Atomic spin-chain realization of a model for quantum criticality

Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I.S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A.F.

DOI
10.1038/NPHYS3722

Publication date
2016

Document Version
Final published version

Published in
Nature Physics

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):
Atomic spin-chain realization of a model for quantum criticality

R. Toskovic†, R. van den Berg‡, A. Spinelli†, I. S. Eliens‡, B. van den Toorn†, B. Bryant†, J.-S. Caux‡ and A. F. Otte†*

The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up⁰. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices⁰; on the other hand, they can be used as fundamental building blocks for the realization of textbook many-body quantum models⁰, illustrating key concepts such as quantum phase transitions, topological order or frustration as a function of system size. Here, we use low-temperature scanning tunnelling microscopy to construct arrays of magnetic atoms on a surface, designed to behave like spin-1/2 XXZ Heisenberg chains in a transverse field, for which a quantum phase transition from an antiferromagnetic to a paramagnetic phase is predicted in the thermodynamic limit⁰. Site-resolved measurements on these finite-size realizations reveal a number of sudden ground state changes when the field approaches the critical value, each corresponding to a new domain wall entering the chains. We observe that these state crossings become closer for longer chains, suggesting the onset of critical behaviour. Our results present opportunities for further studies on quantum behaviour of many-body systems, as a function of their size and structural complexity.

Since the birth of quantum mechanics, lattice spin systems⁰ have represented a natural starting point for understanding collective quantum dynamics. Today, scanning tunnelling microscopy (STM) techniques allow one to experimentally build and probe realizations of exchange-coupled lattice spins in different geometries⁰. In linear arrangements, quantum effects are strongest⁰ and notions such as quantum phase transitions⁰ are most easily understood, the simplest illustration being the Ising model in a transverse field⁰. In this work, using STM, we construct finite-size versions of a model in the same universality class, namely the spin-1/2 XXZ chain in a transverse field⁰, which has previously been realized in the bulk material Cs₃CoCl₅ (refs 14,15). Our set-up allows us to probe the chains with single-spin resolution while tuning an externally applied transverse field through the critical regime.

The chains are created by manipulating Co atoms evaporated onto a Cu₃N/Cu(100) surface (see Methods), which provides efficient decoupling for the magnetic d-shell electrons from the underlying bulk electrons⁰. Employing inelastic electron tunnelling spectroscopy (IETS)⁰ at sufficiently low temperature (330 mK) allows us to determine the magnetic anisotropy vector of each atom⁰ as well as the strength of the exchange coupling between neighbouring atoms⁰. It was previously demonstrated that Co atoms on this surface behave as spin S = 3/2 objects experiencing a strong uniaxial hard-axis anisotropy pointing in-plane, perpendicular to the bond with the neighbouring N atoms⁰. As a result, the m_s = ±3/2 states split off approximately 5.5 meV above the m_s = ±1/2 doublet (see Fig. 1a). As we will show below, by exploiting the magneto-crystalline anisotropy, we thus effectively reduce the spins from 3/2 to 1/2. The Cu₃N islands were kept small (~6 nm) to ensure limited variation in anisotropy and substrate coupling between different atoms inside the chains⁰.

The Co atoms are manipulated into the arrangement shown in Fig. 1b, such that their interaction is governed by the spin-3/2 nearest neighbour antiferromagnetic isotropic Heisenberg exchange:

\[\mathcal{H}_{3/2} = J \sum_{i=1}^{N-1} \mathbf{S}_i \cdot \mathbf{S}_{i+1} + D \sum_{i=1}^{N} (S_i^z)^2 - g \mu_B B_z \sum_{i=1}^{N} S_i^z \]

