Adiabatic ground-state preparation of fermionic many-body systems from a two-body perspective

van Vreumingen, D.; Schoutens, K.

DOI
10.1103/PhysRevA.108.062603

Publication date
2023

Document Version
Final published version

Published in
Physical Review A. General Physics

Citation for published version (APA):
Adiabatic ground-state preparation of fermionic many-body systems from a two-body perspective

Dyon van Vreumingen* and Kareljan Schoutens

Institute for Theoretical Physics, Universiteit van Amsterdam, The Netherlands
and QuSoft, Centrum Wiskunde en Informatica, The Netherlands

(Received 18 July 2023; revised 19 October 2023; accepted 13 November 2023; published 4 December 2023)

A well-known method for preparing ground states of fermionic many-body Hamiltonians is adiabatic state preparation, in which an easy-to-prepare state is time-evolved towards an approximate ground state under a specific time-dependent Hamiltonian. However, which path to take in the evolution is often unclear, and a direct linear interpolation, which is the most common method, may not be optimal. In this work, we explore other types of adiabatic paths based on the spectral decomposition of the two-body projection of the residual Hamiltonian (the difference between the final and initial Hamiltonian). The decomposition defines a set of Hamiltonian terms which may be adiabatically interpolated in a piecewise or combined fashion. We demonstrate the usefulness of partially piecewise interpolation through examples involving Fermi-Hubbard models where, due to symmetries, level crossings occur in direct (fully combined) interpolation. We show that this specific deviation from a direct path appropriately breaks the relevant symmetries, thus avoiding level crossings and enabling an adiabatic passage. On the other hand, we show that a fully piecewise scheme, which interpolates every Hamiltonian term separately, exhibits a worst-case complexity of $O(L^5/\Delta^3)$ as compared to $O(L^4/\Delta^3)$ for direct interpolation, in terms of the number of one-body modes L and the minimal gap Δ along the path. This suboptimality result suggests that only those terms which break necessary symmetries should be taken into account for piecewise interpolation, while the rest is treated with direct interpolation.

DOI: 10.1103/PhysRevA.108.062603

I. INTRODUCTION

Quantum computers are currently regarded as a prime candidate for solving problems in condensed matter physics and chemistry that are untractable for classical computers. In particular, since Feynman’s observation of the potential of quantum simulation [1], the pioneering work by Lloyd [2], and the invention of quantum phase estimation [3], interest in the deployment of quantum computers as simulators of highly correlated quantum systems has exploded. A large body of work has been established describing techniques for simulating dynamics of many-body systems on a quantum computer [4–9], and these may be combined with quantum phase estimation in order to estimate eigenenergies [10]. A critical question, however, to make these methods useful, is how to prepare the states of interest—be it thermal states or eigenstates of the system under investigation—that serve as input to the algorithms that simulate dynamics or compute energies. Although experimental efforts using heuristics such as variational quantum eigensolvers [11–14] have shown great success in preparing such states for systems of fixed size, much remains unknown with regards to “solving” highly correlated systems in general.

A well-known method for preparing approximate ground states of complex systems is adiabatic state preparation, which uses the adiabatic theorem to carry out quantum computation. While originally formulated as a tool to approximate quantum dynamics on large time scales with respect to the inverse energy gap, the adiabatic theorem was reintroduced to attack combinatorial problems [15] and to study many-body systems such as Fermi-Hubbard models [16,17] and molecules [18–21].

The idea of adiabatic state preparation (ASP) is to prepare an eigenstate $|\psi^f\rangle$ of a “final” Hamiltonian H^f, starting with an eigenstate $|\psi^i\rangle$ of an “initial” Hamiltonian H^i which is straightforward to prepare. Given this initial state, one time-evolves the state according to the time-rescaled Schrödinger equation,

