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Chapter 4

Voluntary Participation and

Intergenerational Risk Sharing in a

Funded Pension System

4.1 Introduction

All over the world countries introduce funded pension systems in anticipation of the

projected rise in aging costs. Often those systems are of the defined-contribution

(DC) type, which means that workers save through a pension fund and at retirement

receive whatever they have accumulated in their own account. Hence, under such

an arrangement much of the potential benefit from intergenerational risk sharing, in

particular risk sharing between workers and retirees, will be lost. However, this need not

be the case if the funded pension scheme is appropriately designed. For example, in the

Netherlands, a country with a large pillar of sector and company pension funds that pay

out benefits defined in nominal terms, risks are shared among generations of workers

and retirees through changes in the contributions paid by the workers and changes in

the indexation of pension benefits and pension rights to wage or price inflation. In

the case of underfunding (low buffers), reduced indexation implies a reduction in the

purchasing power of all generations’ benefits or rights, while, in addition, contributions

paid by working generations may be raised. The opposite tends to happen when the

ratio of assets to liabilities becomes very large. Participation of employees in the system

This chapter is joint work with Roel Beetsma and Ward Romp, and has been published in Euro-
pean Economic Review 56 (2012), pp. 1310-1324.
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is mandatory.2 This is important, because a risk-sharing arrangement that is not legally

enforced is only viable when there exists no ex-post incentive to quit the arrangement

whenever a transfer has to be made. In a situation of underfunding of the pension

fund, the young would be tempted to leave the system instead of guaranteeing the

pensions of the retired through higher contributions. If the buffers become too large,

the old will be tempted to close the fund. If participation in a funded pension system

is voluntary, the ex-ante benefits of intergenerational risk sharing may be forgone.

In this chapter, the feasibility and welfare consequences of a funded pension system

with voluntary participation and intergenerational risk sharing is expored. So far, there

hardly exists any formal analysis addressing this issue. Such an analysis is of substantial

policy relevance, because the countries that currently increase or plan to increase the

funded component of their pension systems need to take informed decisions about its

design. In particular they need to decide whether to introduce certain defined-benefit

elements and whether to make participation obligatory.

Ongoing discussions or even reforms take place in many countries. Of particular

relevance for this chapter is the discussion in the U.K. The Department for Work and

Pensions (DWP, 2012) is preparing a revision of the Pensions Act 2011 with the aim

of making ‘auto-enrolment’ of employees in pension schemes provided by the employer

obligatory. At the same time, the European Commission is revising the Directive for

Institutions of Occupational Retirement Provision (IORPs) and plans to have draft

legislation before the summer of 2013 (Barnier, 2012). The current IORP directive

provides minimum standards for supervision and governance of occupational pension

plans. Whether the revision will support or discourage moving towards funded second-

pillar pensions in EU member states will depend to a large extent on the exact details

of the proposal. In the Netherlands, pressure on mandatory pension fund partici-

pation has been growing. The current generosity of funded occupational pensions is

unsustainable due to the ageing of the population, while the financial crisis has left

many pension funds underfunded. Young generations see their contributions rise, while

they are concerned that insufficient assets will remain in the pension funds to secure

2More precisely, participation is mandatory when there is a collective labour agreement between
the social partners (trade unions and firms or employers’ organizations). Except for the self-employed
this is the case for most of the workers.
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their own future pension benefits. Hence, their reluctance to participate in the system

grows. Therefore, social partners, supported by the government, have been working on

redesigning current pension contracts, which should preserve mandatory participation

and the risk-sharing benefits that this brings to all generations involved.

Our analysis takes place in the context of a simple infinite horizon model with two

overlapping generations. Voluntary participation is modelled through a participation

constraint that requires the expected utility from participation to be at least as large

as expected utility under autarky, which is defined as a situation without any form of

pension system and, hence, without any risk sharing between generations. When the

return on the pension fund portfolio is low, the current young make a transfer to the

current retirees. Individuals always have the option to not participate after the current

shock has materialised. Participation yields benefits in terms of intergenerational risk

sharing. However, numerical results show that the ex-post option to not participate in

the system renders a funded system unfeasible for low degrees of risk aversion and when

portfolio returns have low variance. In those circumstances the risk-sharing benefits

will be lost. Increases in risk aversion and uncertainty about the returns raise the

likelihood of a sustainable funded system based on voluntary participation. However,

risk sharing would still be less than under the optimal arrangement with obligatory

participation. Raising risk-aversion and volatility further, we find that the optimal

solutions under voluntary and obligatory participation coincide.

This chapter draws from several strands of the literature. First, there is a literature

on intergenerational risk sharing in pension systems. Bohn (1999b, 2003) analyses such

risk sharing in PAYG pension systems. Krueger and Kubler (2006) find that PAYG

pension systems can only be welfare improving when markets are incomplete, while,

moreover, their welfare effects depend on the degrees of risk aversion and intertem-

poral substitution. Gottardi and Kubler (2011) extend the analysis of Krueger and

Kubler (2006) and Ball and Mankiw (2007) compare risk sharing of an overlapping

generations economy under autarky and in the presence of a full set of state-contingent

assets. De Menil and Sheshinski (2003), Hassler and Lindbeck (1997) and Matsen and

Thøgersen (2004) explore the trade off between a PAYG and a funded pension system.

The optimal relative sizes of the two components of the pension system depend on
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the preferences and the characteristics of the stochastic processes driving wages and

returns. Beetsma and Bovenberg (2009) and Beetsma et al. (2011) explore risk sharing

through a combination of a PAYG and a fully funded system. Finally, Cui et al. (2011)

compare risk sharing in various types of funded pension systems such as an individual

DC scheme, a collective DC scheme and a collective defined-benefit (DB) scheme.

Second, this chapter is linked to the literature on participation constraints. Kocher-

lakota (1996) and Thomas and Worrall (1988) explore risk-sharing between two types

of infinitely-lived agents in which transfers can go both ways between the agents, who

always have the possibility to walk away from the risk-sharing agreement. Krueger and

Perri (2011) allow for a continuum of infinitely-lived agents and explore participation

with limited enforcement when public insurance is introduced into a market in which

private insurance contracts are not fully enforcable. They show that public insurance

can crowd out private insurance, because agents who break the private contract have

the option of joining the public insurance contract. Our setup differs from these other

contributions in that our agents only live for two periods and transfers always go from

the young to the old. The young are prepared to make such transfers because they

expect the future young to also honour the risk-sharing arrangement.

