Search for a light Higgs boson decaying to long-lived weakly interacting particles in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

DOI
10.1103/PhysRevLett.108.251801

Publication date
2012

Document Version
Final published version

Published in
Physical Review Letters

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
A Higgs boson [1–3] below 140 GeV is particularly sensitive to new physics. Many extensions of the standard model (SM) include neutral, weakly coupled particles that can be long lived [4,5] and to which the Higgs boson may decay. These long-lived particles occur in many models, including gauge-mediated extensions of the minimal supersymmetric standard model [6], minimal supersymmetric standard model with R-parity violation [7], inelastic dark matter [8], and the hidden valley (HV) scenario [9].

This Letter presents the first ATLAS search for the Higgs boson decay, \(h^0 \rightarrow \pi^+_\nu \pi^-_\nu \), to two identical neutral particles (\(\pi_\nu \)) that have a displaced decay to fermion-antifermion pairs. As a benchmark, we take a HV model in which the SM is weakly coupled, by a heavy communicator particle, to a hidden sector that includes a pseudoscalar, the \(\pi_\nu \). Because of the helicity suppression of pseudoscalar decays to low-mass \(f \overline{f} \) pairs, the \(\pi_\nu \) decays predominantly to heavy fermions, \(b\overline{b} \), \(c\overline{c} \), and \(\tau^+\tau^- \) in the ratio 85:5:8%. The weak coupling between the two sectors leads the \(\pi_\nu \) to have a long lifetime. Other, non-HV, models with the identical signature, where the \(\pi_\nu \) is replaced with another weakly interacting scalar or pseudoscalar particle, are discussed in Refs. [4,10]. Both Tevatron experiments, CDF and D0, performed similar searches for displaced decays in their respective tracking volumes, which limited the proper decay length range they could explore to a few hundred millimeters [11,12].

In many of these beyond-the-SM scenarios, the lifetime of the neutral states is not specified and can have a very large range. The current search covers a range of expected proper decay lengths extending to about 20 m by exploiting the size and layout of the ATLAS muon spectrometer.

Consequently the experimental challenge is to develop signature-driven triggers to select displaced decays throughout the ATLAS detector volume [13]. This analysis requires both \(\pi^+_\nu \) decays to occur near the outer radius of the hadronic calorimeter (\(r \approx 4 \) m) or in the muon spectrometer (MS). Such decays give a \((\eta, \phi) \) cluster of charged and neutral hadrons in the MS. Requiring both \(\pi^+_\nu \)'s to have this decay topology improves background rejection. The analysis uses specialized tracking and vertex reconstruction algorithms, described below, to reconstruct vertices in the MS. The analysis strategy takes advantage of the kinematics of the gluon fusion production mechanism and subsequent two-body decay, \(h^0 \rightarrow \pi^+_\nu \pi^-_\nu \), which results in events with back-to-back \(\pi^+_\nu \)'s, by requiring two well-separated vertices \(|\Delta R| = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 2 \) [14] in the MS.

The data used in this analysis were collected in the first half of 2011 with the LHC operating at 7 TeV. Applying beam, detector, and data quality requirements resulted in a total integrated luminosity of 1.94 fb\(^{-1}\). The integrated luminosity has a relative uncertainty of 3.7% [15,16].

Signal Monte Carlo (MC) samples were generated using \textsc{pythia} [17,18] to simulate gluon fusion production \((gg \rightarrow h^0) \) and the decay of the Higgs boson \((h^0 \rightarrow \pi^+_\nu \pi^-_\nu)\). Four samples were generated: \(m_{h^0} = 120 \) and 140 GeV and for each \(m_{h^0} \), two \(\pi_\nu \) masses of 20 and 40 GeV. The predicted Higgs boson production cross sections [19] are \(\sigma(m_{h^0} = 120 \text{ GeV}) = 16.6^{+3.3}_{-2.5} \) pb and \(\sigma(m_{h^0} = 140 \text{ GeV}) = 12.1^{+2.7}_{-1.8} \) pb, and the branching ratio (BR) for \(h^0 \rightarrow \pi^+_\nu \pi^-_\nu \) is assumed to be 100%. The response of the ATLAS detector was modeled with \textsc{geant4} [20,21]. The effect of multiple \(pp \) collisions occurring during the same bunch crossing (pileup) was simulated by superimposing several minimum bias events on the signal event. The MC events were weighted so that the pileup in the simulation agrees with pileup conditions found in data.