(1)

with interaction strength J = 0.24 meV (ref. 22), subjected to an external magnetic field \(B \) with \(g \)-factor \(g = 2.3 \) (ref. 20) applied perpendicular to the surface. This weak interaction was chosen specifically from a set of possible configurations⁰ to provide a critical point at an accessible field value. Because \(J \) and all other relevant energy scales (\(k_B T, \mu_B B \)) stay well below the anisotropy energy \(2D \approx 5.5 \text{ meV} \), excitations to ±3/2 doublets can be projected out through a Schrieffer–Wolff transformation up to first order in \(1/D \) (refs 15,23,24). This results in an effective spin-1/2 Hamiltonian:

\[\mathcal{H}_{1/2} = \sum_{i=1}^{N-2} (J_0 S_i^z S_{i+1}^z + S_i^x S_{i+1}^x) + J_z S_i^z S_{i+1}^z \]

\[+ J_{nnn} \sum_{i=1}^{N-3} S_i^z S_{i+2}^z + S_i^x S_{i+2}^x - \mu_B B_z \sum_{i=1}^{N} g S_i^z \]

(2)

with nearest and next-nearest neighbour exchange parameters and bulk/boundary \(g \)-factors given by:

\[J_\perp = 4J, \quad J_z = J - \frac{3J^2}{8D}, \quad J_{nnn} = \frac{3J^2}{D}, \]

\[g_i = \begin{cases}
2g \left(1 - \frac{3J}{2D} \right) & \text{if } i = 2, \ldots, N - 1 \\
2g \left(1 - \frac{3J}{4D} \right) & \text{if } i = 1, N
\end{cases} \]

(3)

†Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
‡Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1090 GL Amsterdam, The Netherlands. *These authors contributed equally to this work. *e-mail: a.f.otte@tudelft.nl
The model $H_{1/2}$ with $J_{1/2}^{nn} = 0$, uniform g, and $J_{1}/J_{2} \approx 1/8$ has a phase transition at $gJ_{2}B_{c} \approx 1.5J_{1}$ from an antiferromagnetic to a paramagnetic phase. The additional next-nearest neighbour coupling J_{2}^{nn} generated by the Schrieffer–Wolff transformation affects neither the qualitative features of the spectrum nor the existence of the phase transition, effectively reducing $H_{1/2}$ to an XXZ Hamiltonian in a transverse field. For finite-size realizations the antiferromagnetic phase is characterized by a number of level crossings, where the ground state switches between sectors of even and odd total magnetization, reflecting the Z_{2} symmetry corresponding to a π-rotation of all spins around the field axis.

Figure 1c,d shows the calculated lowest excitation energies of $H_{1/2}$ for an even-numbered ($N = 8$) and an odd-numbered ($N = 9$) chain, respectively, for a transverse field up to 9 T. Below the transition to the paramagnetic phase, just below 6 T, several ground state crossings are predicted, with their number increasing with chain length. Starting from a state with Néel-like order near zero field, each crossing corresponds to a stepwise increase of the total magnetization M along the field and the average number of antiferromagnetic domain walls n inside the chain (Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in finite chains, but becomes degenerate with the ground state in the thermodynamic limit, where it corresponds (through a Jordan–Wigner transformation) to the topological edge states recently observed in ferromagnetic chains on a superconducting surface. Below the critical field B_{crit}, the ground state and this zero gap E_{G}, as the length of the chain increases, E_{G} remains finite and forms the characteristic energy separating the ground state from the continuum—except at B_{crit}, where it vanishes. Just below this point, spin liquid behaviour is predicted.

We constructed chains of Co atoms of various length and performed low-temperature IETS measurements ($T = 330 \text{ mK} \sim E_{G}/k_{B}$) on each atom in a chain while varying the strength of the transverse field. To obtain an extensive data set, a fully automated measurement sequence was employed (see Methods). Figure 2a,b shows measurements taken on the first atom of an odd-length (5 atoms) and an even-length chain (6 atoms), respectively, recorded for every 200 mT from 0 to 9 T. At voltages below 5.5 mV, transitions within the manifold of $m_{z} = \pm 1/2$ states are observed; excitations at higher voltages correspond to transitions to the $m_{z} = \pm 3/2$ manifold. The spectra show sudden changes in both excitation energy and intensity at field values corresponding to expected ground state crossings: near 3.5 T for $N = 5$ and near 1.5 T and 4.0 T for $N = 6$.

Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co atom on Cu$_2$N at 0 T and 2 T applied along the hard axis. Left inset: atomic arrangement near the Co atom. Right inset: energy diagram indicating the separation between the $\pm 1/2$ and $\pm 3/2$ doubles. b, Atomic design for XXZ chains and indication of the transverse field direction. Large (small) grey circles represent Cu (N) atoms. c, Lowest excitation energies of an $N = 8$ chain for a transverse field up to 9 T. E_{G} and B_{crit} are indicated, as well as the transverse magnetization M and average number of domain walls n between each ground state change. d, Same as c for $N = 9$.

Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an $N = 5$ chain in transverse fields ranging from 0 T to 9 T, in increments of 200 mT. b, Same as a, but taken on atom 1 of an $N = 6$ chain. IETS curves were normalized to correct for tip height variations. Conductance values listed at the colour bars are indicative only: owing to normalization, scaling between spectra may vary by $\sim 20\%$. c, Theoretical spectra corresponding to a, b, respectively, calculated using a spin-3/2 model (equation (1)). The Kondo peak appearing at the first ground state crossing in b is under-represented in the theory (d). e, f, Same as c,d, but calculated using a spin-1/2 XXZ model (equation (2)).

DOI: 10.1038/NPHYS3722
Figure 3 | Experimental results on chains of one to nine atoms. a, IETS spectra from 0 T to 9 T transverse field (in 200 mT increments) obtained on each atom of every chain up to a length of nine atoms (up to 8.6 T for \(N = 7 \)). Calculated lowest excitation energies are shown below each chain data set. Red dashed lines indicate positions of expected calculated ground state crossings. Owing to normalization, scaling of individual spectra may differ by \(\sim 20\% \) from values listed at the colour bars. b, Site-resolved transverse magnetization (\(\langle S_x \rangle \)) for \(N = 5 \) and \(N = 6 \) as calculated from the \(H_{3/2} \) model. Excitation energies (red) same as in a.

To simulate the shape of the differential conductance spectra, we employed a perturbative transport model\(^{17,22,29,30}\). Steps related to the spectrum are found in good agreement with the data using the \(S = 3/2 \) Hamiltonian (equation (1); Fig. 2c,d). Calculations using the \(S = 1/2 \) XXZ Hamiltonian (equation (2); Fig. 2e,f) show similar agreement, except for the excitations to the \(m_z = \pm 3/2 \) multiplet near \(\pm 5.5 \) mV, which are not modelled. This agreement justifies our effective spin-1/2 treatment. A notable quantitative discrepancy between theory and experiment is found near 1.5 T in the \(N = 6 \) chain. At this field value, a two-fold ground state degeneracy occurs, resulting in a zero-bias Kondo resonance in the data, which is only partly reproduced in the third-order perturbative analysis\(^{22,30–33}\).

In Fig. 3a, field-dependent measurements are shown for all atoms of chains of 1 to 9 atoms, featuring a total of 2,056 IETS spectra. Here, we focus on the \(\pm 3 \) mV range corresponding to the \(m_z = \pm 1/2 \) multiplets. As chain length increases, more features become visible, each marking a change of the ground state as the field is increased. When comparing these to the calculated ground state crossing positions (lower panels), we find that for chains up to length \(N = 6 \) each feature lines up with one of the crossings. The IETS data also
above the critical field, the ground state is essentially polarized and we can obtain a similar understanding in terms of magnon physics.

The semiclassical reasoning outlined above is further confirmed by measurements taken on a seven-atom chain with a spin-polarized (SP) STM tip, shown in Fig. 4. In contrast to SP-STM measurements taken at a fixed voltage, these spectra reveal spin contrast in energy-dependent phenomena such as spin excitations. At 3 T we see, in addition to the even–odd pattern in the excitation energies, an alternating pattern in spin excitation intensities\(^4\) (Fig. 4c). For positive sample bias, in which case an excess of spin-down electrons from the tip is injected into the chain (Supplementary Fig. 4), excitations on odd-site spins are enhanced. At negative voltage, excitations are enhanced on the even sites. This alternating pattern is found to disappear as the field is swept through the critical value (Fig. 4d).