The third strand of the literature to which this chapter is related is that on discon-

tinuity risk in pension systems. Demange and G.Laroque (2001) study risk-sharing in

a PAYG pension system with voluntary contributions, while Demange (2009) explores

political sustainability risk in PAYG systems. In Teulings and De Vries (2006) the

young may be exposed to equity risk already before they enter the labour market, im-

plying that they may have accumulated losses even before they start working. Under

those circumstances young individuals may prefer not to participate in the pension

fund. Bovenberg et al. (2007) also discuss the problem of negative buffers that make it

unattractive for new young generations to enter a pension fund. Other articles explor-

ing discontinuity risk in funded pension systems are van Ewijk et al. (2009), Gollier

(2008), Westerhout (2009) and Molenaar et al. (2011). The latter two articles are

closest to our analysis. Westerhout (2009) employs an infinite horizon model with two

overlapping generations. He quantifies the feasible amount of risk-sharing under the

assumption that the old are bound by their pension contract and the young are free to
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choose whether they will join the fund. They will not join when the financial position

of the fund is weak. Hence, risk sharing is possible only for a limited set of states. An

important assumption is that the return on the pension funds’ assets exceeds that on

private savings. This makes it relatively attractive to join a pension fund. We do not

need to make such an assumption. Molenaar et al. (2011) explore the break-even ratio

of pension fund assets over liabilities at which it is optimal for a participant to quit the

pension fund. They model a Dutch DB pension fund and in this and other respects

their model differs substantially from our model. Moreover, in contrast to our analysis

they only optimise the static asset allocation under the alternative of no participation,

while there is no fully-fledged analysis of the existence and characterisation of equilibria

with voluntary participation.

The remainder of the chapter is structured as follows. In Section 2, the model is set

up and solved for the autarky solution. Section 3 introduces a pension fund and solves

for the optimal transfer rule in the absence of a participation constraint. In Section 4,

we introduce the participation constraint and characterise the various equilibria. This

section also solves for the optimal pension fund rule. Section 5 works out a numerical

example. Finally, Section 6 concludes the main text of the chapter.

4.2 Model and autarky solution

We set up an infinite-horizon overlapping generations model. In each period, a new,

young generation is born. The generation born in period t will be referred to as the

“period-t generation”. Each generation consists of identical individuals and lives for

two periods. In the first period of its life, the generation works, consumes and saves

for its old age. When old in the second period of its life, the generation is retired and

consumes all of its savings. Savings can be invested in a single risky asset. We assume

that subsequent returns on the asset are identically and independently distributed. All

generations are of the same size, which we normalise to unity.

The preferences of an individual born in period t are given by:

Ut = u (ct,t) + βEt [u (ct+1,t)] , (4.1)
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where ct,t denotes consumption in the first period of its life and ct+1,t denotes consump-

tion in the second period of its life. Hence, the first subscript denotes the period in

which consumption takes place and the second subscript denotes the period in which

the individual is born. Function u (.) is increasing and concave on [0,∞) and twice

differentiable.

In the absence of any form of pension system, that is, under “autarky”, consumption

of the period-t generation in the two periods of its life is:

ct,t = wt − st, (4.2)

ct+1,t = (1 + rt+1) st. (4.3)

where wt is the exogenous wage rate, st are private savings under autarky and rt+1 is

the return on savings. The individual solves the intertemporal consumption allocation

problem:

max
st

u (wt − st) + βEt {u [(1 + rt+1) st]} , (4.4)

which implies the first-order condition:

u′
(
cat,t
)

= βEt
[
(1 + rt+1)u′

(
cat+1,t

)]
. (4.5)

Utility under autarky is given by:

Ua
t ≡ u

(
cat,t
)

+ βEt
[
u
(
cat+1,t

)]
, (4.6)

where cat,t and cat+1,t are the optimal consumption levels under autarky.

4.3 Introduction of a pension fund

We introduce a pension system with a simple funding rule. This introduces the pos-

sibility of intergenerational risk sharing. A young person privately saves an amount

st and contributes an amount θ to the pension fund. The fund invests this contribu-

tion in financial assets and pays out the gross return as a pension benefit one period

later. In addition, if the return on the fund’s assets in period t is too low to provide a
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“decent” pension benefit, each individual of the period-t generation pays an additional

re-funding contribution τt, which is used to supplement the benefit to the current old

generation. The transfer τt is constrained to be non-negative.

4.3.1 Individuals

The consumption levels of a period-t generation member are:

ct,t = wt − st − θ − τt, (4.7)

ct+1,t = (1 + rt+1) (st + θ) + τt+1. (4.8)

The individual takes as given the known policy function set by the pension fund and

now maximises (4.1) subject to (4.7) and (4.8). This implies the following first-order

condition for his intertemporal consumption trade-off:

u′
(
cpt,t
)

= βEt
[
(1 + rt+1)u′

(
cpt+1,t

)]
, (4.9)

where cpt,t and cpt+1,t are the optimal consumption levels under participation in period

t.

4.3.2 The pension fund

We assume that the pension fund applies the very simple funding rule given by:

τt =

(r∗ − rt) θ ∀ rt < r∗,

0 ∀ rt ≥ r∗.

(4.10)

We choose this rule, because it is appealing from a practical point of view, as it is

intuitive and it would be easy to implement. It features two parameters to be set by

the pension fund, r∗ and θ. In the remainder of the chapter, we assume that θ is given

and that the pension fund uses r∗ as its policy instrument.3 Figure 4.1 shows the size of

3An alternative would be to vary θ and keep r∗ fixed. The analysis is similar to the analysis
presented here. Because the contribution rate is easier to observe and, hence, to calibrate we choose
to vary r∗. If we also allow for different values of θ, we get a two dimensional feasible region in r∗
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Figure 4.1: Transfer and consumption of young and old
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the transfer τt as a function of the current asset return and the effect that this rule has

on consumption of the young (in the middle panel) and the old (in the bottom panel).

The transfer is rising in the short-fall of the actual market return from r∗ (i.e., as we

move to the left along the horizontal axis in Figure 1). This dampens the sensitivity

of the old’s consumption to fluctuations in financial market returns when compared to

the autarky situation (the dashed line).

The objective of the pension fund is to maximise from an ex-ante point of view the

and θ and the optimal contract would be a combination of these two pension parameters for which
welfare is maximised given that these parameters lie within this feasible region.



