Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in pp collisions at $\sqrt{s} = 7$ TeV

Published in:
European Physical Journal C

DOI:
10.1140/epjc/s10052-012-1993-2

Link to publication

Citation for published version (APA):
Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV

The ATLAS Collaboration
CERN, 1211 Geneva 23, Switzerland

Abstract In models of anomaly-mediated supersymmetry breaking (AMSB), the lightest chargino is predicted to have a lifetime long enough to be detected in collider experiments. This letter explores AMSB scenarios in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV by attempting to identify decaying charginos which result in tracks that appear to have few associated hits in the outer region of the tracking system. The search was based on data corresponding to an integrated luminosity of 1.02 fb\(^{-1}\) collected with the ATLAS detector in 2011. The \(p_T \) spectrum of candidate tracks is found to be consistent with the expectation from Standard Model background processes and constraints on the lifetime and the production cross section were obtained. In the minimal AMSB framework with \(m_{3/2} < 32 \) TeV, \(m_0 < 1.5 \) TeV, \(\tan \beta = 5 \) and \(\mu > 0 \), a chargino having mass below 92 GeV and a lifetime between 0.5 ns and 2 ns is excluded at 95 % confidence level.

1 Introduction

Supersymmetry (SUSY) [1–9] is a promising solution to the hierarchy problem of the Standard Model (SM) and the search for SUSY is an important programme at the Large Hadron Collider (LHC). For each SM particle, SUSY postulates a supersymmetric partner with identical quantum numbers but with a spin that differs by 1/2. Since scalar superpartners of quarks and leptons with masses equal to quarks and leptons have not been observed in previous searches, SUSY must be a broken symmetry. One mechanism which provides a calculable mass spectrum of supersymmetric particles is provided by anomaly mediation [10, 11]. The anomaly-mediated SUSY breaking (AMSB) model provides a constrained particle mass spectrum; the ratios of the three gaugino masses are given approximately as \(M_1 : M_2 : M_3 \approx 3 : 1 : 7 \) where \(M_i \) (\(i = 1, 2, 3 \)) are the bino, wino and gluino masses, respectively. The neutral wino becomes the lightest supersymmetric particle (LSP) while the charged wino becomes slightly heavier due to radiative corrections involving electroweak gauge bosons in the loops. This phenomenological feature of the nearly degenerate lightest chargino (\(\tilde{\chi}_1^\pm \)) and neutralino (\(\tilde{\chi}_1^0 \)) has the important implication that \(\tilde{\chi}_1^0 \) predominantly decays into \(\tilde{\chi}_1^0 \) plus a low-momentum (\(\sim 100 \) MeV) \(\pi^\pm \). The decay length of \(\tilde{\chi}_1^\pm \) is typically expected to be a few centimeters at LHC energies; some \(\tilde{\chi}_1^\pm \) charginos could therefore decay inside the tracking volume of the ATLAS detector. The \(\tilde{\chi}_1^0 \) escapes detection and the softly emitted \(\pi^\pm \) is not reconstructed. A track arising from a \(\tilde{\chi}_1^\pm \) with these characteristics is classified as a disappearing track. The search described in this letter is based on this signature of decaying charginos which leads to a track having few associated hits in the outer part of the tracking volume.

2 The ATLAS detector

ATLAS is a multi-purpose detector [12], covering nearly the entire solid angle\(^1\) around the collision point with layers of inner tracking devices surrounded by a superconducting solenoid providing a 2 T magnetic field, a calorimeter system and a muon spectrometer. The inner tracking detector provides tracking in the region \(|\eta| < 2.5 \). It consists of pixel and silicon microstrip (SCT) detectors inside a transition radiation tracker (TRT).

\(^1\)ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (\(r, \phi \)) are used in the transverse plane, \(\phi \) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln(\tan(\theta/2)) \).
Of particular importance to this analysis is the TRT which covers the region $|\eta| < 2.0$. The barrel TRT is divided into inner, middle and outer concentric rings of 32 modules comprising a stack in the azimuthal angle; each covers the radial range from 563 mm to 1066 mm and $|\eta| < 1.0$. A module consists of a carbon-fibre laminated shell and an array of straw tubes and has a different structure for each ring.

The calorimeter system covers the range $|\eta| < 4.9$. The electromagnetic calorimeter is a lead/liquid-argon (LAr) detector in the barrel ($|\eta| < 1.475$) and endcap ($1.375 < |\eta| < 3.2$) regions. The hadron calorimeters are composed of a steel and scintillator barrel ($|\eta| < 1.7$), a LAr/copper endcap ($1.5 < |\eta| < 3.2$) and a LAr forward system ($3.1 < |\eta| < 4.9$) with copper and tungsten absorbers. The muon spectrometer consists of three large superconducting toroids with 24 coils, a system of trigger chambers and precision tracking chambers which provide muon momentum measurements up to $|\eta|$ of 2.7.

3 Simulated event samples

Simulated Monte Carlo (MC) events were used to assess the experimental sensitivity to given models. The minimal AMSB model is characterized by four parameters: the gravitino mass ($m_{\tilde{g}}$), the universal scalar mass (m_0), the ratio of Higgs vacuum expectation values at the electroweak scale ($\tan\beta$) and the sign of the higgsino mass term ($\text{sgn}(\mu)$). In this letter, ISASUSY from ISAJET v7.80 [13] was used to calculate the SUSY mass spectrum and the decay tables. The MC samples were produced using HERWIG++ [14] with MRST2007 LO* [15] parton distribution functions. These samples were produced using the parameter tune described in [16] and a detector simulation based on GEANT4 [17, 18] with multiple pp interactions per event (pile-up) to match what was observed in data. Given the chargino mass ($m_{\tilde{\chi}^\pm_1}$) limit by the LEPE2 searches [19-21] of $m_{\tilde{\chi}^\pm_1} \approx 92$ GeV at 95 % confidence level (CL), the signal models shown in Table 1 were tested. A large value of m_0 was used in order to prevent the existence of a tachyonic slepton; this also assigns heavy masses to the squarks and sleptons, thereby avoiding constraints from flavour-changing neutral current and CP-violation measurements. In this search, the production processes $g\tilde{g}$, $q\tilde{g}$ and $\tilde{q}q$ were considered. The signal samples were normalized using next-to-leading-order (NLO) cross sections determined with PROSPINO [22]. The chargino lifetime ($\tau_{\tilde{\chi}^\pm_1}$) was set to 1 ns, the value for which this analysis has the highest sensitivity. The branching fraction for the decay $\tilde{\chi}^\pm_1 \rightarrow \tilde{\chi}^0_1 \pi^\pm$ was set to 100 %. Samples with different lifetime values for each signal model were derived by applying event weights so that the distribution of the proper lifetime follows that for a given lifetime value.

4 Data and event selection

The analysis was based on pp collision data at $\sqrt{s} = 7$ TeV recorded from March to July 2011. The corresponding integrated luminosity, after the application of beam, detector and data quality requirements, was 1.02 fb$^{-1}$. Events were selected at the trigger level by requiring at least one jet with a transverse momentum, measured at the electromagnetic scale, above 75 GeV, and a missing transverse momentum above 55 GeV.

Jets were reconstructed using the anti-k_t algorithm [23] with a distance parameter of 0.4. The inputs to the jet reconstruction algorithm were three-dimensional topological calorimeter energy clusters [24]. The measurement of jet transverse momentum at the electromagnetic scale ($p_T^{\text{jet,EM}}$) underestimates the true momentum due to the nature of the non-compensating calorimeters and the dead material. Thus, an average correction [25], depending on η and $p_T^{\text{jet,EM}}$, was applied to obtain the calibrated jet p_T. Jets with $p_T > 20$ GeV and $|\eta| < 3.2$ were selected. Electron candidates were selected with “medium” purity cuts, as described in Ref. [26]. Furthermore, electrons were required to fulfill the requirements of $p_T > 10$ GeV, $|\eta| < 2.47$ and $\sum_{\Delta R<0.2} p_T^{\text{track}} / p_T < 0.1$, where $\sum_{\Delta R<0.2} p_T^{\text{track}}$ is the sum of p_T for all the tracks with $p_T > 1$ GeV in a cone of $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.2$ around the electron candidate, excluding the p_T of the electron candidate itself. Muon candidates were identified by an algorithm which combines a track reconstructed in the muon spectrometer with a track in the inner detector. Furthermore, muons were required to have $p_T > 10$ GeV and $|\eta| < 2.7$, and to be isolated [27]:

<table>
<thead>
<tr>
<th>Signal</th>
<th>m_0 [TeV]</th>
<th>$m_{3/2}$ [TeV]</th>
<th>$m_{\tilde{\chi}^\pm_1}$ [GeV]</th>
<th>Cross section [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL01</td>
<td>1.5</td>
<td>32</td>
<td>90.2</td>
<td>6.10×10^{-2}</td>
</tr>
<tr>
<td>LL02</td>
<td>1.8</td>
<td>41</td>
<td>117.8</td>
<td>7.65×10^{-3}</td>
</tr>
<tr>
<td>LL03</td>
<td>2.0</td>
<td>51</td>
<td>147.7</td>
<td>1.00×10^{-3}</td>
</tr>
</tbody>
</table>
the sum of p_T of tracks within a cone of $\Delta R < 0.2$ around the muon candidate (excluding the muon candidate itself) was required to be less than 1.8 GeV.

Following the object reconstruction described above, overlaps between jets and leptons were resolved. First, any jet candidate lying within a distance of $\Delta R < 0.2$ of an electron was discarded. Then, any lepton candidates within a distance of $\Delta R < 0.4$ of any surviving jet were discarded.

The calculation of E_{miss}^T was based on the transverse momenta of jets and lepton candidates, and all clusters in the calorimeter that are not associated to such objects [28].

In order to suppress non-collision background events, additional selection criteria [25] were applied to jets. Signal candidate events were required to have no electron or muon candidates (lepton veto), $E_{\text{miss}}^T > 130$ GeV and three leading (highest p_T) jets with $p_T > 130$ GeV for one jet and $p_T > 60$ GeV for another two jets (“kinematic selection”). The trigger selection is fully efficient for signal events satisfying the kinematic selection requirements.

The search described in this letter was based on the detection of charginos decaying in the TRT. The average number of hits on a track going through the TRT in the central region is about 34 and consecutive hits can be observed along the track with small radial spacing between adjacent hits. This feature provides the capability of substantial discrimination between penetrating and decaying charged particles.

If a chargino decays in the volume of the inner or middle TRT modules, multiple hits associated to the chargino track are expected in the SCT detector but not in the outer TRT subdetector. Such a chargino track candidate can be fully reconstructed by the ATLAS standard track reconstruction algorithm.

The chargino candidate tracks were required to fulfill the following criteria:

1. The track should have at least one hit in the innermost layer of the pixel detector.
2. The track should have at least six hits in the SCT.
3. The track should have $|d_0| < 1.5$ mm and $|z_0 \sin \theta| < 1.5$ mm, where d_0 and z_0 are the transverse and longitudinal impact parameters.
4. There should be no other tracks with $p_T > 0.5$ GeV within a cone of radius $\Delta R = 0.05$.
5. The candidate track should have the highest p_T among the isolated tracks in the event and have p_T above 10 GeV.
6. The track should point to the TRT barrel layers and not point to the inactive regions around $\eta = 0$.
7. The number of hits in the TRT outer module associated to the track (N_{outer}^T) should be fewer than five.

The fifth is meant to select chargino tracks that usually have the highest p_T in the event. The chargino tracks sufficiently fulfill the fifth criterion. The sixth criterion was based on the extrapolated track position, and was set to avoid inactive regions of the TRT. This requirement helped to reject fake disappearing tracks and works as an effective acceptance cut of $|\eta| < 0.63$. For the seventh criterion, N_{outer}^T was calculated by counting TRT hits lying on the extrapolated track. The hits satisfying $d < r_{\text{straw}}$ were taken into account, where d is the distance between the hit and the track in the transverse plane and r_{straw} is the radius of the straw tube. Hereafter, unless explicitly stated otherwise, “high-p_T isolated track selection” and “disappearing track selection” indicate criteria (1)–(6) and (1)–(7), respectively. Figure 1 shows the N_{outer}^T distributions with the high-p_T isolated track selection requirements for data, signal and SM MC events. When charginos decay before reaching the TRT outer module, N_{outer}^T is expected to have a value near zero; conversely, SM charged particles traversing the TRT typically have $N_{\text{outer}}^T \simeq 15$.

![Fig. 1](https://example.com/fig1.png)

Fig. 1 The N_{outer}^T distribution for data and signal events (LL01, $\tau_{\chi}=1$ ns) with the high-p_T isolated track selection. The selection boundary is indicated by the arrow. The expectation from SM MC events, normalized to the number of observed events, is also shown. When charginos decay before reaching the TRT outer module, N_{outer}^T is expected to have a value near zero; conversely, SM charged particles traversing the TRT typically have $N_{\text{outer}}^T \simeq 15$.
5 Background estimation

With the selection criteria described above, there are two main background sources for high-\(p_T\) disappearing tracks:

- Charged hadrons (mostly charged pions) interacting with material in the TRT detector.
- Low-\(p_T\) charged particles whose \(p_T\) is badly measured due to scattering in the inner detector material.

The two categories are labelled as “high-\(p_T\) interacting hadron track” and “bad track” backgrounds, respectively. Figure 2 shows schematically the origins of disappearing high-\(p_T\) tracks. According to the MC simulation, high-\(p_T\) interacting hadron tracks were responsible for more than 95% of the background tracks. Electrons having low \(p_T\) can be classified as disappearing tracks due to bremsstrahlung, however, the contribution of these tracks was negligibly small after the lepton veto and the track selection criterion (5).

The fraction of events containing these background tracks is expected to be \(\sim 10^{-4}\); background estimation based on the MC simulation would therefore suffer from large uncertainties due to the lack of sufficient MC statistics and also from the difficulty in simulating the properties of these background mechanisms. A data-driven background estimation technique was therefore used to estimate the background track \(p_T\) spectrum, which used control samples enriched in the two background categories. The main contribution to the high-\(p_T\) interacting hadron background originated from charged hadrons in jets and \(\tau\) hadronic decays. In the \(p_T\) range above 10 GeV, where inelastic interactions dominate, the interaction rate has nearly no \(p_T\)-dependence [29]. Therefore, the \(p_T\) spectrum of interacting hadron tracks was obtained from that of non-interacting hadron tracks. By adopting the same kinematic selection criteria as those for the signal and ensuring penetration through the TRT detector by requiring \(N_{\text{clus}}^{\text{outer}} > 10\), a pure sample of high-\(p_T\) non-interacting hadron tracks was obtained. The contamination from bad tracks and any chargino signal was removed by requiring the calorimeter activity associated to the track, \(\sum_{\Delta R < 0.1} E_T^{\text{clus}}/p_T^{\text{track}}\), to be larger than 0.3, where \(p_T^{\text{track}}\) is the \(p_T\) of the track and \(\sum_{\Delta R < 0.1} E_T^{\text{clus}}\) is the sum of cluster transverse energies in a cone of \(\Delta R = 0.1\) around the track. Simulation studies indicated that the \(p_T\) spectrum of bad tracks depends little on the production process. A sample with an enhanced bad track contribution was therefore obtained with the same track quality requirements as for the chargino track, but requiring \(E_T^{\text{miss}} < 100\) GeV. The \(E_T^{\text{miss}}\) requirement makes this sample orthogonal to the signal search sample. In addition, the number of pixel hits associated to the track was required to be zero, and \(\sum_{\Delta R < 0.1} E_T^{\text{clus}}/p_T^{\text{track}} < 0.3\) in order to reject possible contributions from high-\(p_T\) interacting hadron tracks and to enhance the purity of bad tracks. The requirement on the number of pixel hits had negligible impact on the shape of the reconstructed \(p_T\) spectrum. The purity of bad tracks was close to 100% after these requirements.

An ansatz functional form \(\left(1 + x\right)^{a_0}/x^{a_1 + a_2 \ln(x)}\) was fitted to the \(p_T\) spectrum of the control sample of the high-\(p_T\) non-interacting hadron tracks, where \(x \equiv p_T^{\text{track}}\) and \(a_i\) \((i = 0, 1, 2)\) are fit parameters. Figure 3(a) shows the track \(p_T\) distribution and the shape derived from a maximum likelihood fit. Alternative fit functions gave shapes that agreed with each other and with the original form within the fit uncertainties. The choice of functional form in this analysis was based on the \(\chi^2\) values.

Bad tracks could have anomalously high values of \(p_T\) and become a significant background. Therefore, for the bad track background shape, a flat term representing the high-\(p_T\) tail was added to give an estimate in the region of interest.

Table 2 Summary of selection cuts and data reduction. The selection efficiencies for each AMSB signal model are also shown.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Data</th>
<th>Signal efficiency [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger selection and non-collision rejection</td>
<td>1491012</td>
<td>90.2 90.2 89.3</td>
</tr>
<tr>
<td>(e/\mu) veto</td>
<td>1390171</td>
<td>77.1 75.2 73.7</td>
</tr>
<tr>
<td>(E_T^{\text{miss}} > 130) GeV</td>
<td>80971</td>
<td>67.9 68.8 69.4</td>
</tr>
<tr>
<td>Jet (p_T) requirements</td>
<td>18345</td>
<td>66.5 68.1 68.8</td>
</tr>
<tr>
<td>High-(p_T) isolated track</td>
<td>6042</td>
<td>40.8 42.9 43.5</td>
</tr>
<tr>
<td>Disappearing track</td>
<td>185</td>
<td>6.8 7.5 7.4</td>
</tr>
</tbody>
</table>
The p_T distributions of high-p_T hadron track (a) and bad track (b) background control samples. The data and the fitted model are shown by the solid circles and the line, respectively. The significance of the data-model difference on a bin-by-bin basis is also shown at the bottom of each figure.

The resulting functional form was $(1 + x)^{b_0} + b_1 + b_2 \ln(x) + b_3$, where b_i ($i = 0, 1, 2, 3$) are fit parameters. The shape of the bad track background is shown in Fig. 3(b).

6 Signal extraction and constraints on the AMSB chargino

In order to evaluate how well the observed data agree with a given signal model, a statistical test was performed based on a maximum likelihood. The likelihood function for the sample of observed events (n_{obs}), using the track p_T, is defined as:

$$n_{\text{obs}} \frac{\mu_s n_s^{\text{exp}} L_s + n_b (1 - f_{\text{bad}}) L_{\text{had}} + f_{\text{bad}} L_{\text{bad}}}{n_b + \mu_s n_s^{\text{exp}}}$$

where μ_s, n_s^{exp}, n_b and f_{bad} are the signal strength (i.e. the ratio of a given cross section to its predicted value), the expected number of signal events for a given model, the number of background events and the fraction of bad tracks in the background, respectively. The parameters μ_s, n_b and f_{bad} were left free in the fit. The probability density functions of signal, interacting hadron track and bad track, L_s, L_{had} and L_{bad}, are shown in Fig. 4. The full shape of the distributions for $p_T > 10$ GeV was fitted with the two background contributions, and a signal contribution was also included in the fit for $p_T > 50$ GeV. A small signal contribution below $p_T = 50$ GeV was neglected. The effects of systematic uncertainties were incorporated via constraint terms on nuisance parameters. The overall normalisation of the signal and the parameters describing the background track p_T shapes were set as nuisance parameters; they were treated with a normal distribution and multivariate normal distributions with covariance matrices obtained by the fit of the background control samples, respectively.

