Novel antibacterial strategies to combat biomaterial-associated infection

Riool, M.

Publication date
2017

Document Version
Other version

License
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Novel Antibacterial Strategies to Combat Biomaterial-Associated Infection

Martijn Riool

Uitnodiging
voor het bijwonen van de
openbare verdediging van
het proefschrift

Novel Antibacterial Strategies to Combat Biomaterial-Associated Infection
door
Martijn Riool

op woensdag
27 september 2017
om 13:00 uur

in de Aula van de
Universiteit van Amsterdam
(Oude Lutherse Kerk)
Singel 411, Amsterdam

Receptie na afloop van
de verdediging

Paranimfen
Leonie de Boer
l.deboer@amc.uva.nl
&
Adrienne Hanenburg
amhanenburg@gmail.com

Martijn Riool
m.riool@amc.uva.nl
Novel Antibacterial Strategies to Combat Biomaterial-Associated Infection

Martijn Riool
The research described in this thesis was financially supported by Project P4.01 NANTICO of the research program of the BioMedical Materials institute co-funded by the Dutch Ministry of Economic Affairs, FP7-HEALTH-2011 grant 278890, BALI – Biofilm Alliance, and COST Action iPROMEDAI (TD1305) supported by COST (European Cooperation in Science and Technology).

Printing of this thesis was kindly supported by:
Academic Medical Center – University of Amsterdam
Anna Fonds | NOREF, Leiden, The Netherlands
ChipSoft B.V., Amsterdam, The Netherlands
Greenvalley International B.V., Wageningen, The Netherlands
Madam Therapeutics B.V., Woerdense Verlaat, The Netherlands
Micreos Human Health B.V., Bilthoven, The Netherlands
Netherlands Society for Biomaterials and Tissue Engineering (NBTE)
Netherlands Society of Medical Microbiology (NVMM) & Royal Netherlands Society for Microbiology (KNVM)
Toxi-Coop Zrt., Balatonfüred, Hungary

© 2017 Martijn Riool
No part of this thesis may be reproduced in any form or by any means without written permission of the author or the publisher holding the copyright of the published articles.
Novel Antibacterial Strategies to Combat Biomaterial-Associated Infection

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Aula der Universiteit
op woensdag 27 september 2017, te 13:00 uur

door

Martijn Riool

geboren te Purmerend
Promotiecommissie:

Promotor: Prof. dr. M.D. de Jong AMC-Universiteit van Amsterdam
Copromotor: Dr. S.A.J. Zaat AMC-Universiteit van Amsterdam

Overige leden: Prof. dr. ir. H.J. Busscher Rijksuniversiteit Groningen
Prof. dr. H.P. Haagsman Universiteit Utrecht
Dr. T.F. Moriarty AO Research Institute Davos
Prof. dr. S. Brul Universiteit van Amsterdam
Prof. dr. W.J. Wiersinga AMC-Universiteit van Amsterdam
Prof. dr. C. Schultsz AMC-Universiteit van Amsterdam

Faculteit der Geneeskunde
Voor mijn ouders
Contents

Chapter 1  General introduction  9

Chapter 2  *Staphylococcus epidermidis* originating from titanium implants infects surrounding tissue and immune cells  

Chapter 3  Convenient preparation of bactericidal hydrogels by covalent attachment of stabilized antimicrobial peptides using thiol-ene click chemistry  

Chapter 4  A chlorhexidine-releasing epoxy-based coating on titanium implants prevents *Staphylococcus aureus* experimental biomaterial-associated infection  
*European Cells and Materials.* 33, 143–157 (2017)  69

Chapter 5  Prevention of *Staphylococcus aureus* biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145  
*Journal of Controlled Release.* 222, 1–8 (2016)  95

Chapter 6  Development of SAAP-148 as topical treatment against drug-resistant bacteria, persisters and biofilms  
*Submitted for publication*  115

Chapter 7  Controlled release of LL-37-derived synthetic antimicrobial and anti-biofilm peptides SAAP-145 and SAAP-276 prevents experimental biomaterial-associated *Staphylococcus aureus* infection  
*Advanced Functional Materials.* 27, 1606623 (2017)  145

Chapter 8  TC19, a novel thrombocidin-1-derived antimicrobial peptide, eradicates multi-drug resistant *Staphylococcus aureus* as well as *Acinetobacter baumannii* in experimental skin infection  
*Manuscript in preparation*  171

Chapter 9  Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant *Staphylococcus aureus*  
*Biomaterials.* 140, 1–15 (2017)  191

Chapter 10  General discussion  223

& Summary  240
Nederlandse samenvatting  244
List of contributing authors  248
List of publications  252
About the author  254
Portfolio  256
Dankwoord / Acknowledgements  260