Voluntary Participation and Intergenerational Risk Sharing 87

sum of the utilities of the current and all future generations:

V = E0 {u (c1,0) + [u (c1,1) + βu (c2,1)] + β [u (c2,2) + βu (c3,2)] + . . . }

= E0u (c1,0) +
∞∑
t=1

βt−1E0 [u (ct,t) + βu (ct+1,t)]

= E0u (c1,0) +
∞∑
t=1

βt−1E0 [Up
t ] , (4.11)

where E0 denotes the expectation taken at the start of period 1, before r1 has materi-

alised, and Up
t ≡ u (ct,t) + βu (ct+1,t). Notice that the transfer is not a function of the

savings of the previous young generation, but of the time-invariant pension fund rule

parameters r∗ and θ. This implies that all young generations are affected in an identical

way by the funding rule and in expectation the decisions of all young generations will

be identical. Hence, E0U
p
1 = E0U

p
2 = · · · ≡ E0U

p. Using this, we can rewrite (4.11) as:

V = E0u (c1,0) +
1

1− β
E0 [Up] .

Aggregate welfare is maximised by setting r∗ such that the derivative of the objective

function with respect to r∗ equals 0:

∂V

∂r∗
= E0

[
∂u (c1,0)

∂r∗

]
+

1

1− β
E0

[
∂Up

∂r∗

]
= 0.

We call the value for r∗ implied by this first-order condition r∗,opt. Hence, r∗,opt yields

the optimal transfer rule in the absence of a participation constraint.

4.4 The participation constraint

In the previous section we optimised welfare assuming that participation is mandatory.

In this section we relax this assumption. This gives rise to a participation constraint

that needs to be fulfilled to sustain the collective pension scheme. We characterise the

equilibria that arise in the presence of this constraint. Finally, it solves for the optimal

value for r∗ under this participation constraint.

For any period t, we denote the set of possible realisations of the state of the
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world by R ≡ [−1,∞). The particular state that actually materialises in period t

is exhaustively described by the asset return rt in that period, with the continuously

differentiable density function p (rt) on R.

We define participation or lack of participation in the pension fund as:

Definition 1: A young generation in period t is said to participate in the pension fund

if it chooses to follow the funding rule τ = τ (rt) for the current realization rt. It does

not participate if it does not follow this funding rule.

Before we continue the analysis we make the following assumptions for an arbitrary

period t ≥ 1:

Assumption 1: All preceding young generations as of period 1 have participated in

the pension fund. Each period-t young individual is free to choose whether or not to

participate in the pension system after the state rt has materialised.

Assumption 2: If the period-t young decide not to participate, the economy shifts

to autarky and remains in autarky forever after. Hence, none of the future young

generations will ever participate.

In the remainder of this chapter we assume that Assumptions 1 and 2 hold. Using

these assumptions we can write the participation constraint for the period-t young

individual as:

u
(
cpt,t
)

+ β
{
P in
t Et

[
u
(
cint+1,t|in

)]
+ P out

t Et
[
u
(
coutt+1,t|out

)]}
≥ Ua

t , ∀ rt ∈ R, (4.12)

with P out
t = 1−P in

t and Et(·|in/out) the expected value given that the next generation

participates (in) or not (out). For the sake of readability in our notation we have

dropped the dependence of consumption levels on the current return rt. Next period’s

consumption of the current young depends on whether the next young generation

participates or not. If the next young generation participates, the current young receive

cint+1,t in the next period and coutt+1,t, otherwise. P in
t and P out

t denote the current young’s

perceived probabilities that the next young will participate, respectively opt out.
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4.4.1 Recursive formulation of the participation constraint

Since subsequent generations are identical, and assuming that the economy has not

shifted to autarky in the past, the participation constraint for each state of the world

is identical in any period. This means that we can drop the time subscripts and write

(4.12) in terms of current and next-period variables (which are denoted by a prime) as:

u (cp) + β
{
P inE

[
u
(
cin ′|in

)]
+ P outE

[
u
(
cout ′|out

)]}
≥ Ua, ∀ r ∈ R, (4.13)

where a prime denotes next-period variables.

Hence, in our OLG setting, there is a participation constraint analogous to that in

the literature that deals with participation constraints in settings with two types of

infinitely-lived agents, such as Thomas and Worrall (1988) and Kocherlakota (1996).

However, because in our setting the old have no incentive to walk away from the

contract, the pension fund does not need to ensure that it delivers at least the utility

promised in the previous period. Instead, the fund should ensure that it does not violate

the promised funding rule, so that the insurance it promises the current young for the

next period remains credible. Otherwise, the economy falls into autarky (Assumption

2). In addition, in contrast to models with infinitely-lived agents in which transfers can

go both ways, in our model transfers always go from young to old individuals. While

they may have to make a transfer to the current old, the current young depend on

the next period’s young for their own insurance. That implies that we do not have a

repeated game between agents who can punish each other when one of them deviates

from the rule. Hence, the beliefs about the willingness of the next period’s young to

make a transfer are crucial for the current young’s willingness to pay a transfer, as will

become clear below.

The next period’s young will decide not to participate if the transfer they have

to pay is relatively large, i.e. if r′ < r̃′, where r̃′ denotes the threshold value for the

next-period return r′ that makes next period’s young indifferent between participating
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and not participating. Using Bayes’ rule we obtain

P inp(r′|in) = P (in|r′)p(r′) =

0 for r′ < r̃′

p(r′) for r′ ≥ r̃′
,

so we can rewrite the participation constraint (4.13) as:

Ua ≤ Up (r, r̃′) ≡ u (w − sp (r)− θ − τ (r))

+ β


∫ r̃′
−1
p (r′)u [(1 + r′) (sp (r) + θ)] dr′+∫ r∗

r̃′
p (r′)u [(1 + r′) sp (r) + (1 + r∗) θ] dr′+∫∞
r∗
p (r′)u [(1 + r′) (sp (r) + θ)] dr′

 , (4.14)

where the right-hand side is the utility to the young when the current return is r and

the next period’s cut-off return for participating is r̃′.

4.4.2 Equilibrium definition

We explore equilibria that are defined as follows:

Definition 2: A recursive equilibrium with participation is an autarky savings decision

sa, an autarky value Ua, a pension funding rule {τ (r)}, a set of savings decisions under

participation {sp (r)}, values under participation {Up (r, r̃′)}, a current cut-off return

r̃ and expectations about the next period’s cut-off return r̃′, such that

1. For any r, given the funding rule and expectations about future participation,

the savings decisions {sp (r)} solve the young generation’s optimization problem.

2. For r < r̃, Up (r, r̃′) < Ua, while for r ≥ r̃, Up (r, r̃′) ≥ Ua.

3. The cut-off return for the current young, r̃, computed given the expectation about

the future cut-off return r̃′, equals the cut-off return for the next period’s young,

r̃′.
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4. For at least one element r ∈ R, the funding rule sets τ (r) > 0 and has Up (r, r̃′) ≥

Ua.