ATLAS is a multipurpose detector [22] consisting of an inner tracking detector (ID) surrounded by a superconducting...
solenoid that provides a 2 T field, electromagnetic and hadronic calorimeters and a MS with a toroidal magnetic field. The ID, consisting of silicon pixel and strip detectors and a straw tube tracker, provides precision tracking of charged particles for $|\eta| \leq 2.5$. The calorimeter system covers $|\eta| \leq 4.9$ and has 9.7 interaction lengths at $\eta = 0$. The MS consists of a barrel and two forward spectrometers, each with 16 ϕ sectors instrumented with detectors for first level triggering and precision tracking detectors for muon momentum measurement. Each spectrometer has three stations along the muon flight path: inner, middle, and outer. In the barrel, the stations are located at radii of ≈ 4.5, 7, and 10 m, while in the forward MS, they are located at $|z| \approx 7.5$, 14, and 20 m. This analysis uses muon tracking for $|\eta| \leq 2.4$, where each station is instrumented with two multilayers of precision tracking chambers, monitored drift tubes (MDTs). It also utilizes level 1 [23] (L1) muon triggering in the barrel MS ($|\eta| \leq 1$). The trigger chambers are located in the middle and outer stations. The L1 muon trigger requires hits in the middle station to create a low p_T muon region of interest (RoI) or hits in both the middle and outer stations for a high p_T RoI. The muon RoIs have a spacial extent of 0.2×0.2 in $\Delta \eta \times \Delta \phi$ and are limited to two RoIs per sector.

A dedicated, signature-driven trigger, the muon RoI cluster trigger [13], was developed to trigger on events with a π_μ decaying in the MS. It selects events with a cluster of three or more muon RoIs in a $\Delta R = 0.4$ cone in the MS barrel trigger chambers. This trigger configuration implies that one π_μ must decay in the barrel spectrometer, while the second π_μ may decay either in the barrel or the forward spectrometer. With this trigger, it is possible to trigger on π_μ decays at the outer radius of the hadronic calorimeter and in the MS with high efficiency. The backgrounds of punch-through jets [24] and muon bremsstrahlung are suppressed by requiring no calorimeter jets with $E_T \geq 30$ GeV in a cone of $\Delta R = 0.7$ and no ID tracks with $p_T \geq 5$ GeV within a region of $\Delta \eta \times \Delta \phi = 0.2 \times 0.2$ around the RoI cluster center. These isolation criteria result in a negligible loss in the simulated signal while significantly reducing the backgrounds.

As depicted in Fig. 1(a) [25], MC studies show the RoI cluster trigger is $\sim 30\%$-50% efficient in the region from 4 to 7 m. The π_μ's that decay beyond a radius of ≈ 7 m do not leave hits in the trigger chambers located at ≈ 7 m, while the π_μ decays that occur before $r \approx 4$ m are located in the calorimeter and do not produce sufficient activity in the MS to pass the muon RoI cluster trigger. The $m_{\phi} = 120$ GeV and $m_{\pi_\mu} = 40$ GeV sample has a relatively lower efficiency because the π_μ's have a lower boost and arrive later at the MS. As a result, the trigger signal may be associated with the incorrect bunch crossing, in which case the event is lost.

The systematic uncertainty of the muon RoI cluster trigger efficiency is evaluated on data using a sample of events containing a punch-through jet. This sample of events is similar to signal events as it contains both low energy photons and charged hadrons in a localized region of the MS. These punch-through jets are selected to be in the barrel calorimeter ($|\eta| \leq 1.4$), $E_T \geq 20$ GeV, have at least four tracks in the ID, each with $p_T \geq 1$ GeV, and have at least 20 GeV of missing transverse momentum aligned with the jet. To ensure significant activity in the MS, the jet is required to contain at least 300 MDT hits in a cone of $\Delta R = 0.6$, centered around the jet axis [26]. The muon RoI cluster trigger algorithm was run in the vicinity of the punch-through jet for both data and MC events. The distribution of RoIs contained in the cluster for data and MC events, normalized to the number of data events, is shown in Fig. 2. The shapes of the distribution match well between data and MC events. A horizontal line fit to the ratio, as a function of $N_{R\phi} \geq 1$, yields 1.14 ± 0.09, and 14% is taken as the systematic uncertainty. The effects of uncertainties in the jet energy scale (JES) [27], in the initial state radiation (ISR) spectrum [28], and in the amount of pileup were found to be

![Graph](attachment:image.png)
particles and showers accompany the MS. The decay of a field, and the vertex position is reconstructed as the point in

\[\text{measure the track momentum inside of a single chamber. In} \]

