Search for diphoton events with large missing transverse momentum in 1 fb−1 of 7 TeV proton-proton collision data with the ATLAS detector

DOI
10.1016/j.physletb.2012.02.054

Publication date
2012

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Search for diphoton events with large missing transverse momentum in 1 fb$^{-1}$ of 7 TeV proton–proton collision data with the ATLAS detector

ATLAS Collaboration

A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb$^{-1}$ of proton–proton (pp) collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector. No excess of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new physics. The limits depend on each model parameter space and vary as follows: $\sigma < (22–129) \text{ fb}$ in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, $\sigma < (27–91) \text{ fb}$ in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and $\sigma < (15–27) \text{ fb}$ in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on the SPS8 breaking scale Λ and on the UED compactification scale $1/R$, respectively. These limits provide the most stringent tests of these models to date.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
gluino and neutralino masses are treated as free parameters. The other sparticle masses are fixed at \(\sim 1.5\) TeV, leading to a dominant production mode at \(\sqrt{s} = 7\) TeV of a pair of gluinos via the strong interaction that would decay via cascades into the bino-like neutralino NLSP. Jets may be produced in the cascades from the gluino decays if kinematically allowed. Further model parameters are fixed to \(\tan\beta = 2\) and \(c_{\text{TNLSP}} < 0.1\) mm. The decay into the wino-like neutralino NLSP is possible and was studied by the CMS Collaboration [24].

3. Extra dimensions

UED models postulate the existence of additional spatial dimensions in which all SM particles can propagate, leading to the existence of a series of excitations for each SM particle, known as a Kaluza-Klein (KK) tower. This analysis considers the case of a single UED, with compactification radius (size of the extra dimension) \(R \approx 1\) TeV\(^{-1}\). At the LHC, the main UED process would be the production via the strong interaction of a pair of first-level KK quarks and/or gluons [25]. These would decay via cascades involving other KK particles until reaching the lightest KK particle (LKP), i.e. the first level KK photon \(\gamma^*\). SM particles such as quarks, gluons, leptons, and gauge bosons may be produced in the cascades. If the UED model is embedded in a larger space with \(N\) additional eV\(^{-1}\)-sized dimensions accessible only to gravity [26], with a \((4 + N)\)-dimensional Planck scale \(M_P\) of a few TeV, the LKP would decay gravitationally via \(\gamma^* \to \gamma + G\). \(G\) represents a tower of eV-spaced graviton states, leading to a graviton mass between 0 and \(1/R\). With two decay chains per event, the final state would contain \(gg + E_{\text{T}}^{\text{miss}}\), where \(E_{\text{T}}^{\text{miss}}\) results from the escaping gravitons. Up to 1/2 \(1/R \sim 1\) TeV, the branching ratio to the diphoton and \(E_{\text{T}}^{\text{miss}}\) final state is close to 100%. As \(1/R\) increases, the gravitational decay widths become more important for all KK particles and the branching ratio into photons decreases, e.g. for 50% for \(1/R = 1.5\) TeV [7].

The UED model considered here is defined by specifying \(R\) and \(\Lambda\), the ultraviolet cut-off used in the calculation of radiative corrections to the KK masses. This analysis sets \(\Lambda R = 20\). The \(\gamma^*\) mass is insensitive to \(\Lambda\), while other KK masses typically change by a few per cent when varying \(\Lambda R\) in the range 10–30. For \(1/R = 1200\) GeV, the masses of the first-level KK photon, quark, and gluon are 1200, 1387 and 1468 GeV, respectively [27]. Further details of the model are given in Ref. [1].

4. Simulated samples

For the GGM model, the SUSY mass spectra were calculated using SUSPECT 2.41 [28] and SDECAY 1.3 [29]. The Monte Carlo (MC) signal samples were produced using PYTHIA 6.423 [30] with MRST2007 LO* [31] parton distribution functions (PDF). Cross sections were calculated at next-to-leading order (NLO) using PROSPINO 2.1 [32,33]. For the SPS8 model, the SUSY mass spectra were calculated using ISAJET 7.80 [34]. The MC signal samples were produced using HERWIG++ 2.4.2 [35] with MRST2007 LO* PDF. NLO cross sections were calculated using PROSPINO. In the case of the UED model, MC signal samples were generated using the UED model as implemented at leading order (LO) in PYTHIA [27].