4.4.3 Solutions for r̃

The cut-off return r̃ depends on the size of the current transfer prescribed by the

funding rule and the current belief about the cut-off return of the young in the next

period. If r ≥ r∗, the current young would certainly want to participate, so the cut-off

return cannot exceed r∗. Because subsequent young generations are identical in all

respects under the assumption that all preceding young generations have participated

in the pension fund, the cut-off return must be the same for every young generation

that still has the option to participate. This implies that r̃ = r̃′ = (r̃′)′ = . . . .

An equilibrium solution for r̃ requires that if the current young believe that the next

young generation has the same threshold, then these current young want to participate

if confronted with a return higher than this threshold and want to opt out if confronted

with a lower return. That is, r̃ is such that

Up (r, r̃′ = r) < Ua for all −1 ≤ r < r̃

Up (r, r̃′ = r) ≥ Ua for all r̃ ≤ r ≤ r∗
. (4.15)

Here, Up (r, r̃′ = r) is the utility from participation under the assumption that the next

generation uses the current portfolio return as the cut-off return.

As the Appendix shows, the derivative of Up (r, r̃′ = r) with respect to r is the sum

of a positive and a negative term and its sign is generally indeterminate. The negative

term measures the utility cost of the extra transfer the current generation has to make

this period. The positive term measures the benefit from extra insurance, because

the future young have a higher threshold. This indeterminate derivative complicates

our analysis. However, as the Appendix also shows, Up(r, r̃′ = r) is equal to Ua and

upward sloping in r = r∗. That is, it approaches Ua from below as r approaches

r∗. In the examples below, we will work with a constant relative risk aversion utility

specification. Plots of the resulting function Up (r, r̃′ = r) show that it is always convex

on r ∈ [−1, r∗]. Henceforth, we restrict ourselves to the case in which Up (r, r′ = r̃) is
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convex in r on this interval. Under this assumption, depending on whether Up (r, r̃′ = r)

is larger or smaller than Ua at r = −1, there are three possibilities as illustrated by

Figure 4.2, which as a function of r plots the function ∆p (r) ≡ Up (r, r̃′ = r)− Ua:

Situation 1: If ∆p (r) < 0 at r = −1, then Up (r, r̃′ = r) < Ua for all −1 ≤ r < r∗.

This is the situation depicted by the lowest curve in Figure 4.2. In this case, r̃ = r∗

is the only threshold that is consistent with our equilibrium definition. This threshold

implies that the pension fund collapses as soon as r < r∗, so there can effectively be

no risk sharing via a pension fund.

Situation 2: If ∆p (r) = 0 at r = −1, then Up (r, r̃′ = r) < Ua for all −1 < r < r∗.

In this case, depicted by the middle curve in Figure 4.2, equation (4.15) has exactly

two solutions for r̃, namely r̃ = −1 and r̃ = r∗. This first solution implies that if

the current young believe that the next period’s young will participate in the pension

system with certainty, then in the worst scenario today (i.e. r = −1), the current

young are indifferent between participating and not participating. Hence, the pension

system continues to exist forever.

Situation 3: If ∆p (r) > 0 at r = −1, as depicted by the upper curve in Figure 4.2,

r̃ = −1 is a corner solution, because under the belief that the next period’s young

will always participate the current young have higher utility from participating in the

pension system than under autarky, even if they have to pay the highest possible

transfer. Again, r̃ = r∗ is also a solution. Finally, there exists a third solution −1 <

r̃ < r∗, such that Up (r, r̃′ = r) = Ua.

4.4.4 Properties of the solutions for r̃

We shall now further analyse Situation 3, because Situation 1 effectively excludes the

possibility of risk sharing via a pension fund, while Situation 2 corresponds to a very

specific parameter combination. In Situation 3, if the current young, given their belief

that the next period’s young will participate in every state (r̃′ = −1), are also willing

to participate, there exist three solutions, namely r̃ = −1, r̃ = r∗ and a solution

−1 < r̃ < r∗. The first two solutions are stable, while the third is a knife-edge solution

that will never be realised unless the current young start with an initial belief at exactly
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Figure 4.2: Net benefit from participation

Case 3 
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Current return (r) 

that point. Let us denote this solution by r̃u. Which one of the two stable equilibria

is reached depends on the initial belief of the current young.

Initial belief lies between -1 and unstable solution

If the current young initially believe that the cut-off return r̃′ of the next young gen-

eration lies between −1 and r̃u, then the economy will end up at the equilibrium with

r̃ = −1. We illustrate this case using Figure 4.3, in which we plot the solid curve

∆p (r) as a function of r and the dashed curves Up (r, r̃′)−Ua for three different values

(r1 > r2 > −1) of r̃′. Note that there exist an infinite number of such curves, one

for each possible belief about next-period young’s cut-off value r̃′. Since Ua does not

depend on r̃′ and the insurance value of participation is lower as the next generation’s

threshold is higher, U(r, r̃′ = r1) < U(r, r̃′ = r2) < U(r, r̃′ = −1) on the whole interval

r ∈ [−1, r∗].

Take an arbitrary starting value r1 between −1 and r̃u for r̃ and assume that the

next generation uses the same threshold. This corresponds to point (A) in Figure 4.3

where the lower dashed line crosses the solid line. This return r1 cannot be the cut-off

return r̃ of the current young since there are lower returns for which the current young
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Figure 4.3: Stable solution with participation
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are also willing to participate given their beliefs about the future’s young generation’s

threshold. While keeping r̃′ fixed at r1, we decrease r, thereby raising the required

transfer and reducing expected utility from participation Up (r, r̃′ = r1) until we reach

the value of r such that Up (r, r̃′ = r̃1) = Ua at r = r2 in point (B). This defines the cut-

off return r̃2 of the current young given their initial belief about future participation.

But, r̃2 < r1, implying that the belief r̃′ = r1 cannot be an equilibrium belief, as in

equilibrium the cut-off returns of all subsequent young generations must be identical.

Hence, the current young update their belief about the next young’s cut-off return to

r̃′ = r2 < r1 to make their threshold consistent with their own (point C). However, at

r = r̃2, Up (r, r̃′ = r2) again exceeds Ua. Lowering r again, we move along the next-

to-lowest dashed line to the left until we hit the vertical axis. This yields the cut-off

return r̃ = −1 of the current young which implies that they will never want to opt out.

If opting out is never optimal for the current young, then it is also never optimal for

future generations, so the threshold consistent with our equilibrium definition is the

stable equilibrium r̃ = r̃′ = −1.
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Initial belief lies between unstable solution and r∗

We illustrate this case using Figure 4.4, in which we again plot the solid curve ∆p (r)

as a function of r and the dashed curves Up (r, r̃′)− Ua for three different values of r̃′.