In the forward spectrometers, the muon chambers are out-

\[\text{able resolution for tracks up to approximately 10 GeV [29].} \]

\[\text{allow, in the barrel, a momentum measurement with accept-

\[\text{ation lengths [22]; therefore, as a consequence of the} \]

the total amount of material traversed is roughly 1.3 radia-

\[\text{the MS vertex to be separated from ID tracks with} \]

\[p_T \gtrsim 5 \text{ GeV and jets with} E_T \gtrsim 15 \text{ GeV by} \Delta R = 0.4 \text{ and} \Delta R = 0.7, \text{ respectively, the algorithm has an ef-

\[\text{iciency of} \sim 40\% \text{ in signal MC events throughout the barrel} \]

\[\text{region (}4 \leq r \leq 7.5 \text{ m}) \text{ and a resolution of} 20 \text{ cm in} z, \]

\[32 \text{ cm in} r, \text{ and} 50 \text{ mrad in} \phi. \text{ In the forward spectrometer,} \]

\[\text{the algorithm is} \sim 40\% \text{ efficient in the region} 8 \leq |z| \leq 14 \text{ m. Figure 1(b) [25] shows the vertex reconstruc-

\[\text{tion efficiency for the barrel reconstruction algorithm in MC} \]

\[\text{signal events that passed the muon RoI cluster trigger.} \]

\[\text{The MC description of hadrons and photons in the MS} \]

\[\text{was validated on the same sample of events containing a} \]

\[\text{punch-through jet used to evaluate the trigger performance.} \]

\[\text{The fraction of these jets that produce a MS vertex was} \]

\[\text{compared in data and QCD dijet MC events. Table I shows} \]

\[\text{the fraction of punch-through jets that produce a vertex in} \]

\[\text{data and MC events as a function of the number of MDT} \]

\[\text{hits in a cone of} \Delta R = 0.6 \text{ around the jet axis. The data-to-

\[\text{MC ratio is fit to a flat distribution that yields a ratio} \]

\[\text{consistent with unity with a} 15\% \text{ statistical uncertainty, which} \]

\[\text{is taken to be the systematic uncertainty in the vertex} \]

\[\text{reconstruction efficiency. The systematic uncertainties} \]

\[\text{arising from the JES, ISR spectrum, and the amount of} \]

\[\text{pileup were estimated by varying these quantities by their} \]

\[\text{uncertainties and calculating the change in the vertex} \]

\[\text{reconstruction efficiency. The total systematic uncertainty} \]

\[\text{of} 16\% \text{ for the efficiency of reconstructing a vertex is the} \]

\[\text{sum in quadrature of the uncertainties in the efficiency of} \]

\[\text{the isolation criteria due to varying the JES, ISR, and} \]

\[\text{pileup (3\%, 3\%, and} 2\%, \text{ respectively) and the uncertainty} \]

\[\text{in the comparison of data and MC events (15\%).} \]

\[\text{The final event selection requires two good MS vertices} \]

\[\text{separated by} \Delta R > 2. \text{ The background due to events with} \]

\[\text{two jets, both of which punch through the calorimeter, is a} \]

\[\text{negligible contribution to the total background due to the} \]

\[\text{tight isolation criteria applied to each vertex. The back-

\[\text{ground is calculated using a fully data-driven method by} \]

\[\text{TABLE I. Fraction of punch-through jets that have a recon-

\[\text{structured vertex in the muon spectrometer for varying numbers of} \]

\[\text{MDT hits for data and QCD Monte Carlo events.} \]

\[\text{Number of MDT hits} \]

\[\text{QCD dijet Monte Carlo} \]

\[\text{Data} \]

\[300 \leq N_{\text{MDT}} < 400 \]

\[10.1 \pm 2.2% \]

\[9.1 \pm 0.5% \]

\[400 \leq N_{\text{MDT}} < 500 \]

\[9.2 \pm 2.8% \]

\[10.5 \pm 0.7% \]

\[500 \leq N_{\text{MDT}} < 600 \]

\[13.1 \pm 5.4% \]

\[13.0 \pm 0.9% \]

\[N_{\text{MDT}} \geq 600 \]

\[16.5 \pm 4.5% \]

\[16.7 \pm 0.7% \]
measuring the probability for a random event to contain an MS vertex (P_{vertex}) and the probability of reconstructing a vertex given that the event passed the RoI cluster trigger (P_{reco}). Because P_{vertex} and P_{reco} are measured in data, they incorporate backgrounds from cosmic showers, beam halo, and detector noise. The background is calculated as

