7$ TeV recorded in 2011 by the ATLAS detector is presented. The search strategy requires that both long-lived particles decay inside the muon spectrometer. No excess of events is observed above the expected background and limits on the Higgs boson production times branching ratio to weakly interacting, long-lived particles are derived as a function of the particle proper decay length.

DOI: 10.1103/PhysRevLett.108.251801

PACS numbers: 14.80.Ec, 12.60.-i, 13.85.Rm

A Higgs boson [1–3] below 140 GeV is particularly sensitive to new physics. Many extensions of the standard model (SM) include neutral, weakly coupled particles that can be long lived [4,5] and to which the Higgs boson may decay. These long-lived particles occur in many models, including gauge-mediated extensions of the minimal supersymmetric standard model [6], minimal supersymmetric standard model with R-parity violation [7], inelastic dark matter [8], and the hidden valley (HV) scenario [9].

This Letter presents the first ATLAS search for the Higgs boson decay, $h^0 \rightarrow \pi^+_\nu \pi^-_\nu$, to two identical neutral particles (π_ν) that have a displaced decay to fermion-antifermion pairs. As a benchmark, we take a HV model [9] in which the SM is weakly coupled, by a heavy communicator particle, to a hidden sector that includes a pseudoscalar, the π_ν. Because of the helicity suppression of pseudoscalar decays to low-mass $f\bar{f}$ pairs, the π_ν decays predominantly to heavy fermions, $b\bar{b}$, $c\bar{c}$, and $\tau^+\tau^-$ in the ratio $85:5:8\%$. The weak coupling between the two sectors leads the π_ν to have a long lifetime. Other, non-HV, models with the identical signature, where the π_ν is replaced with another weakly interacting scalar or pseudoscalar particle, are discussed in Refs. [4,10]. Both Tevatron experiments, CDF and D0, performed similar searches for displaced decays in their respective tracking volumes, which limited the proper decay length range they could explore to a few hundred millimeters [11,12].

In many of these beyond-the-SM scenarios, the lifetime of the neutral states is not specified and can have a very large range. The current search covers a range of expected proper decay lengths extending to about 20 m by exploiting the size and layout of the ATLAS muon spectrometer.

Consequently the experimental challenge is to develop signature-driven triggers to select displaced decays throughout the ATLAS detector volume [13].

This analysis requires both π_ν’s to decay near the outer radius of the hadronic calorimeter ($r \sim 4$ m) or in the muon spectrometer (MS). Such decays give a (η, ϕ) cluster of charged and neutral hadrons in the MS. Requiring both π_ν’s to have this decay topology improves background rejection. The analysis uses specialized tracking and vertex reconstruction algorithms, described below, to reconstruct vertices in the MS. The analysis strategy takes advantage of the kinematics of the gluon fusion production mechanism and subsequent two-body decay, $h^0 \rightarrow \pi^+_\nu \pi^-_\nu$, which results in events with back-to-back π_ν’s, by requiring two well-separated vertices $[\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 2] [14]$ in the MS.

The data used in this analysis were collected in the first half of 2011 with the LHC operating at 7 TeV. Applying beam, detector, and data quality requirements resulted in a total integrated luminosity of 1.94 fb$^{-1}$. The integrated luminosity has a relative uncertainty of 3.7% [15,16].

Signal Monte Carlo (MC) samples were generated using PYTHIA [17,18] to simulate gluon fusion production ($gg \rightarrow h^0$) and the decay of the Higgs boson ($h^0 \rightarrow \pi^+_\nu \pi^-_\nu$). Four samples were generated: $m_{h^0} = 120$ and 140 GeV and for each m_{h^0}, two π_ν masses of 20 and 40 GeV. The predicted Higgs boson production cross sections [19] are $\sigma(m_{h^0} = 120 \text{ GeV}) = 16.6^{+3.3}_{-3.5} \text{ pb}$ and $\sigma(m_{h^0} = 140 \text{ GeV}) = 12.1^{+2.1}_{-1.8} \text{ pb}$, and the branching ratio (BR) for $h^0 \rightarrow \pi^+_\nu \pi^-_\nu$ is assumed to be 100%. The response of the ATLAS detector was modeled with GEANT4 [20,21]. The effect of multiple pp collisions occurring during the same bunch crossing (pileup) was simulated by superimposing several minimum bias events on the signal event. The MC events were weighted so that the pileup in the simulation agrees with pileup conditions found in data.