The “irreducible” background from \((W \to \nu\nu)\gamma\gamma\) and \((Z \to \nu\nu)\gamma\gamma\) production was simulated at LO using MadGraph 4 [36] with CTEQ6L1 [37] PDF. Parton showering and fragmentation were simulated with PYTHIA. NLO cross sections and scale uncertainties from Refs. [38,39] were used. In all cases the underlying event was simulated within the respective generator.

All samples were processed through the GEANT4-based simulation [40] of the ATLAS detector [41]. In addition, the signal samples were overlaid with simulated minimum bias events to model the average number of six \(pp\) interactions per bunch crossing (pile-up) experienced during the considered data-taking period. More details may be found in Ref. [1].

5. ATLAS detector

The ATLAS detector [42] is a multi-purpose apparatus with a forward–backward symmetric cylindrical geometry and nearly 4\pi solid angle coverage. Closest to the beamline are tracking devices comprised of layers of silicon-based pixel and strip detectors covering \(|\eta| < 2.5\) and straw-tube detectors covering \(|\eta| < 2.0\), located inside a thin superconducting solenoid that provides a 2 T magnetic field. The straw-tube detectors also provide discrimination between electrons and charged hadrons based on transition radiation. Outside the solenoid, fine-granularity lead/liquid-argon (LAr) electromagnetic (EM) calorimeters provide coverage for \(|\eta| < 3.2\) to measure the energy and position of electrons and photons. In the region \(|\eta| < 2.5\), the EM calorimeters are segmented into three layers in depth. The second layer, in which most of the EM shower energy is deposited, is divided into cells of granularity of \(\Delta\eta \times \Delta\phi = 0.025 \times 0.025\). The first layer is segmented with finer granularity to provide discrimination between single photons and overlapping photons coming from the decays of neutral mesons. A presampler, covering \(|\eta| < 1.8\), is used to correct for energy lost upstream of the EM calorimeter. An iron/scintillating tile hadronic calorimeter covers the region \(|\eta| < 1.7\), while copper and liquid-argon technology is used for hadronic calorimeters in the end-cap region 1.5 < \(|\eta| < 3.2\). In the forward region 3.2 < \(|\eta| < 4.5\) liquid-argon calorimeters with copper and tungsten absorbers measure the electromagnetic and hadronic energy. A muon spectrometer consisting of three superconducting toroidal magnet systems, tracking chambers, and detectors for triggering surrounds the calorimeter system.

6. Object reconstruction

The reconstruction of converted and unconverted photons and of electrons is described in Refs. [43] and [44], respectively.

Converted photons have EM calorimeter clusters matched to tracks coming from a conversion vertex. A conversion vertex is either a vertex that has two tracks with large transition radiation in the straw-tube detector and an invariant mass of the two tracks consistent with a massless particle, i.e. a photon, or one track with large transition radiation that has no associated hits in the pixel layer closest to the beam line. Electrons have a track matched to the EM calorimeter cluster, and the track must have hits in the silicon detectors, momentum not smaller than one tenth the cluster energy, and transverse momentum of at least 2 GeV. Clusters matched to neither a track or tracks coming from a conversion vertex nor an electron track as described above are classified as unconverted photons. A heuristic using the pixel hits closest to the beam line and the track momenta is applied to choose between the photon and electron interpretation in cases where the object can be both.

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates \((R, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln(\tan(\theta/2))\).
Photon candidates were required to be within $|\eta| < 1.81$, the value being chosen by an optimization of the signal acceptance versus background rejection, and to be outside the transition region $1.37 < |\eta| < 1.52$ between the barrel and the end-cap calorimeters. The analysis used “loose” and “tight” photon selections [43]. The loose photon selection includes a limit on the fraction of the energy deposit in the hadronic calorimeter as well as a requirement that the transverse width of the shower, measured in the middle layer of the EM calorimeter, be consistent with the narrow shape expected for an EM shower. The tight photon selection additionally uses shape information from the first layer to distinguish between isolated photons and photons from the decay of neutral mesons.

The reconstruction of E_T^{miss} is based on energy deposits in calorimeter cells inside three-dimensional clusters with $|\eta| < 4.5$ and is corrected for contributions from muons, if any [45]. The cluster energy is calibrated to correct for the non-compensating calorimeter response, energy loss in dead material, and out-of-cluster energy.

Jets were reconstructed using the anti-k_t jet algorithm [46] with four-momentum recombination and radius parameter $R = 0.4$ in $\eta-\phi$ space. They were required to have $p_T > 25$ GeV and $|\eta| < 2.8$.