$$N_{\text{fake}}(2 \text{ MS vertex}) = N(\text{MS vertex, 1 trig})P_{\text{vertex}}$$

$$+ N(\text{MS vertex, 2 trig})P_{\text{reco}}.$$

$N(\text{MS vertex, 1 trig})$ is the number of events with a single muon RoI cluster trigger object and an isolated MS vertex. $N(\text{MS vertex, 2 trig})$ is the number of events with an isolated vertex and a second RoI cluster trigger object. The first term in the equation is the expected number of background events with one vertex that randomly contain a second vertex. P_{reco} is the probability to reconstruct a vertex given there was an RoI cluster trigger; thus, the second term in the equation is the expected number of events with two RoI clusters that have two vertices in the MS. P_{vertex} was measured using zero bias data [31] to be $(9.7 \pm 6.9) \times 10^{-7}$, and P_{reco} was measured using the events that pass the muon RoI cluster trigger to be $(1.11 \pm 0.01) \times 10^{-2}$. The expected signal would cause, at most, a relative change in P_{reco} of $\sim 1\%$. P_{reco} was also measured using a sample of events recorded when there were no collisions. In this sample of noncollision background events, P_{reco} was measured to be $(7.0 \pm 0.6) \times 10^{-3}$. For calculating the background, the larger value of $P_{\text{reco}} (1.11 \times 10^{-2})$ is taken since it gives a conservative estimate of the background. $N(\text{MS vertex, 1 trig})$ and $N(\text{MS vertex, 2 trig})$ are 15 543 and 1, respectively. Therefore, the background is calculated to be 0.03 ± 0.02 events.

No events in the data sample pass the selection requiring two isolated, back-to-back vertices in the muon spectrometer.

Since no significant excess over the background prediction is found, exclusion limits for $\sigma_{\pi^0} \times \text{BR}(h^0 \to \pi^0 \pi^0)$ are set by rejecting the signal hypothesis at the 95% confidence level (CL) using the CLs procedure [32]. Figure 3 shows the 95% CL upper limit on $\sigma_{\pi^0} \times \text{BR}(h^0 \to \pi^0 \pi^0)/\sigma_{\text{SM}}$ as a function of the π^0 proper decay length ($c\tau$) in multiples of the SM Higgs boson cross section, σ_{SM}. As expected, the Higgs boson and π^0 mass combinations with the largest boosts leading to larger $\beta y c\tau$ have the smallest exclusion limits.

In 1.94 fb$^{-1}$ of pp collision data at a center-of-mass energy of 7 TeV, there is no evidence of an excess of events containing two isolated, back-to-back vertices in the ATLAS muon spectrometer. Using the model of a light Higgs boson decaying to weakly interacting, long-lived pseudoscalars, limits have been placed on the pseudoscalar proper decay length. Table II shows the broad range of π^0 proper decay lengths that have been excluded at the 95% CL, assuming 100% branching ratio for $h^0 \to \pi^0 \pi^0$. These limits also apply to models in which the Higgs boson decays to a pair of weakly interacting scalars that, in turn, decay to heavy quark pairs.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTENIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR, MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society.
The ATLAS Collaboration uses a right-handed coordinate system with its origin coinciding with the IP and the z axis pointing from the IP to the center of the LHC ring, and the x axis points upward. Cylindrical coordinates (r, θ) are used in the transverse plane, with θ defined in terms of the polar angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).

[14] The ATLAS Collaboration uses a right-handed coordinate system with its origin at the nominal IP in the center of the detector and the z axis coinciding with the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, θ) are used in the transverse plane, with θ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).

[18] The simulation was done in PYTHIA 6, with color connections on. This leads to some quarks from the πv decays being connected via a gluon string to partons at the IP. These events with a macroscopic color string were removed from the MC sample and the remaining events reweighted to preserve the proper branching fractions.
[24] A punch-through jet occurs when particles from a jet, or from a shower in the calorimeter, escape the calorimeter volume.
[25] The fluctuations of the trigger and vertex algorithm efficiencies as a function of r reflect the material distribution in the MS and the dependence of the opening angle of the πv decay products on the πv mass.
[26] For comparison a single, minimum-ionizing track in the barrel MS has about 20 to 25 MDT hits.
[29] The momentum resolution for tracklets reconstructed using single MDT chambers in the barrel MS is in the range: Δp-p/|p|/GeV = [0.06 − 0.09] × |p|/GeV.
[30] The sum of pz of all tracklets used in the vertex fit is required to point back toward the IP.
[31] The zero bias trigger uses a random generator in coincidences on. This leads to some quarks from the πv decays being connected via a gluon string to partons at the IP. These events with a macroscopic color string were removed from the MC sample and the remaining events reweighted to preserve the proper branching fractions.

(ATLAS Collaboration)

1University at Albany, Albany, New York, USA
2Department of Physics, University of Alberta, Edmonton, Alberta, Canada
3Department of Physics, Ankara University, Ankara, Turkey
4Department of Physics, Dumlupinar University, Kutahya, Turkey
5Department of Physics, Gazi University, Ankara, Turkey
6Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7Department of Physics, University of Belgrade, Belgrade, Serbia
8Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
9Department for Physics and Technology, University of Bergen, Bergen, Norway
10Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
11Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12Institute of Physics, University of Burgundy, Dijon, France
13Department of Physics, Humboldt University, Berlin, Germany
14Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
15School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
16Department of Physics, Bogazici University, Istanbul, Turkey
17Division of Physics, Dogus University, Istanbul, Turkey
18Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
19Department of Physics, Istanbul Technical University, Istanbul, Turkey
20INFN Sezione di Bologna, Italy
21Department of Physics, Boston University, Boston, Massachusetts, USA
22Department of Physics, Brandeis University, Waltham, Massachusetts, USA
23Department of Physics, University of Arizona, Tucson, Arizona, USA
24Department of Physics, The University of Arizona at Arlington, Arlington, Texas, USA
25Division of Physics, University of Athens, Athens, Greece
26Department of Physics, National Technical University of Athens, Zografou, Greece
27Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
28Physikalisches Institut, University of Bonn, Bonn, Germany
29University Politehnica Bucharest, Bucharest, Romania
30West University in Timisoara, Timisoara, Romania
31University in Timisoara, Timisoara, Romania
32aFaculty of Science and Technology, University of Bradford, Bradford, United Kingdom
32bCavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
33University of California, Berkeley, California, USA
34Department of Physics, Carleton University, Ottawa, Ontario, Canada
35Physics Department, Brookhaven National Laboratory, Upton, New York, USA
36National Institute of Physics and Nuclear Engineering, Bucharest, Romania
37University Politehnica Bucharest, Bucharest, Romania
38West University in Timisoara, Timisoara, Romania
39Department of Physics, University of Chicago, Chicago, Illinois, USA
40INFN Sezione di Bologna, Italy
41Department of Physics, Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
42Department of Physics, Brookhaven National Laboratory, Upton, New York, USA
43National Institute of Physics and Nuclear Engineering, Bucharest, Romania
44University Politehnica Bucharest, Bucharest, Romania
45Physics Department, Carleton University, Ottawa, Ontario, Canada
46Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA

251801-14
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, University of Texas at Dallas, Richardson, Texas, USA

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham, North Carolina, USA

SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

Section de Physique, Université de Genève, Geneva, Switzerland

INFN Sezione di Genova, Italy

Dipartimento di Fisica, Università di Genova, Genova, Italy

E. Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi, Georgia

High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France

Department of Physics, Hampton University, Hampton, Virginia, USA

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Science, Hiroshima University, Hiroshima, Japan

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Physics, Indiana University, Bloomington, Indiana, USA

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City, Iowa, USA

Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

INFN Sezione di Lecce, Italy

Dipartimento di Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden

Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
Department of Physics, McGill University, Montreal, Quebec, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
INFN Sezione di Milano, Italy
Dipartimento di Fisica, Università di Milano, Milano, Italy
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli, Italy
Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York, New York, USA
Ohio State University, Columbus, Ohio, USA
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
INFN Sezione di Pavia, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
Petersburg Nuclear Physics Institute, Gatchina, Russia
INFN Sezione di Pisa, Italy
Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
Laboratorio de Instrumentación e Física Experimental de Partículas-LIP, Lisboa, Portugal
Departamento de Física Teórica y del Cosmos and CAIPE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Physics Department, University of Regina, Regina, Saskatchewan, Canada
Ritsumeikan University, Kusatsu, Shiga, Japan
INFN Sezione di Roma I, Italy
Dipartimento di Fisica, Università La Sapienza, Roma, Italy
INFN Sezione di Roma Tor Vergata, Italy
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma Tre, Italy
Dipartimento di Fisica, Università Roma Tre, Roma, Italy