ATLAS is a multipurpose detector [22] consisting of an inner tracking detector (ID) surrounded by a superconducting...
solenoid that provides a 2 T field, electromagnetic and hadronic calorimeters and a MS with a toroidal magnetic field. The ID, consisting of silicon pixel and strip detectors and a straw tube tracker, provides precision tracking of charged particles for $|\eta| \leq 2.5$. The calorimeter system covers $|\eta| \leq 4.9$ and has 9.7 interaction lengths at $\eta = 0$. The MS consists of a barrel and two forward spectrometers, each with 16 ϕ sectors instrumented with detectors for first level triggering and precision tracking detectors for muon momentum measurement. Each spectrometer has three stations along the muon flight path: inner, middle, and outer. In the barrel, the stations are located at radii of \sim4.5, 7, and 10 m, while in the forward MS, they are located at $|z| \sim 7.5$, 14, and 20 m. This analysis uses muon tracking for $|\eta| \leq 2.4$, where each station is instrumented with two multilayers of precision tracking chambers, monitored drift tubes (MDTs). It also utilizes level 1 [23] (L1) muon triggering in the barrel MS ($|\eta| \leq 1$). The trigger chambers are located in the middle and outer stations. The L1 muon trigger requires hits in the middle station to create a low p_T muon region of interest (RoI) or hits in both the middle and outer stations for a high p_T RoI. The muon RoIs have a spacial extent of 0.2×0.2 in $\Delta \eta \times \Delta \phi$ and are limited to two RoIs per sector.

A dedicated, signature-driven trigger, the muon RoI cluster trigger [13], was developed to trigger on events with a π_ν decaying in the MS. It selects events with a cluster of three or more muon RoIs in a $\Delta R = 0.4$ cone in the MS barrel trigger chambers. This trigger configuration implies that one π_ν must decay in the barrel spectrometer, while the second π_ν may decay either in the barrel or the forward spectrometer. With this trigger, it is possible to trigger on π_ν decays at the outer radius of the hadronic calorimeter and in the MS with high efficiency. The backgrounds of punch-through jets [24] and muon bremsstrahlung are suppressed by requiring no calorimeter jets with $E_T \geq 30$ GeV in a cone of $\Delta R = 0.7$ and no ID tracks with $p_T \geq 5$ GeV within a region of $\Delta \eta \times \Delta \phi = 0.2 \times 0.2$ around the RoI cluster center. These isolation criteria result in a negligible loss in the simulated signal while significantly reducing the backgrounds.

As depicted in Fig. 1(a) [25], MC studies show the RoI cluster trigger is $\sim 30\%$-50% efficient in the region from 4 to 7 m. The π_ν's that decay beyond a radius of ~ 7 m do not leave hits in the trigger chambers located at ~ 7 m, while the π_ν decays that occur before $r \sim 4$ m are located in the calorimeter and do not produce sufficient activity in the MS to pass the muon RoI cluster trigger. The $m_{\pi_\nu} = 120$ GeV and $m_{\pi_\nu} = 40$ GeV sample has a relatively lower efficiency because the π_ν's have a lower boost and arrive later at the MS. As a result, the trigger signal may be associated with the incorrect bunch crossing, in which case the event is lost.

The systematic uncertainty of the muon RoI cluster trigger efficiency is evaluated on data using a sample of events containing a punch-through jet. This sample of events is similar to signal events as it contains both low energy photons and charged hadrons in a localized region of the MS. These punch-through jets are selected to be in the barrel calorimeter ($|\eta| \leq 1.4$), have $E_T \geq 20$ GeV, have at least four tracks in the ID, each with $p_T \geq 1$ GeV, and have at least 20 GeV of missing transverse momentum aligned with the jet. To ensure significant activity in the MS, the jet is required to contain at least 300 MDT hits in a cone of $\Delta R = 0.6$, centered around the jet axis [26]. The muon RoI cluster trigger algorithm was run in the vicinity of the punch-through jet for both data and MC events. The distribution of RoIs contained in the cluster for data and MC events, normalized to the number of data events, is shown in Fig. 2. The shapes of the distribution match well between data and MC events. A horizontal line fit to the ratio, as a function of N_RRoI ≥ 1, yields 1.14 ± 0.09, and 14% is taken as the systematic uncertainty. The effects of uncertainties in the jet energy scale (JES) [27], in the initial state radiation (ISR) spectrum [28], and in the amount of pileup were found to be

![Diagram](image-url)
negligible when varying these quantities by their uncertainties.