As before, there exist an infinite number of these curves, one for each possible value of

r̃′. All these curves are upward sloping since the required transfer decreases and the

insurance value stays constant along each line as r̃′ is constant. By definition the curve

Up (r, r̃′) − Ua crosses ∆p (r) at r = r̃′. Finally, these curves are positive (or zero) at

r = r∗ since Up(r, r∗) − Ua = 0 for r = r∗ and all curves with r̃′ < r∗ lie above this

curve.

To show that every initial belief about the next generation’s threshold between r̃u

and r∗ results in the autarky solution r∗ start in point A in Figure 4.4. At r = r1,

we have Up (r, r̃′ = r1) < Ua so that the current young do not want to participate.

However, there are also higher returns r for which they do not want to participate,

but according to their initial belief r̃′ = r1 the next generation does. So, r1 cannot

be the cut-off return r̃ of the current young. While keeping r̃′ fixed at r1, we raise r,

thereby reducing the required transfer and raising expected utility from participation

Up (r, r̃′ = r1) until we reach the value of r such that Up (r, r̃′ = r1) = Ua in point B.

This defines the cut-off return r2 of the current young given their initial belief about

future participation. However, r2 > r1, implying that the belief r̃′ = r1 cannot be

an equilibrium belief, as in equilibrium the cut-off returns of all subsequent young

generations must be identical. Hence, the current young update their belief about the

next young’s cut-off return to r̃′ = r2 (point C). However, at r = r2 = r̃′, one has

Up (r, r̃′ = r2) < Ua. Raising r, we move along the middle dashed line to the right

until we hit the horizontal dashed line again. This yields the new cut-off return r = r3

of the current young. Because r3 exceeds the next generation’s threshold r2, the latter

cannot be an equilibrium cut-off return. We repeat the updating procedure until the

current generation’s cut-off and the beliefs about the next generation’s cut-off converge

to the stable equilibrium value r̃ = r̃′ = r∗.



96 Chapter 4

Figure 4.4: Stable solution without participation
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4.4.5 Assumption about initial beliefs

The analysis thus far has shown that the only stable equilibrium can be one in which

r̃ = r̃′ = −1 or r̃ = r̃′ = r∗. The latter case is effectively ruled out by requirement

(iv) of Definition 2 of an equilibrium. Hence, in the sequel we limit ourselves to the

former case and we assume that each young generation starts with the belief that the

next-period young will participate in all states of the world, i.e r̃′ = −1. If, given

this belief, the current young are prepared to participate for r = −1, i.e. when the

transfer they have to make is at its largest, we have a sustainable pension fund that

continues to operate in all periods under any state of the world. If for this initial belief

the current young are unwilling to participate for r = −1, then, as the analysis in the

previous subsection has shown, there exists no equilibrium with participation and the

pension system breaks down.

4.4.6 Feasible pension fund rules

Until now we have fixed the contract at an arbitrary r∗ and varied the cut-off value r̃

for young generations. Next, we will vary r∗ to find the set of feasible funding rules by
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the pension fund. This part of the analysis closely follows the analysis by Ljunqvist

and Sargent (2004, pp. 724-726) and Kocherlakota (1996).

We evaluate Up for the worst state of the world (r = −1) under the assumption

that the next period’s young will participate irrespective of the next period’s state of

the world (i.e., r̃′ = −1):

Up (−1,−1) = u (w − sp − θ − (1 + r∗) θ) +

β


∫ r∗
−1
p (r′)u ((1 + r′) sp + (1 + r∗) θ) dr′

+
∫∞
r∗
p (r′)u ((1 + r′) (sp + θ)) dr′

 .

We can check for all possible values of r∗ whether the current young are indeed prepared

to participate or not. Start with r∗ = −1. In this case, the young will never make

a transfer, hence their consumption is constant across all states of the world and the

pension fund effectively operates as an individual DC system. To see what happens

when we increase r∗, we differentiate Up (−1,−1) with respect to r∗. Applying Leibniz’

integral rule, this yields,

dUp (−1,−1)

dr∗
= −θu′ (w − sp − θ − (1 + r∗) θ) +

βθ

∫ r∗

−1

p (r′)u′ ((1 + r′) sp + (1 + r∗) θ) dr′. (4.16)

The first term on the right-hand side of (4.16) is negative: raising r∗ from −1 means

that the young individual has to pay a transfer with certainty because r = −1. The

second term on the right-hand side is positive, except at r∗ = −1. It arises from the

fact that the increase in the transfer from the future young for given r′ raises future

consumption and, hence, future utility to the current young. At r∗ = −1, this term

is exactly zero, because the probability of receiving the higher future transfer is zero

in this case. In differentiating Up (−1,−1) two terms have cancelled out. A marginal

increase in r∗ expands the interval [−1, r∗) over which a transfer is received in the

future. However, this positive contribution to Up (−1,−1) cancels out against the

reduction of utility from the shrinkage of the interval [r∗,∞) over which no transfer is

received.
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Figure 4.5 plots the gain from participating ∆p(−1) = Up (−1,−1)−Ua for various

constant relative aversion utility functions. As shown above, ∆p(−1) initially always

falls below 0. Further from r∗ = −1, the utility loss from the initial transfer is still

low, but the probability of receiving income protection in the worst case scenarios in

the second period grows. For some parameter combinations (as in cases A and B), this

second effect, measured by the term on the right-hand side of (4.16) starts to dominate

and the function increases. For high values of r∗, increasing r∗ further always has a

negative effect on the gain from participating as the insurance value does not offset the

relatively large initial transfer. For values of r∗ close to w/θ− 1, participation is never

attractive, because the initial transfer is so large that positive consumption in the first

period may lead to bankruptcy in the second. To ensure positive consumption this

value of r∗ requires that sp+θ < 0, so the young are privately heavily indebted. But, if

r′ ≥ r∗ then the payout from the pension fund is insufficient to pay the principal plus

interest rate on this debt. In our numerical analysis below, the gain from participating

always shows the same rotated S-pattern.

Figure 4.5 shows that there are intervals for r∗ on which the gain from participating

is positive. In this case, we define r∗,max as the maximum value for r∗ for which a pension

fund is sustainable and r∗,min as the largest value of r∗ < r∗,max for which ∆p(−1) = 0.

However, there are also instances (as in Case C in Figure 4.5) for which no such interval

exists.