A total uncertainty of $\pm 25\%$ was found for the signal normalisation; the main contribution comes from the uncertainties in the theoretical cross section from the renormalisation and factorisation scales ($\pm 18\%$) and the parton distribution functions ($\pm 9\%$).
track reconstruction efficiency [30] and the integrated luminosity [31, 32] could alter the signal yield; their contributions were estimated to be ±9 %, ±2 % and ±3.7 %, respectively. The systematic uncertainties due to pile-up were evaluated by examining the stability of the signal acceptance and the p_T spectra of background tracks as a function of the number of pp interactions. Both data and signal MC were used for this purpose, and the resulting uncertainties were found to be negligible.

Figure 5 shows the best-fit shape of the “signal + background” model for the sample signal point LL01 with $\tau_{\tilde{\chi}^\pm} = 1$ ns ($n_{\text{exp}} = 4.2$). The fit resulted in $n_b = 185 \pm 14$ and the best fit values of μ_s and f_{had} were zero; upper limits of $\mu_s < 0.15$ and $f_{\text{had}} < 4.0 \times 10^{-2}$ were set at 68 % CL. The p-value for the consistency of the observed data with the background-only hypothesis was calculated to be 0.5, showing that the observed track p_T spectrum was in agreement with the background expectation. The result also indicated that interacting hadron tracks were the dominant background, consistent with MC predictions.

The expected background and observed events in the region $p_T > 50$ GeV were 13 ± 1 and 5, respectively; this background estimate was derived from the background-only fit in the region $10 < p_T \leq 50$ GeV. Model-independent upper limits were set on the cross section times acceptance for non-SM processes with the final state satisfying the kinematic and track selection criteria. Figure 6 shows 95 % CL upper limits on the cross section for candidate tracks with $p_T > p_T^0$ as a function of p_T^0. The 95 % CL upper limit on the cross section for a given model was set by the point where the CL of the signal + background hypothesis based on the profile likelihood ratio [33] and the CLs method [34, 35] falls below 5 % when scanning the CL along various values of μ_s. Figure 7 shows the observed limit on the signal cross section at 95 % CL as a function of $\tau_{\tilde{\chi}^\pm}$ for the signal model LL01. Limits on the chargino lifetime were also set: $\tau_{\tilde{\chi}^\pm} < 0.2$ or $\tau_{\tilde{\chi}^\pm} > 4$ ns for a chargino with a mass of 90 GeV. Moreover, a constraint on the chargino mass and lifetime was set by the scan of the observed cross section limits for the benchmark models, as shown in Fig. 8. In the framework of minimal AMSB with $m_{3/2} < 32$ TeV, $m_0 < 1.5$ TeV, $\tan \beta = 5$ and $\mu > 0$, a chargino with $m_{\tilde{\chi}^\pm} < 92$ GeV and $0.5 < \tau_{\tilde{\chi}^\pm} < 2$ ns was excluded at 95 % CL.
The observed and expected bounds at 95 % CL are shown.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; FOM, Netherlands; INFN, Italy; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Y.A. Golfand, E.P. Likhhtan, JETP Lett. 13, 323 (1971)
The ATLAS Collaboration

Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
Petersburg Nuclear Physics Institute, Gatchina, Russia
(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
(a) Laboratorio de Instrumentacao e Física Experimental de Partículas - LIP, Lisboa, Portugal; (b) Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
Czech Technical University in Prague, Praha, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Physics Department, University of Regina, Regina SK, Canada
Ritsumeikan University, Kusatsu, Shiga, Japan
(a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
(a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco
DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
Department of Physics, University of Washington, Seattle WA, United States of America
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby BC, Canada
SLAC National Accelerator Laboratory, Stanford CA, United States of America
(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
(a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto ON, Canada