A specialized tracking and vertex reconstruction algorithm was developed to identify \(\pi_0 \)'s that decay inside the MS. The decay of a \(\pi_0 \) results in a high multiplicity of low \(p_T \) particles (1 \(\leq p_T \leq 5 \) GeV) containing \(\sim 10 \) charged particles and \(\sim 5 \) \(\pi^0 \)'s clustered in a small \(\Delta R \) region of the spectrometer. The \(\pi_0 \)'s that decay before the last sampling layer of the hadronic calorimeter do not produce a significant number of tracks in the MS. Thus, detectable decay vertices must be located in the region between the outer radius of the hadronic calorimeter and the middle station of the MS. Over a wide range of acceptance in the barrel MS, the total amount of material traversed is roughly 1.3 radiation lengths [22]; therefore, as a consequence of the \(\sim 5 \) \(\pi^0 \)'s produced in signal events, large electromagnetic showers accompany the \(\sim 10 \) charged particles from \(\pi_0 \) decays. The resulting MS environment contains, on average, approximately 800 MDT hits, of which \(\sim 75\% \) are from the electromagnetic showers.

The design of the muon chambers [22] is exploited in order to reconstruct tracks in this busy environment. The separation of the two multilayers inside a single muon chamber provides a powerful tool for track pattern recognition. This separation provides enough of a lever arm to allow, in the barrel, a momentum measurement with acceptable resolution for tracks up to approximately 10 GeV [29]. In the forward spectrometers, the muon chambers are outside the magnetic field region; therefore, it is not possible to measure the track momentum inside of a single chamber. In both cases, the tracklets used in the vertex reconstruction are formed using hits in single muon chambers.

The MS vertex algorithm begins by grouping the tracklets using a simple cone algorithm with \(\Delta R = 0.6 \). In the barrel, the tracklets are extrapolated through the magnetic field, and the vertex position is reconstructed as the point in

\[(r, z) \]

that uses the largest number of tracklets to reconstruct a vertex with a \(\chi^2 \) probability greater than 5\%. In the forward spectrometer, the reconstructed tracklets do not have a measurement of the momentum; therefore, the vertex is found using a least squares regression that assumes the tracklets are straight lines. Vertices are required to be reconstructed using at least three tracklets, point back to the interaction point (IP) [30] and have \(\mid \eta \mid \leq 2.2 \). After requiring the MS vertex to be separated from ID tracks with \(p_T \geq 5 \) GeV and jets with \(E_T \geq 15 \) GeV by \(\Delta R = 0.4 \) and \(\Delta R = 0.7 \), respectively, the algorithm has an efficiency of \(\sim 40\% \) in signal MC events throughout the barrel region (\(4 \leq r \leq 7.5 \) m) and a resolution of 20 cm in \(z \), 32 cm in \(r \), and 50 mrad in \(\phi \). In the forward spectrometer, the algorithm is \(\sim 40\% \) efficient in the region \(8 \leq |z| \leq 14 \) m. Figure 1(b) [25] shows the vertex reconstruction efficiency for the barrel reconstruction algorithm in MC signal events that passed the muon RoI cluster trigger.

The MC description of hadrons and photons in the MS was validated on the same sample of events containing a punch-through jet used to evaluate the trigger performance. The fraction of these jets that produce a MS vertex was compared in data and QCD dijet MC events. Table I shows the fraction of punch-through jets that produce a vertex in data and MC events as a function of the number of MDT hits in a cone of \(\Delta R = 0.6 \) around the jet axis. The data-to-MC ratio is fit to a flat distribution that yields a ratio consistent with unity with a 15\% statistical uncertainty, which is taken to be the systematic uncertainty in the vertex reconstruction efficiency. The systematic uncertainties arising from the JES, ISR spectrum, and the amount of pileup were estimated by varying these quantities by their uncertainties and calculating the change in the vertex reconstruction efficiency. The total systematic uncertainty of 16\% for the efficiency of reconstructing a vertex is the sum in quadrature of the uncertainties in the efficiency of the isolation criteria due to varying the JES, ISR, and pileup (3\%, 3\%, and 2\%, respectively) and the uncertainty in the comparison of data and MC events (15\%).

The final event selection requires two good MS vertices separated by \(\Delta R > 2 \). The background due to events with two jets, both of which punch through the calorimeter, is a negligible contribution to the total background due to the tight isolation criteria applied to each vertex. The background is calculated using a fully data-driven method by