4.4.7 The optimal pension fund rule

We continue to focus on the stable equilibrium with participation in Situation 3 and

assume that the funding rule is in place at the start of period 1. Writing out the terms

in the pension fund objective function, equation (4.11), we obtain

E0u (c1,0) =

∫ r∗

−1

p (r)u [(1 + r) sp + (1 + r∗) θ] dr

+

∫ ∞
r∗

p (r)u [(1 + r) (sp + θ)] dr,
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Figure 4.5: Feasible pension schemes when varying r∗
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and

E0U
p =

∫ r∗

−1

p (r)u [w − sp − θ − (r∗ − r) θ] dr

+

∫ ∞
r∗

p (r)u [w − sp − θ] dr

+ β


∫ r∗
−1
p (r)u [(1 + r) sp + (1 + r∗) θ] dr

+
∫∞
r∗
p (r)u [(1 + r) (sp + θ)] dr

 .

Substituting these terms into (4.11), it is straightforward to write the pension fund

objective as:

V (r∗) =
1

1− β


∫ r∗
−1
p (r)u [w − sp − θ − (r∗ − r) θ] dr

+
∫∞
r∗
p (r)u [w − sp − θ] dr

 (4.17)

+
1

1− β


∫ r∗
−1
p (r)u [(1 + r) sp + (1 + r∗) θ] dr

+
∫∞
r∗
p (r)u [(1 + r) (sp + θ)] dr

 .

If an interval
[
r∗,min, r∗,max

]
exists, we denote the value for r∗ ∈

[
r∗,min, r∗,max

]
that

maximises (4.17) subject to the participation constraint by r∗,pc.
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4.5 A numerical example

In this section we work out a simple numerical example of the analysis we have pre-

sented in the previous sections. The purpose of this section is to explore under what

circumstances a funded pension arrangement with voluntary participation exists and,

conditional on this existence, to investigate under what circumstances the participation

constraint leads to welfare losses because it is binding.

We assume that period utility is given by,

u (c) =
c1−γ

1− γ
,

where parameter γ captures the constant degree of relative risk-aversion. The baseline

values of the model parameters are set as follows. Consistent with standard calibrations

in the macro-economic literature, we set γ = 5. Further, we assume that β = 0.5.

With one generation spanning 30 years, this corresponds to an annual discount factor

of 0.977. The wage rate is simply a parameter that determines the scale of the economy

and we fix it at w = 100. Given the wage rate w, we set θ = 10. Hence, this amounts

to a realistic pension contribution rate of 10%. We assume that portfolio returns are

lognormally distributed and independent over time. In setting the parameters for the

portfolio returns, we make use of Campbell et al. (2003) (see Appendix). Specifically,

the average annual portfolio return is set at µ = 0.089, which over a period of thirty

years translates into an average return of 2.14. The standard deviation of the annual

equity return in Campbell et al. (2003) is σ = 0.182, which implies a standard deviation

of 0.91 over a thirty-year period. We will consider a wide range of standard deviations

that comfortably covers this value. Given that the degree of risk aversion is somewhat

on the high side, the conditions for a recursive equilibrium with participation are

relatively favourable.

First, we solve for r∗,opt, the optimal choice of the pension fund for r∗ in the ab-

sence of participation constraints. Subsequently, we solve the autarky problem, which

yields expected utility Ua. Given Ua, we can then solve for the minimum and max-

imum values r∗,min and r∗,max of r∗ for which our stable equilibrium in the presence

of participation constraints still exists as well as the optimum value r∗,pc for r∗ in the
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interval
[
r∗,min, r∗,max

]
. If there is no interval

[
r∗,min, r∗,max

]
for the specific parameter

constellation under consideration, then there is no sustainable pension contract under

voluntary participation as indicated by the non-existence of r∗,max and r∗,pc in the ta-

bles. In these instances we indicate r∗,max and r∗,pc in the tables by “−”. Obviously,

if r∗,max exists, then also r∗,min and r∗,pc exist. However, we do not separately report

r∗,min, because numerically it always lies extremely close to −1. Finally, we compute for

the constrained optimum the ex-ante welfare gains Ωinit for the initial old generation

and Ω for the current young and all future generations. These ex-ante welfare gains

are defined as follows:

E0u
(
cp1,0
)

= E0u
[(

1 + Ωinit
)
ca1,0
]
,

E0U
p = u

[
(1 + Ω) cat,t

]
+ βE0u

[
(1 + Ω) cat+1,t

]
.

We report the results in Table 4.1 for different values of the risk aversion parameter

γ, the annual standard deviation of the portfolio return σ and the pension contribution

θ. The results show that the higher is the degree of relative risk aversion and the

higher is the standard deviation of the asset returns, the more likely it becomes that

participation in the pension fund is beneficial because of the risk-sharing gains that it

provides.

Consider first the case when the pension contribution is at its baseline of θ = 10.

Then, for a relatively low degree of risk aversion γ = 3 the pension fund is viable for

high volatilities of 0.25 and larger, while for a relatively high degree of risk aversion

γ = 7.5 it is viable already for a moderate volatility of 0.15. For a given degree

of risk aversion, the benefit from future risk sharing and thus the attractiveness of

participation increases with the uncertainty about the future asset returns. Vice versa,

for a given variance of the asset returns, future risk sharing and thus participation

becomes more attractive when risk aversion rises. For γ = 7.5, when σ = 0.20 or larger,

the young are even prepared to make a transfer that is larger than under the optimum

without the participation constraint, i.e. r∗,max > r∗,opt. In this case, the participation

constraint is not binding at the unconstrained optimum and, hence, the constrained

optimum coincides with the unconstrained optimum, i.e. r∗,pc = r∗,opt > r∗,min. For
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γ = 3 the pension fund is viable for σ = 0.25 and for γ = 5 it is viable for σ = 0.20,

although in these cases it produces less risk sharing than under the unconstrained

optimum. In this case, r∗,pc = r∗,max < r∗,opt.4

In Table 4.1 we also vary the size of the pension contribution. If θ = 20, then for

two risk aversion – volatility combinations, (γ = 3, σ = 0.25) and (γ = 7.5, σ = 0.15),

the participation constraint now prohibits any risk sharing, while it did not do so before

when θ = 10. We also see that whenever there is voluntary participation under θ = 20,

the values for r∗,max and r∗,pc have dropped relative to the corresponding ones under

θ = 10, hence the scope for risk sharing has become smaller. The intuition for this

is the following. With a transfer by the current young of the format (r∗ − rt) θ, an

increase in θ implies a larger transfer for given rt < r∗ and, hence, to avoid violation

of the participation constraint for given future transfers, r∗,max needs to fall. However,

this reduces the number of states in the future for which the current young will receive

a transfer back and, hence, the insurance value of the pension falls. For some parameter

combinations under consideration the insurance value falls so much that participation

by the young is no longer beneficial to them. A reduction in θ from θ = 10 to θ = 5

yields the opposite effects and the scope for risk sharing increases.

The degree to which the participation constraint is binding is reflected in the welfare

gain associated with participation. If voluntary participation is not optimal then,

obviously, there can be no welfare gain, while once participation has become beneficial,

further increases in risk aversion and the variability of the returns raise the welfare

gains from participation. The welfare gain of the initial old is always higher than

that of all subsequent generations, because they reap the benefits from the potential

transfer, without ever having to pay a transfer themselves.

We also vary the discount factor. A higher discount factor corresponds to a lower

time preference rate, implying that future events become relatively more important.

Hence, voluntary participation becomes more attractive to the young. After all, any

benefit of participation in the form of a transfer only materialises in the future. This

4We have also done a more elaborate numerical analysis in which we varied σ by small steps of
0.02 and extended the range beyond the one reported in the Table 4.1. In all instances the results
were qualitatively identical to those reported here, while for volatilities larger than 0.3 we always find
that r∗,pc and r∗,opt are equal. These results are available upon request.
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is borne out by the results in Table 4.2, in which we vary the discount factor and, for

convenience, repeat the middle panel with β = 0.5. Discount factors of β = 0.3 and

β = 0.7 correspond to annual time preference rates of roughly 4% and 1%, respectively.

In all instances in which the participation constraint is binding, we see that a higher

discount factor raises r∗,pc and r∗,max. The qualitative effects of an increase in risk

aversion or in the standard deviation of the portfolio return that we described earlier

are confirmed for different values of the discount factor β.

So far, the benchmark level of riskiness of the pension and individual investment

portfolios was based on the implicit assumption of a 100% stake in equity. We will now

make the implicit assumption that both the individual and the pension portfolio are

invested half in equity and half in a risk-free asset. This implies that both the standard

deviation and expected value of the overall portfolio return fall. The reason why we

consider this case is that pension funds often invest in a mixture of risk-free assets

and risk-bearing assets (mostly equity) and that we want to see what is the scope for

risk sharing under voluntary participation in this case. The 50-50 division between

the two categories is quite realistic for pension funds in the Netherlands. Obviously,

the optimal individual savings rate in our model takes account of the new situation.

Following Campbell et al. (2003), we calibrate the risk-free rate at 2.1% per year (see

Appendix). Table 4.3 reports the numerical outcomes, where r∗,opt, r∗,max and r∗,pc all

refer to returns on the total portfolio. For relatively low aversion (γ = 3), participation

under the constraint is only attractive when the volatility of the equity returns is at

its highest value σ = 0.3. Again, for higher degrees of risk aversion participation can

be attractive at lower levels of volatility. Hence, for relatively high risk aversion and

medium and high equity volatility, the pension fund is still viable under voluntary

participation, although, not surprisingly, the welfare gains relative to autarky have

dropped due to the reduced risk-sharing benefits that the fund provides.
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4.6 Conclusion

In this chapter we have explored the feasibility and welfare consequences of a funded

pension system with voluntary participation and intergenerational risk sharing. Our

numerical results showed that the ex-post option to not participate obviates the exis-

tence of such a system when both risk aversion and financial market uncertainty are

relatively low. Under those circumstances mandatory participation in the system is

needed to reap the benefits of intergenerational risk sharing. Increases in these param-

eters raise the benefits from risk sharing and make the existence of an equilibrium with

voluntary participation more likely. For intermediate values of these parameters, risk

sharing would still be less than under the optimal arrangement with obligatory par-

ticipation. However, raising risk-aversion and volatility further, the optimal solutions

under voluntary and obligatory participation coincide.

Many countries that are currently trying to expand the funded pillar of their pen-

sion system need to decide on its design. In particular, will it be a defined-contribution

system or will it contain certain defined-benefit elements that allow for intergenera-

tional risk sharing? In the latter case, the question whether participation is obliga-

tory becomes important. Giving individuals too much freedom in deciding whether to

participate or not may lead to a breakdown of the system and, hence, to a loss of the

risk-sharing benefits. The Dutch funded pillar has long and successfully operated under

mandatory participation by the employees and employers and by collectively sharing

risks among all the fund participants. However, the recent shrinkage of the pension

buffers has undermined the confidence in the system, especially among the younger

participants. Once large groups start losing their confidence in the system, the pres-

sure to abolish mandatory fund participation will intensify. To prevent a collapse of

the system and a loss of the benefits from intergenerational risk sharing, it is important

that its planned overhaul leaves young participants with sufficient guarantee that they

will also receive a benefit when they are old.
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APPENDICES

4.A Details on first-order condition pension fund

without participation constraint

The first-order condition is given by

∂V

∂r∗
= E0

[
∂u (c1,0)

∂r∗

]
+

1

1− β
E0

[
∂Up

∂r∗

]
= 0,

where, using Leibniz’ integral rule,

E0

[
∂u (c1,0)

∂r∗

]
= p (r∗)u [(1 + r∗) (sp0 + θ)]− p (r∗)u [(1 + r∗) (sp0 + θ)]

+

∫ r∗

−1

p (r)u′ [(1 + r) sp0 + (1 + r∗) θ] θdr

=

∫ r∗

−1

p (r)u′ [(1 + r) sp0 + (1 + r∗) θ] θdr,

and

E0

[
∂Up

∂r∗

]
= −

∫ r∗

−1

p (r)u′ [w − sp − θ − (r∗ − r) θ]
(
∂sp

∂r∗
+ θ

)
dr

−
∫ ∞
r∗

p (r)u′ [w − sp − θ] ∂s
p

∂r∗
dr

+ β

∫ r∗

−1

p (r)u′ [(1 + r) sp + (1 + r∗) θ]

[
(1 + r)

∂sp

∂r∗
+ θ

]
dr

+ β

∫ ∞
r∗

p (r)u′ [(1 + r) (sp + θ)] (1 + r)
∂sp

∂r∗
dr.

4.B Details on U p (r, r̃′ = r)

4.B.1 Up (r∗, r̃′ = r∗) approaches Ua from below as r ↑ r∗

Recall that Up (r, r̃′ = r) = Ua. Since ∆(r) was defined as Up (r, r̃′ = r) − Ua, all we

need to show is that ∆p approaches 0 from below. Differentiating ∆p(r), with respect



Voluntary Participation and Intergenerational Risk Sharing 109

to r, and using Leibniz’ integral rule, we obtain:

d∆(r)

dr
= u′ [w − sp (r)− θ − (r∗ − r)θ]

(
θ − ∂sp (r)

∂r

)
+ βp(r)u [(1 + r) (sp(r) + θ)]

+ β

∫ r

−1

p (r′)u′ [(1 + r′) (sp(r) + θ)] (1 + r′)
∂sp(r)

∂r
dr′

− βp(r)u [(1 + r)sp(r) + (1 + r∗)θ]

+ β

∫ r∗

r

p (r′)u′ [(1 + r′) sp(r) + (1 + r∗)θ] (1 + r′)
∂sp(r)

∂r
dr′

+ β

∫ ∞
r∗

p (r′)u′ [(1 + r′) (sp(r) + θ)] (1 + r′)
∂sp (r)

∂r
dr′,

which we can write as:

d∆(r)

dr
= u′ [w − sp (r)− θ − (r∗ − r)θ]

(
θ − ∂sp(r)

∂r

)

+ β
∂sp(r)

∂r


∫ r
−1
p (r′)u′ [(1 + r′) (sp(r) + θ)] (1 + r′)dr′

+
∫ r∗
r
p (r′)u′ [(1 + r′) sp(r) + (1 + r∗)θ] (1 + r′)dr′

+
∫∞
r∗
p (r′)u′ [(1 + r′) (sp(r) + θ)] (1 + r′)dr′


+ βp(r) {u [(1 + r) (sp(r) + θ)]− u [(1 + r)sp(r) + (1 + r∗)θ]}

where the term between big curly brackets measures E[(1 + r′)u′
(
cpt+1,t

)
]. According

to the Euler equation (4.9) this equals u′
(
cpt,t
)
, so all terms involving ∂sp(r)

∂r
cancel out

and we are left with:

d∆(r)

dr
= u′ [w − sp (r)− θ − (r∗ − r)θ] θ

+ βp(r) {u [(1 + r) (sp(r) + θ)]− u [(1 + r)sp(r) + (1 + r∗)θ]} (4.18)

Evaluated in r = r∗ this equals:

d∆(r)

dr
= u′ [w − sp (r∗)− θ] θ > 0.
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4.B.2 Second-order derivative of Up (r, r̃′ = r)

The second-order derivative of Up (r, r̃′ = r) equals the second derivative of ∆(r) since

the difference is the constant Ua. Differentiating (4.18) once more gives:

d2∆

d2r
= u′′ [w − sp(r)− θ − (r∗ − r)θ] θ

(
θ − ∂sp(r)

∂r

)

+ βp(r)

 u′ [(1 + r) (sp(r) + θ)]
[
sp(r) + θ + (1 + r)∂s

p(r)
∂r

]
−u′ [(1 + r)sp(r) + (1 + r∗)θ]

[
sp(r) + (1 + r)∂s

p(r)
∂r

]


+ βp′ (r) {u [(1 + r) (sp (r) + θ)]− u [(1 + r) sp (r) + (1 + r∗) θ]} .

The first line is of ambiguous sign, since u′′ (·) is negative and θ and ∂sp (r) /∂r are

both positive (see below). The second line is positive or zero since p (r) ≥ 0 and since

u′ [(1 + r) (sp (r) + θ)] > u′ [(1 + r) sp (r) + (1 + r∗) θ], while the sign of the third line

is ambiguous, since we do not know the sign of p′ (r). This means that we can not

make any general statements about the shape of Up (r, r̃′ = r).

The sign of ∂sp (r) /∂r > 0

Define

EU(r, sp) ≡ u′ [w − sp − θ − (r∗ − r)θ]

− β


∫ r
−1
p (r′)u′ [(1 + r′) (sp + θ)] (1 + r′)dr′

+
∫ r∗
r
p (r′)u′ [(1 + r′) sp + (1 + r∗)θ] (1 + r′)dr′

+
∫∞
r∗
p (r′)u′ [(1 + r′) (sp + θ)] (1 + r′)dr′

 , (4.19)

so we can write the Euler equation as EU(r, sp) = 0. Implicit differentiation gives:

∂sp (r)

∂r
= − ∂EU/∂r

∂EU/∂sp
. (4.20)
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Working out, we have:

∂EU

∂r
= −u′′ [w − sp − θ − (r∗ − r) θ] θ

+ βp(r)(1 + r) {u′ [(1 + r) (sp + θ)]− u′ [(1 + r)sp + (1 + r∗)θ]} ,

The first line of this derivative is positive, since u′′ (·) is negative, while the second

line is greater than or equal to zero, because r ≤ r∗ on the relevant domain for ∆(r).

Further,

∂EU

∂sp
= u′′ [w − sp(r)− θ − (r∗ − r) θ] +

β


∫ r
−1
p (r′)u′′ [(1 + r′) (sp + θ)] (1 + r′)2 dr′

+
∫ r∗
r
p (r′)u′′ [(1 + r′) sp + (1 + r∗)θ] (1 + r′)2 dr′

+
∫∞
r∗
p (r′)u′′ [(1 + r′) (sp + θ)] (1 + r′)2 dr′

 < 0.

Both lines of this derivative are negative, since u′′ (.) is negative. Hence, by (4.20), we

have ∂sp (r) /∂r > 0.

4.C Calibration of the returns process

The portfolio returns follow a lognormal process and are independently and identically

distributed over time. A period in our model corresponds to one generation, which we

take here to span 30 years. We use the Campbell et al. (2003) estimates of annual

returns on stocks and bonds to construct corresponding 30-year figures. Their sample

period covers annual returns over the period 1890 - 1998. We assume the return on

T-bills to correspond to that on a risk-free investment. The average annual real return

on T-bills is 2.101%. Hence, this is the calibrated value for the risk-free rate of return

in our model. Campbell et al. (2003) calculate an average annual equity risk premium

of 6.797%. Hence, the average annual real equity return is 2.101% + 6.797% = 8.898%.

Further, it has a standard deviation of 18.192%. Hence, the variance σ2
30 of lognor-

mally distributed thirty-year equity returns is calculated as σ2
30 = 30 ln

(
1 + var(r)

[E(r)]2

)
=

30 ln
(

1 + 0.181922

1.088982

)
= 0.027525 ∗ 30 = 0.8258. The corresponding standard deviation
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is
√

0.825756 = 0.908711. Next, the mean return over a period of thirty years is cal-

culated as ln
{

[E (r)]30} − 1
2
σ2

30 = ln (12.9002) − 1
2
∗ 0.8258 = 2.1443. To conclude,

we calibrate the logarithm of the equity return to follow a normal process with mean

2.1443 and variance 0.8258 over a thirty-year period.