Additional SP-STM data are shown in Supplementary Fig. 5.

In conclusion, we have built chains of effective \(S = \frac{1}{2}\) spins realizing the XXZ model in a transverse field, and obtained detailed site-resolved information about the spectrum as a function of chain length and applied field. Increasing the chain length shows a growing number of ground state crossings, a precursor of the Ising quantum phase transition occurring in the thermodynamic limit. The origin of the discrepancy between the theoretical positions of ground state crossings and those observed in longer chains remains an open issue that requires a better understanding of the electronic and magnetic structure of the chains and their supporting surface. Our work demonstrates that STM-built spin lattices offer a viable platform, complementary to, for example, ultracold atoms, for experimentally testing quantum magnetism with local precision.

Methods

Methods and any associated references are available in the online version of the paper.

Received 26 August 2015; accepted 9 March 2016; published online 18 April 2016

References

Acknowledgements
This work was supported by FOM, NWO, the Delta ITP consortium and by the Kavli Foundation. We thank M. Ternes for developing the third-order perturbative transport model.

Author contributions
Experiments were performed by R.T., A.S., B.v.d.T. and B.B.; A.F.O. devised the experiments and supervised the work. Theoretical modelling was performed by R.v.d.B., I.S.E. and J.-S.C. All authors contributed to the interpretation of the results and to the writing of the manuscript.

Additional information
Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to A.F.O.

Competing financial interests
The authors declare no competing financial interests.
Methods

Experimental set-up and measurements. The measurements reported in this paper have been conducted in a commercial low-temperature STM (UNISOKU USM 1300S) at 330 mK and in ultrahigh vacuum (below 2×10^{-10} mbar). A Cu$_2$N monolayer was prepared in situ on a Cu(100) substrate by sputtering N$_2$ for 45 s at 1×10^{-5} mbar and 500 eV followed by 1 min of annealing at 400 °C, resulting typically in rectangular Cu$_2$N islands with their most elongated direction being smaller than 10 nm (ref. 34). Co atoms were evaporated at approximately 1,060 °C onto the pre-cooled Cu$_2$N surface. A PtIr tip was used, which we prepared by e-beam annealing followed by indentation into a bare Cu surface. Chains of Co atoms were assembled by means of vertical atom manipulation.

IETS measurements on Co atoms were realized by recording dI/dV spectra employing a lock-in technique with an excitation voltage amplitude of 70μV RMS at 928 Hz. Unless specified otherwise, in all measurements the applied magnetic field (up to 9 T) was oriented perpendicular to the sample surface. IETS measurements were performed at intervals of 200 mT, forming a set of 46 spectra per atom (except for the seven-atom chain, for which only 44 spectra up to 8.6 T were performed). To achieve a substantial reduction of the data acquisition time, an automated procedure was developed. After taking spectra on each atom at a given field, the tip returned to the first atom and retracted 2 nm, followed by a 50 mT automated field sweep. Following each sweep, the tip was brought back into the tunnelling range (50 pA, 15 mV), following which potential drift was corrected for through an automated atom-locking procedure. The field should be increased by 50 mT or less in each sweep to avoid the drift being larger than one atom radius. For data such as presented in Figs 2 and 3, IETS measurements were performed after every fourth field sweep to give an interval of 200 mT. Using this method, obtaining a data set for fields ranging from 0 T to 7 T required performing the experiment continuously for 7 h on a single Co atom to 28 h on a N = 9 chain. Spectra taken above 7 T were obtained manually for each atom of every chain, owing to tip instabilities disabling proper atom locking when sweeping the field in that range.

Spin-polarized measurements. A spin-filtering tip was created by attaching several Co atoms to the tip and applying a field of 3 T perpendicular to the surface. Spin polarization was verified by performing spectroscopy on a single Co atom. As shown in Supplementary Fig. 4, the relative heights of the peaks were found to be opposite to those recently reported35, indicating that the ultimate atom of the tip was polarized opposite to the external field owing to exchange forces within the tip.

References