\[
\begin{array}{ccc}
\text{Number of MDT hits} & \text{QCD dijet Monte Carlo} & \text{Data} \\
300 \leq N_{\text{MDT}} < 400 & 10.1 \pm 2.2\% & 9.1 \pm 0.5\% \\
400 \leq N_{\text{MDT}} < 500 & 9.2 \pm 2.8\% & 10.5 \pm 0.7\% \\
500 \leq N_{\text{MDT}} < 600 & 13.1 \pm 5.4\% & 13.0 \pm 0.9\% \\
N_{\text{MDT}} \geq 600 & 16.5 \pm 4.5\% & 16.7 \pm 0.7\% \\
\end{array}
\]
measuring the probability for a random event to contain an MS vertex (P_{vertex}) and the probability of reconstructing a vertex given that the event passed the RoI cluster trigger (P_{reco}). Because P_{vertex} and P_{reco} are measured in data, they incorporate backgrounds from cosmic showers, beam halo, and detector noise. The background is calculated as

$$N_{\text{fake}}(2 \text{ MS vertex}) = N(\text{MS vertex}, 1 \text{ trig})P_{\text{vertex}} + N(\text{MS vertex}, 2 \text{ trig})P_{\text{reco}}.$$

No events in the data sample pass the selection requiring two isolated, back-to-back vertices in the muon spectrometer. Since no significant excess over the background prediction is found, exclusion limits for $\sigma_{h^0} \times \text{BR}(h^0 \to \pi^+ \pi^-)/\sigma_{\text{SM}}$ are set by rejecting the signal hypothesis at the 95% confidence level (CL) using the CLs procedure [32]. Figure 3 shows the 95% CL upper limit on $\sigma_{h^0} \times \text{BR}(h^0 \to \pi^+ \pi^-)/\sigma_{\text{SM}}$ as a function of the $\pi^+\pi^-$ proper decay length (ct) in multiples of the SM Higgs boson cross section, σ_{SM}. As expected, the Higgs boson and $\pi^+\pi^-$ mass combinations with the largest boosts leading to larger $\beta y c t$ have the smallest exclusion limits.

In 1.94 fb$^{-1}$ of pp collision data at a center-of-mass energy of 7 TeV, there is no evidence of an excess of events containing two isolated, back-to-back vertices in the ATLAS muon spectrometer. Using the model of a light Higgs boson decaying to weakly interacting, long-lived pseudoscalars, limits have been placed on the pseudoscalar proper decay length. Table II shows the broad range of $\pi^+\pi^-$ proper decay lengths that have been excluded at the 95% CL, assuming 100% branching ratio for $h^0 \to \pi^+\pi^-$. These limits also apply to models in which the Higgs boson decays to a pair of weakly interacting scalars that, in turn, decay to heavy quark pairs.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINEVRA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; AARS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society

<table>
<thead>
<tr>
<th>m_{h^0} (GeV)</th>
<th>$m_{\pi^+\pi^-}$ (GeV)</th>
<th>Excluded region</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>20</td>
<td>0.50 $< ct < 20.65$ m</td>
</tr>
<tr>
<td>120</td>
<td>40</td>
<td>1.60 $< ct < 24.65$ m</td>
</tr>
<tr>
<td>140</td>
<td>20</td>
<td>0.45 $< ct < 15.8$ m</td>
</tr>
<tr>
<td>140</td>
<td>40</td>
<td>1.10 $< ct < 26.75$ m</td>
</tr>
</tbody>
</table>

![Graph showing 95% CL limits on $\sigma_{h^0} \times \text{BR}(h^0 \to \pi^+ \pi^-)$ vs proper decay length](image-url)
and Leverhulme Trust, United Kingdom; DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[14] The ATLAS Collaboration uses a right-handed coordinate system with its origin at the nominal IP in the center of the detector and the z axis coinciding with the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, with φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = −ln(tan(θ/2)).

(ATLAS Collaboration)

1 University at Albany, Albany, New York, USA
2 Department of Physics, University of Alberta, Edmonton, Alberta, Canada
3 Department of Physics, Ankara University, Ankara, Turkey
3b Department of Physics, Dumlupinar University, Kutahya, Turkey
3c Department of Physics, Gazi University, Ankara, Turkey
3d Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
3e Turkish Atomic Energy Authority, Ankara, Turkey
4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
6 Department of Physics, University of Arizona, Tucson, Arizona, USA
7 Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 Institute of Physics, University of Belgrade, Belgrade, Serbia
12b Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18a Department of Physics, Bogazici University, Istanbul, Turkey
18b Division of Physics, Dogus University, Istanbul, Turkey
18c Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
18d Department of Physics, Istanbul Technical University, Istanbul, Turkey
19a INFN Sezione di Bologna, Italy
19b Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston, Massachusetts, USA
22 Department of Physics, Brandeis University, Waltham, Massachusetts, USA
23a Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
23b Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
23c Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
23d Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
25a National Institute of Physics and Nuclear Engineering, Bucharest, Romania
25b University Politehnica Bucharest, Bucharest, Romania
25c West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa, Ontario, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA