The AMC Linear Disability Score (ALDS) : measuring disability in clinical studies
Weisscher, N.

Citation for published version (APA):
Weisscher, N. (2008). The AMC Linear Disability Score (ALDS) : measuring disability in clinical studies

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Chapter 9

General discussion
This thesis has examined aspects of measuring disability in clinical studies and more specifically the clinimetric properties of a new disability measure using an item response theory (IRT) based item bank. In this chapter the main findings will be briefly summarized and placed in a broader perspective of IRT. Special attention will be paid to the range of the disability continuum, the linearity of the AMC Linear Disability Score (ALDS) leading to a sensitive measurement of functional health. Furthermore issues of statistical power analysis, differential item functioning and (computer) adaptive testing will be discussed. The thesis concludes with some directions for future research.

Main findings

In Chapter 2 we examined the appropriateness of the disability concept in clinical efficacy studies. Subsequently, in Chapter 3, the ALDS was introduced and the psychometric properties of the items in a mixed population were presented. We concluded the ALDS item bank has promising measurement characteristics in this patient population, but further clinimetric studies in other populations are needed. The latter recommendation is not only important from a psychometric point of view, but also from the perspective of further implementing the ALDS in clinical research. Although measures constructed with modern psychometric methods theoretically are superior to traditional measures, it is essential to investigate this advantage and its implications in practice. Therefore, Chapters 4 to 6 focused on the measurement properties of the item bank in populations with rheumatoid arthritis, Parkinson’s disease and stroke. In addition, Chapter 7 examined the clinical meaning of dichotomizing an often used stroke outcome scale (reflecting ‘good’ versus ‘poor’ outcome), by calculating the patients’ average chance to perform certain ALDS items. Finally, if an item bank is to be used for various groups of patients, it is important to compare the metric behavior of the items in different groups of patients. In Chapter 8, we investigated the generic character of the ALDS item bank by comparing its measurement properties in subgroups of patients suffering from neurological diseases and diseases of internal medicine.

Floor & Ceiling effects

Most traditional instruments are either long and assess the whole disability continuum, or are short and assess only the lower end or the upper end of the continuum. There are also instruments which measure a wide range of the disability construct but these measures are less detailed. One goal of the ALDS project was to construct a detailed measure containing both basic activities of daily life as well as instrumental activities of daily life. As a result the item bank hardly showed a floor effect, however a small percentage patients reached the ceiling of the item bank. The most difficult item in the current item bank is ‘ride a bike for more than two hours’. To further reduce the ceiling effect we could also include an item like ‘running a mile’, but one can doubt if these types of items still belong to the disability continuum and are clinically useful. Another interpretation could be that patients who are able to ride a bike for over two hours report no disability at all, which implies it is not a ceiling effect of the ALDS item bank but the ‘ceiling’ of the disability construct. Even though the item bank showed no floor effect in our studies, one can imagine there are easier items than ‘put on and take off a T-shirt’, therefore the lower limit of the scale will be extended in further calibration stages.

Linearity

An advantage of constructing item banks using IRT models is the placement of the items on a common hierarchical difficulty measure with linear measurement properties. This, in combination with the possibility to span the entire range of the disability continuum, produces a sensitive outcome scale to measure subtle functional health differences between patients and within patients in time. It should be mentioned that the central part of the scale is very well filled, with a high density of items. Items at the lower and upper end are more sparsely distributed with large gaps between adjacent items (Figure). This means that it is possible to estimate the functional status of patients in the middle of the scale very accurately, but that at both extremities of the scale less accurate estimates of disability status will be obtained.

Figure. The 77 ALDS items on a hierarchical, linear scale.

<table>
<thead>
<tr>
<th>Difficult</th>
<th>Easy</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Carry a bag of shoppings upstairs</td>
<td>No disability</td>
</tr>
<tr>
<td>Travel by local bus or tram</td>
<td>90</td>
</tr>
<tr>
<td>Go to a restaurant</td>
<td>80</td>
</tr>
<tr>
<td>Go for a short walk</td>
<td>70</td>
</tr>
<tr>
<td>Pick something up from the floor</td>
<td>60</td>
</tr>
<tr>
<td>Get in and out of a car</td>
<td>50</td>
</tr>
<tr>
<td>Move between 2 dining chairs</td>
<td>40</td>
</tr>
<tr>
<td>Wash lower body</td>
<td>30</td>
</tr>
<tr>
<td>Put on and take off a T-shirt</td>
<td>20</td>
</tr>
<tr>
<td>Dead</td>
<td>10</td>
</tr>
</tbody>
</table>

The narrow lines each represent an item; it is possible to construct and calibrate new items to fill in the gaps.
Differential item functioning

A potential problem using item banks, including the ALDS, in outcome assessment is differential item functioning (DIF). When comparing outcomes of the ALDS between patient groups, item characteristics of the ALDS should be consistent across groups. DIF occurs when people from different groups (commonly gender or age) with the same ability have a different probability to carry out an activity. If DIF is ignored, inaccurate measurements are obtained and true differences between patient groups may be obscured and non-existent differences ‘created’.

Due to the generic nature of the ALDS item bank and consequently, its application in a broad range of disorders it is important to examine DIF carefully. For example, one might argue that indoor mobility activities might be relatively difficult for patients with primary motor impairment, and relatively easy for patients without motor impairment. The same hold true for differences between sex and age (e.g., household tasks). Although, DIF probably exist in all outcome measures, IRT, in contrast to the classical test theory, gives the statistical opportunity to test the presence of DIF, to evaluate the impact, and to model DIF.

In the current ALDS item bank 11 items with different measurement properties for men and women as well as older and younger respondents have been removed from the instrument. An alternative approach could have been to include these differences in the ALDS item bank by using gender and age dependent ‘weights’ or difficulty parameters for such items. For clarity, gender and age specific items were not preferred. In the latter part of this thesis we showed a new DIF analysis by contrasting patients suffering from (mainly) neurological diseases and patients with diseases of internal medicine. Eighteen of the 72 ALDS items had statistical significant DIF. Nevertheless, the DIF could
be accounted for so that DIF did not affect the disability estimates of both groups. Therefore, no adjustment in terms of removing items is required.

Although, our analysis across a wide range of diseases showed some DIF, the question remains how much DIF is acceptable? If we compare the estimated disability level between the two groups studied not accounting for DIF, small differences in the estimated disability level exist (a difference of 0.12 logit, which corresponds with less than two points on the 0 to 100 linear transformed ALDS scale). If we want to use the ALDS in epidemiologic studies explicitly focusing on comparison of diseases groups between medical specialties it may be advisable to model DIF using disease-specific item parameters to increase the measurement precision. Further, in Chapter 8 it can be seen that the direction of the differences of the item difficulty parameters of the two groups were evenly distributed. That is, some of the items are more difficult for one group and some of the items are more difficult for the other group. Further, the differences in the discrimination parameters were usually not significant. Therefore, the items for an outcome measure can be selected is such a way that the effects of DIF may cancel (this is in line with the approach chosen by many large-scale educational assessments). At present, in clinical research within patients groups, there is no need to modify the item parameters presented in this thesis as the relatively small DIF identified in these subgroups has no clinical significance.

Adaptive testing

On several occasions we have stressed that IRT is superior to classical test theory because it can eliminate test dependency and achieve more precise measurement through adaptive testing. Adaptive testing reduces test administration times and allows varied and precise estimates of ability, because each ‘test’ is tailored to the unique ability level of each respondent. If a respondent cannot walk one block, it is not essential to ask whether he or she can walk a mile. Instead, it is asked whether the respondent can walk across a room. The test burden of patients can thus be highly reduced. Additionally, pre-test, post-tests and follow-up tests no longer have to consist of the same items, challenging respondents at their ability level instead of having an annoying or discouraging effect. With adaptive algorithms, where every patient answers a different set of questions with different difficulty, pre-test, post-tests and follow-up tests no longer have to consist of the same items in order to obtain a measure that accurately estimates what would have been obtained had the entire item set been administered. This practical approach also gives physicians and nurses the opportunity to monitor their patient’s level of disability in their daily clinical practice.

Future research

At present data of approximately 6000 patients with a wide variety of diseases of 35 different clinical studies is available in the ALDS database. All studies are using three response options and many of those studies included additional (to be calibrated) items as well. In the coming calibration phase of the ALDS the lower limit of the scale will be extended and the item density around the extremities will be increased.

Furthermore, additional analyses will be performed using the graded response model to decide if scoring categorical response options gives a surplus value in terms of clinical information and score interpretation. Subsequently, using such a model, the floor and ceiling effects can be investigated in more detail. Although, the ALDS showed less of a ceiling effect compared to other often used disability scales in the described disorders, these results must be interpreted with caution. Floor and ceiling effects were demonstrated by presenting the percentage patients that reached a minimum or maximum score, which is a quite simple approach. An alternative and more sensitive approach could be, for example, the use of Shannon’s indices. These indices incorporate the frequency distribution across all categories of an instrument and not just the highest and lowest categories. In an item where a response option has a very high (or low) endorsement, e.g., more than 95% of the patients are able to carry out a certain activity, there is very little information being transmitted.11

Further implementation of the ALDS should proceed by comparing the clinimetric properties of the item bank with the most often used disability scales in peripheral vascular surgery patients, neuromuscular disorders and pulmonary diseases. Finally, new DIF analysis should also focus on cross-cultural differences by comparing the present ALDS language versions (Dutch, English, French, Italian, and Spanish), and by contrasting measurements on base of interview by doctors, nurses or paramedics on the one hand and patient self-reports on the other.

To conclude

This thesis showed promising results using the IRT based ALDS item bank in clinical research. The
challenge of the studies included in this thesis was bringing IRT and adaptive testing to the clinical setting. No matter how superior IRT is compared to the well-known classical test theory, it is important IRT does not become a ‘black box’ for clinicians, since they have to interpret the provided outcomes in clinical research and practice. The ALDS item bank will be improved further as new items are added from studies and assessments are fully (web based) computer adaptive. Combined with other merits of IRT based item banks it is expected that this technique gradually will suppress the very large number old classical constructed paper and pencil questionnaires.

References


(8) Holman R. How does item selection procedure affect power and sample size when using an item bank to measure health status? Quality of Life Newsletter. 2004:9-11.