7. Data analysis

The data sample, corresponding to an integrated luminosity of 1.07 ± 0.04 fb$^{-1}$, was selected by a trigger requiring two loose photon candidates with a transverse energy (E_T) above 20 GeV. In the offline analysis events were retained if they contained at least two tight photon candidates with $E_T > 25$ GeV. In addition, a photon isolation cut was applied, whereby the E_T deposit in a cone of radius 0.2 in the $\eta-\phi$ space around the centre of the cluster, excluding the cells belonging to the cluster, had to be less than 5 GeV. The E_T was corrected for leakage from the photon energy outside the cluster and for soft energy deposits from pile-up interactions. A cut of $E_T^{miss} > 125$ GeV [1] defined the signal region. Preference was given to a common signal region for the three models considered.

A total of 27293 $\gamma\gamma$ candidate events were observed passing all selections except the E_T^{miss} cut. The E_T distribution of the leading photon for events in this sample is shown in Fig. 1. Also shown are the E_T spectra obtained from GGM MC samples for $m_R = 800$ GeV and $m_{\chi_R} = 400$ GeV, from SPS8 MC samples with $\Lambda = 140$ TeV, and from UED MC samples for $1/R = 1200$ GeV, representing model parameters near the expected exclusion limit. After the $E_T^{miss} > 125$ GeV cut, 5 candidate events survived.

8. Background estimation

Following the procedure described in Ref. [1], the contribution to large E_T^{miss} di-photon events from SM sources can be grouped into two primary components and estimated with dedicated control samples using data. The first of these components, referred to as “QCD background” for brevity, arises from a mixture of processes that include $\gamma\gamma$ production as well as W, Z, $t\bar{t}$, and multijet events, a “QCD control sample” was extracted from the diphoton trigger sample by selecting events for which at least one of the photon candidates does not pass the tight photon identification. Electrons were vetoed to remove contamination from $W \rightarrow e\nu$ decays. The QCD background contamination in the signal region $E_T^{miss} > 125$ GeV was obtained from this QCD template after normalizing it to data in the region $E_T^{miss} < 20$ GeV. This gives a QCD background expectation in the signal region of 0.8 ± 0.3 (stat) events. An alternate model for the QCD background was obtained using a sample of dielectron events, with no jets, selected by requiring two electrons with $E_T > 25$ GeV and $|\eta| < 1.81$ and an invariant mass consistent with the Z boson mass. As confirmed by MC simulation, the E_T^{miss} spectrum of this $Z \rightarrow ee$ sample with no additional jets, which is dominated by the calorimeter response to two genuine EM objects, accurately represents the E_T^{miss} spectrum of SM $\gamma\gamma$ events. This spectrum was normalized in the same way as the QCD control sample. An uncertainty of 0.6 events was assigned as the systematic uncertainty on the background prediction from the relative fractions of $\gamma\gamma$, $\gamma + jet$, and multijet events using the difference between the background estimates obtained using the QCD and the $Z \rightarrow ee$ templates, yielding the result of 0.8 ± 0.3 (stat) ± 0.6 (syst) events. The E_T^{miss} spectra of the QCD background and the $\gamma\gamma$ sample are shown in Fig. 2.

The second significant background contribution, from $W + X$ and $t\bar{t}$ events, was estimated via an “electron–photon” control sample composed of events with at least one photon and one electron, each with $E_T > 25$ GeV, and scaled by the probability for an electron to be mis-reconstructed as a tight photon, as estimated from a study of the Z boson in the ee and $e\nu\gamma$ sample. The scaling factor varies between 5% and 17% as a function of η, since it depends on the amount of material in front of the calorimeter. Events with two or more photons were vetoed from the control sample to keep it orthogonal to the signal sample. In case of more than one electron, the one with the highest p_T was used. The E_T^{miss} spectrum for the scaled electron–photon control sample is shown in Fig. 3, where it is compared to the expected contributions from various background sources as computed from MC simulation. The electron–photon control sample has a significant contamination from $Z \rightarrow ee$ events, in which one electron is mis-reconstructed as a photon, and from QCD processes mentioned above. Both of these contaminations must be subtracted in order to extract the contribution to the E_T^{miss} distribution from events with genuine E_T^{miss}, such as $W + X$ and $t\bar{t}$. The contribution from QCD and $Z \rightarrow ee$ events was estimated by normalizing the QCD control sample to the scaled electron–photon E_T^{miss} distribution in the re-
Table 1
Number of observed $\gamma\gamma$ candidates in various E_T^{miss} ranges in the data, as well as the expected numbers of SM background events estimated from the QCD and electron–photon control samples, and for the irreducible $Z(\to \nu\bar{\nu}) + \gamma\gamma$ and $W(\to e\nu) + \gamma\gamma$ processes, from MC simulation. Also shown are the expected numbers of signal events from GGM with $(m_{\tilde{g}}, m_{\tilde{q}}) = (800, 400)$ GeV, SPS8 with $\Lambda = 140$ TeV, and UED with $1/R = 1200$ GeV. The uncertainties are statistical only. The $E_T^{miss} < 20$ GeV region (first row) is used to normalize the QCD background to the number of observed $\gamma\gamma$ candidates.

| E_T^{miss} range [GeV] | Data events | Predicted background events | | | Expected signal events |
|--------------------------|-------------|-----------------------------|-----------------|---------------------|
| | | Total | QCD | Irreducible | |
| | | $W/\ell\ell(\to e\nu)$ + X |
| 0–20 | 20881 | 13.3 ± 8.1 | 3.55 ± 0.35 | 0.20 ± 0.05 | 0.22 ± 0.04 |
| 20–50 | 6304 | 25.2 ± 1.7 | 1.01 ± 0.16 | 0.45 ± 0.08 | 1.53 ± 0.10 |
| 50–75 | 86 | 6.7 ± 0.9 | 0.52 ± 0.10 | 0.48 ± 0.08 | 2.19 ± 0.12 |
| 75–100 | 11 | 1.6 ± 0.4 | 0.32 ± 0.08 | 0.75 ± 0.10 | 2.09 ± 0.11 |
| 100–125 | 6 | 0.8 ± 0.3 | 0.23 ± 0.05 | 1.20 ± 0.12 | 2.53 ± 0.13 |
| >125 | 5 | 3.1 ± 0.5 | 17.2 ± 0.5 | 12.98 ± 0.28 | 9.67 ± 0.11 |

Fig. 2. E_T^{miss} spectra for the $\gamma\gamma$ candidate events in data (points, statistical uncertainty only) and the estimated QCD background (normalized to the number of $\gamma\gamma$ candidates with $E_T^{miss} < 20$ GeV), the $W(\to e\nu) + jets/\gamma$ and $\ell\ell(\to e\nu) + jets$ backgrounds as estimated from the electron–photon control sample, and the irreducible background of $Z(\to \nu\bar{\nu}) + \gamma\gamma$ and $W(\to e\nu) + \gamma\gamma$. Also shown are the expected signals from GGM ($m_{\tilde{g}}, m_{\tilde{q}} = (800, 400)$ GeV, SPS8 ($\Lambda = 140$ TeV), and UED ($1/R = 1200$ GeV) samples.

Fig. 3. E_T^{miss} spectrum for the electron–photon control sample in data (points, statistical uncertainty only), normalized according to the probability for an electron to be mis-reconstructed as a photon, compared to the expected backgrounds displayed by components (stacked histograms). For the purpose of this comparison, the expected contributions from $W(\to e\nu) + jets/\gamma$ and $\ell\ell(\to e\nu) + jets$ events are taken from MC simulation.

The GGM signal efficiency was determined using MC simulation over an area of the GGM parameter space that ranges from 400 GeV to 1200 GeV for the gluino mass, and from 50 GeV to within 20 GeV of the gluino mass for the neutralino mass. The efficiency increases smoothly from 5.5% to 31% for $(m_{\tilde{g}}, m_{\tilde{q}}) = (400, 50)$ GeV to $(1200, 1100)$ GeV. The SPS8 signal efficiency increases smoothly from 9.2% ($\Lambda = 80$ TeV) to 29.4% ($\Lambda = 220$ TeV). The UED signal efficiency, also determined using MC simulation, increases smoothly from 48.9% ($1/R = 1000$ GeV) to 52.6% ($1/R = 1500$ GeV).

The various relative systematic uncertainties on the GGM, SPS8, and UED signal cross sections are summarized in Table 2 for the chosen GGM, SPS8, and UED reference points. The uncertainty on the luminosity is 3.7% [47,48]. The trigger efficiency for the required diphoton trigger was estimated from the efficiency of the corresponding single photon trigger, which was estimated using a bootstrap method [49]. The result is $99.92^{+0.04}_{-0.18}$ for events passing...
all selections except the final E_T^{miss} cut. To estimate the systematic uncertainty due to the unknown composition of the data sample, the trigger efficiency was also evaluated on MC events using mis-reconstructed photons from filtered multijet samples and photons from signal (SUSY and UED) samples. A conservative systematic uncertainty of 0.6% was derived from the difference between the obtained efficiencies. Uncertainties on the photon selection, the photon energy scale, and the detailed material composition of the detector, as described in Ref. [1], result in an uncertainty of 3.9% for the GGM and SPS8 signals and 3.7% for the UED signal. The uncertainty from the photon isolation was estimated by varying the energy leakage and the pile-up corrections independently, resulting in an uncertainty of 0.6% for GGM and SPS8 and 0.5% for UED. The influence of pile-up on the signal efficiency, evaluated by comparing GGM/SPS8 (UED) MC samples with different pile-up configurations, leads to a systematic uncertainty of 1.3%-1.6%. Systematic uncertainties due to the E_T^{miss} reconstruction, estimated by varying the cluster energies within established ranges and the E_T^{miss} resolution between the measured performance and MC expectations, contribute an uncertainty of 0.1% to 12.4% (GGM), 1.7% to 13.8% (SPS8), and 0.5% to 1.5% (UED). A systematic uncertainty was also assigned to account for temporary failures of the LAr calorimeter readout during part of the data-taking period, which was not modeled in the MC samples. Electrons and photons were removed from the afflicted area, but jets, being larger objects, were not. Jet energy corrections were therefore applied. Varying these corrections over their range of uncertainty results in systematic uncertainties of 1.0%, 0.7%, and 0.4% for GGM, SPS8, and UED, respectively. Added in quadrature, the total systematic uncertainty on the signal yield varies between 6.3% and 15% (GGM), 6.2% and 15% (SPS8), and 5.8% and 6.0% (UED).

The PDF uncertainties on the GGM (SPS8) cross sections were evaluated by using the CTB6q6.6M PDF error sets [50] in the PROSPINO cross section calculation and range from 12% to 44% (4.7% to 6.6%). The factorization and renormalization scales in the NLO PROSPINO calculation were increased and decreased by a factor of two, leading to a systematic uncertainty between 16% and 23% (1.7% and 6.7%) on the expected cross sections. The different impact of the PDF and scale uncertainties of the GGM and SPS8 yields is related to the different production mechanisms in the two models (see Section 2). In the case of UED, the PDF uncertainties were evaluated by using the MSTW2008 LO [51] PDF error sets in the LO cross section calculation and are about 4%. The scale of α_s in the LO cross section calculation was increased and decreased by a factor of two, leading to a systematic uncertainty of 4.5% and 9%, respectively. NLO calculations are not yet available, but are expected to be much larger than the PDF and scale uncertainties. Thus, the LO cross sections were used for the limit calculation without any theoretical uncertainty, and the effect of PDF and scale uncertainties on the final limit is given separately.

10. Results

Based on the observation of 5 events with $E_\text{T}^{\text{miss}} > 125$ GeV and a background expectation of $4.1 \pm 0.6 \text{(stat)} \pm 1.6 \text{(syst)}$ events, a 95% CL upper limit is set on the number of events in the signal region from any scenario of physics beyond the SM using the profile likelihood and C_L method [53]. The result is 7.1 events at 95% CL.

Further, 95% CL upper limits on the cross sections of the considered models are calculated, including all systematic uncertainties except for theory uncertainties, i.e. PDF and scale. In the GGM model the upper limit on the cross section is $(22-129)$ fb, where the larger value corresponds to $m_{\tilde{g}} = 400$ GeV. For $m_{\tilde{g}} > 150$ GeV, the limit is below 30 fb, reaching 22 fb for heavy neutralino masses. Fig. 4 shows the expected and observed lower limits on the GGM gluino mass as a function of the neutralino mass. For comparison the lower limits from ATLAS [1] and CMS [52] based on the 2010 data are also shown. The total systematic uncertainty includes the theory uncertainties, which are dominant. Excluding the PDF and scale uncertainty in the limit calculation would improve the observed limit on the gluino mass by ~ 10 GeV.

In the SPS8 model the cross section limit is $\sigma < (27-91)$ fb as shown in Fig. 5, corresponding to $\Lambda = 220-80$ TeV. For illustration the cross section dependence as a function of the lightest neutralino and chargino masses is also shown. A lower limit on the SPS8 breaking scale $\Lambda > 145$ TeV at 95% CL is set including the theory uncertainties, i.e. PDF and scale uncertainties, in the total systematic uncertainty.

For the UED model the cross section limit is $\sigma < (15-27)$ fb for $1/R = 1000-1500$ GeV, Fig. 6 shows the limit on the cross section times branching ratio for the UED model, which is $\sigma < (13-15)$ fb. For illustration the cross section dependence as a function of the KK quark and KK gluon masses is also shown. A lower limit on the UED compactification scale $1/R > 1.23$ TeV at 95% CL is set. In this case PDF and scale uncertainties are not included when calculating

Table 2

Relative systematic uncertainties on the expected signal yield for GGM with $(m_{\tilde{q}}, m_{\tilde{g}}) = (800, 400)$ GeV, SPS8 with $\Lambda = 140$ TeV, and UED with $1/R = 1200$ GeV. No PDF and scale uncertainties are given for the UED case as the cross section is evaluated only to LO.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Uncertainty</th>
<th>GGM</th>
<th>SPS8</th>
<th>UED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity</td>
<td>3.7%</td>
<td>3.7%</td>
<td>3.7%</td>
<td></td>
</tr>
<tr>
<td>Trigger</td>
<td>0.6%</td>
<td>0.6%</td>
<td>0.6%</td>
<td></td>
</tr>
<tr>
<td>Photon identification</td>
<td>3.9%</td>
<td>3.9%</td>
<td>3.9%</td>
<td></td>
</tr>
<tr>
<td>Photon isolation</td>
<td>0.6%</td>
<td>0.6%</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>Pile-up</td>
<td>1.3%</td>
<td>1.3%</td>
<td>1.6%</td>
<td></td>
</tr>
<tr>
<td>E_T^{miss} reconstruction and scale</td>
<td>1.7%</td>
<td>5.0%</td>
<td>0.7%</td>
<td></td>
</tr>
<tr>
<td>LAr readout</td>
<td>1.0%</td>
<td>0.7%</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>Signal MC statistics</td>
<td>2.9%</td>
<td>2.3%</td>
<td>1.8%</td>
<td></td>
</tr>
<tr>
<td>Total signal uncertainty</td>
<td>6.6%</td>
<td>8.3%</td>
<td>6.0%</td>
<td></td>
</tr>
<tr>
<td>PDF and scale</td>
<td>31%</td>
<td>5.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>32%</td>
<td>10%</td>
<td>6.0%</td>
<td></td>
</tr>
</tbody>
</table>
11. Conclusions

A search for events with two photons and $E_T^{miss} > 125$ GeV, performed using 1.07 fb$^{-1}$ of 7 TeV pp collision data recorded with the ATLAS detector at the LHC, found 5 events with an expected background of 4.1 ± 0.6 (stat) ± 1.6 (syst). The results are used to set a model-independent 95% CL upper limit of 7.1 events from new physics. Upper limits at 95% CL are also set on the production cross section for three particular models of new physics: $\sigma < (22 - 129)$ fb for the GGM model, $\sigma < (27 - 91)$ fb for the SPS8 model, and $\sigma < (15 - 27)$ fb for the UED model. Under the GGM hypothesis, a lower limit on the gluino mass of 805 GeV is determined for bino masses above 50 GeV. A lower limit of 145 TeV is set on the SPS8 breaking scale Λ, which is the first limit on the SPS8 model at the LHC. A lower limit of 1.23 TeV is set on the UED compactification scale $1/R$. These results provide the most stringent tests of these models to date, significantly improving upon previous best limits of 560 GeV [1] for the GGM gluino mass, 124 TeV [23] for Λ in SPS8, and 961 GeV [1] for $1/R$ in UED, respectively.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DUNS and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINEVRA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MINSW, Poland; GRCF and FCT, Portugal; MURES (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZ, Slovenija; DST/NRF, South Africa; MICINN, Spain; SRC and W no, Switzerland; NCN, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[10] Y.A. Golfand, E.P. Likhtman, JETP Lett. 13 (1971) 323.
ATLAS Collaboration

S. Wendler123, Z. Weng151,r, T. Wengler29, S. Wenig29, N. Werkers20, M. Werner48, P. Werner29, M. Werth163, M. Wessel58a, C. Weydert59, K. Whalen58, S.J. Wheeler-Ellis163, S.P. Whitaker21, A. White7, M.J. White86, S.R. Whitehead118, D. Whiteson163, D. Whittington61, F. Wicke115, D. Wicke174, F.J. Wickens129, W. Wiedemann172, M. Wielers129, P. Wiemann20, C. Wiglesworth75, L.A.M. Wilt48, P.A. Wijeratne77, A. Wildauer167, M.A. Wildt41,p, I. Wilhelm126, H.G. Wilkens29, J.Z. Will98, E. Williams34, H.H. Williams120, W. Willis34, S. Willcock84, J.A. Wilson17, M.G. Wilson143, A. Wilson87, I. Wingertzer-Seez2, S. Winkelmans48, F. Winklmeier29, M. Wittgen143, M.W. Wolter38, H. Wolters124,h, W.C. Wong40, G. Wooden87, B.K. Wosiek38, J. Wotschack29, M.J. Woudstra84, K. Wraight53, C. Wright53, M. Wright53, B. Wrona73, S.L. Wu172, X. Wu49, Y. Wu32a, E. Wulf34, R. Wunstorf42, B.M. Wynne45, L. Xaplantieris9, S. Xella35, X. Xie48, Y. Xie32a, C. Xu32b, D. Xu139, G. Xu32a, B. Yabsley156, S. Yacoob145b, M. Yamada96, H. Yamaguchi155, A. Yamamoto66, K. Yamamoto64, S. Yamamoto155, T. Yamamura155, T. Yamaoka44, T. Yamazaki155, Y. Yamazaki61, Y. Yang32a, Z. Yang146a, H. Yang87, U.K. Yang82, Y. Yang61, Y. Yang32a, Z. Yang146a,146b, S. Yanush91, Y. Yao14, Y. Yasu66, G.V. Ybeles Smit130, J. Ye39, S. Ye24, M. Yilmaz3c, R. Yoosoofmiya123, K. Yorita170, A. Zoccoli19a, S. Zimmermann48, M. Ziolkowski141, R. Zitoun4, L. Živković34, V.V. Zmouchko128, D. Zhang32b, A. White7, M.J. White86, S.R. Whitehead118, D. Whiteson163, F. Wiecek115, del Rei; 534

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, Krakow, Poland

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

Nevis Laboratory, Columbia University, Irvington, NY, United States

University at Albany, Albany, NY, United States

Physics Department, University of Alberta, Edmonton, AB, Canada

39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

38 Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, Krakow, Poland

37 Physics Department, Southern Methodist University, Dallas, TX, United States

1 University at Albany, Albany, NY, United States

2 Department of Physics, University of Alberta, Edmonton, AB, Canada

3 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Dumlupinar University, Kütahya; (c) Department of Physics, Gazi University, Ankara; (d) Division of Physics, TOBB University of Economics and Technology, Ankara; (e) Turkish Atomic Energy Authority, Ankara, Turkey

4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France

5 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States

6 Department of Physics, University of Arizona, Tucson, AZ, United States

7 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States

8 Physics Department, University of Athens, Athens, Greece

9 Physics Department, National Technical University of Athens, Zografou, Greece

10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

11 Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, Chile

12 CERN, Geneva, Switzerland

13 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

14 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep;

15 (a) Department of Physics, Istanbul Technical University, Istanbul, Turkey

16 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy

17 Physikalisches Institut, University of Bonn, Bonn, Germany

18 Department of Physics, Boston University, Boston, MA, United States

19 Department of Physics, Brandeis University, Waltham, MA, United States

20 Universidade Federal do Rio De Janeiro COPPE/EEF, Rio de Janeiro, Brazil

21 Federal University of Juiz de Fora (UFJF), Juiz de Fora; (a) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil

22 Physics Department, Brookhaven National Laboratory, Upton, NY, United States

23 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania

24 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

25 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

26 Department of Physics, Carleton University, Ottawa, ON, Canada

27 CERN, Geneva, Switzerland

28 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States

29 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

30 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China

31 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

32 Nevis Laboratory, Columbia University, Irvington, NY, United States

33 Niels Bohr Institute, University of Copenhagen, København, Denmark

34 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata de Rende, Italy

35 Faculty of Physics and Applied Computer Science, AGH – University of Science and Technology, Krakow, Poland

36 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

37 Physics Department, Southern Methodist University, Dallas, TX, United States