$$i\frac{d}{ds}|\psi(s)\rangle = T H(s)|\psi(s)\rangle,$$

where $s = t/T$ is a dimensionless time, and T is the total (physical) evolution time. (We work in units such that $\hbar = 1$.) The evolution is carried out under a time-dependent Hamiltonian $H(s)$ which equals H^i at $s = 0$ and H^f at $s = 1$. After an evolution with time s, one obtains a state $|\psi^f(s)\rangle = U^T(s)|\psi(0)\rangle$, where $|\psi(0)\rangle \equiv |\psi^i\rangle$ and $U^T(s)$ solves Eq. (1). By what is known as the adiabatic theorem, the state at the end of this evolution, $|\psi^f(1)\rangle$, will be close to the final eigenstate $|\psi^f\rangle$ if T is sufficiently large. One variant of this adiabatic theorem which precisely indicates what “close” and “sufficiently large” mean in this context is due to Jansen et al. [22]. The statement is that if $H(s)$ is a Hamiltonian defined on the interval $[0,1]$ which for every $s \in [0,1]$ has an instantaneous eigenstate $|\psi(s)\rangle$ whose energy is separated from the rest of the spectrum by $\Delta(s) > 0$, then for any $s \in [0,1]$, the condition

$$T \geq \delta^{-1/2}\left(\int_0^s \left[\frac{\|\partial_s^2 H(\sigma)\|}{\Delta^2(\sigma)} + \frac{\|\partial_s H(\sigma)\|^2}{\Delta^3(\sigma)}\right]d\sigma + B\right),$$

is satisfied, where δ is the inverse energy gap, B is a constant, and $\|\cdot\|$ is a matrix norm.
where $\| \cdot \|$ denotes the operator norm and B is a boundary term that may be set to zero if $H(0) = H(1) = 0$, is sufficient to guarantee that
\begin{equation}
|\langle \psi(s) | \psi^T(s) \rangle | \geq 1 - \delta, \tag{3}
\end{equation}
provided that $|\psi^T(0)\rangle = |\psi(0)\rangle$. Throughout the rest of this paper, we will consider the case where $|\psi(s)\rangle$ is the ground state of $H(s)$.

In principle, any adiabatic evolution may be implemented on a gate-based quantum computer through Trotter-Suzuki [23,24] or more sophisticated time-dependent Hamiltonian simulation methods [25–27]. Alternative approaches approximate the evolution through a series of measurements [28,29] or simulations thereof [30,31].

The most commonly used interpolation method in adiabatic state preparation is a direct linear interpolation between H^t and H^f [32], which is to say that
\begin{equation}
H(s) = H^i + s(H^f - H^i). \tag{4}
\end{equation}
However, this method is rather restrictive as the evolution is controlled by only a single parameter, s. Thus, the evolution is sensitive to gap closures along the path, which cannot be avoided. An obvious solution is to increase the number of control parameters in the passage from H^i to H^f. This approach is discussed by Tomka et al. [33], who show that evolving along a geodesic path, based on the quantum metric tensor (or Fubini-Study metric) with respect to the control parameters, maximizes the local fidelity along the path. In addition, they show that an increase in the number of control parameters leads to higher final fidelities. Put simply, their results rely on the fact that geodesic paths “walk around” regions of parameter space associated with small energy gaps, thus minimizing diabatic errors. A similar category of methods to avoid problematic regions in adiabatic state preparation is known as counteradiabatic driving, where an additional Hamiltonian term is added during the evolution which actively suppresses diabatic errors and is set to zero at the end [34–36].

The problem with these approaches, however, is that their implementation becomes infeasible for large, complex systems. For counteradiabatic driving to work, the eigenstates and spectrum of the Hamiltonian must be known along the path, which is something we cannot expect to achieve in such settings. For the geodesic approach, the main roadblock is the inability to solve the geodesic equations, which become inaccessible as systems of differential equations already for small many-body problems.

In this work, we introduce a more hands-on approach to produce different types of adiabatic paths for generic fermionic many-body Hamiltonians in a second quantized representation. Section II gives a brief description of such systems. The adiabatic paths are based on a decomposition of the coefficient tensor of such Hamiltonians (Sec. III), which defines a set of control parameters that govern the adiabatic evolution. We emphasize that such adiabatic paths can be seen as a different view on adiabatic state preparation for fermionic systems by considering many-body Hamiltonians in terms of their two-body eigenstates. We demonstrate, through a set of worked examples (Sec. IV), that there exist scenarios in which direct interpolation suffers from level crossings caused by (discrete) symmetries, and how the two-body decomposition may be used to explicitly break symmetries and lift crossings almost surely without making any other assumptions or choices in the design of the interpolation path. In Sec. V, we show how a description of these two-body eigenstates as superpositions of fermion pairs, following a suitable one-body transformation, leads to a worst-case adiabatic complexity in terms of the number of one-body modes L and a minimum gap Δ (Sec. V). The implications of this analysis are discussed for different systems. We summarize and conclude in Sec. VI.

II. MANY-BODY HAMILTONIANS

Of interest in this work are generic fermionic, interacting, particle-conserving many-body Hamiltonians, expressed in a second-quantized representation as
\begin{equation}
H = \sum_{P,Q=1}^L h_{PQ} a_P^\dagger a_Q + \frac{1}{2} \sum_{P,Q,R,S=1}^L g_{PQRS} a_P^\dagger a_R^\dagger a_S a_Q, \tag{5}
\end{equation}
where P, Q, R, S index general single-particle modes (which may include a spin index, in which case the modes are known as spin orbitals). Furthermore, the coefficients h_{PQ} and g_{PQRS} describe the one- and two-body terms, respectively, and the fermionic creation (annihilation) operators a_P^\dagger (a_P) satisfy the canonical anticommutation relations,
\begin{align}
\{a_P, a_Q\} &= \{a_P^\dagger, a_Q\} = 0, \\
\{a_P^\dagger, a_Q\} &= \delta_{PQ}. \tag{6}
\end{align}
Depending on context, we will sometimes split a single-particle mode into a spatial and a spin component, writing lowercase p, q, r, s for the spatial and $\sigma, \nu, \tau, \varphi$ for the spin component.

Such Hamiltonians are the central object of study in chemistry and condensed matter theory. In chemistry, the starting point for describing molecules is typically the electronic structure Hamiltonian in the nonrelativistic Born-Oppenheimer approximation, given in first quantization by
\begin{equation}
\hat{H} = E_{\text{nuc}} - \sum_i^N \frac{1}{2h} |\mathbf{r}_j - \mathbf{r}_i| + \frac{1}{2} \sum_i \nabla_i^2 + \frac{1}{2} \sum_{ij} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}, \tag{7}
\end{equation}
where the uppercase indices run over all nuclei and the lowercase indices label the electrons. E_{nuc} is a nuclear energy constant which may be set to zero for practical purposes. When we project the Hilbert space onto a fixed basis set $\{ |\psi_{pq}\rangle \}$ consisting of single-particle modes (which may be assumed to be real, following common practice), the projected electronic structure Hamiltonian assumes the form of Eq. (5) with
\begin{align}
h_{pq|qr|\varphi\psi} &= h_{pq} \delta_{q\varphi} \delta_{r\psi}, \\
\delta_{pqr} &= g_{pqrs} \delta_{q\sigma} \delta_{r\nu} \delta_{s\tau} \delta_{t\varphi}, \tag{8}
\end{align}
\begin{equation}
h_{pq} = \int d\mathbf{r}_1 \psi_p(\mathbf{r}_1) \hat{h} \psi_q(\mathbf{r}_1), \tag{9}
\end{equation}
\begin{equation}
g_{pqrs} = \int d\mathbf{r}_1 d\mathbf{r}_2 \psi_p(\mathbf{r}_1) \psi_q(\mathbf{r}_1) \hat{g} \psi_r(\mathbf{r}_2) \psi_s(\mathbf{r}_2). \tag{10}
\end{equation}
From these expressions we may draw the symmetry conditions

\[h_{pq} = h_{qp} \]

\[g_{pqrs} = g_{rpsq} = g_{prsq} = g_{pqrs}, \]

which we shall assume are satisfied for all Hamiltonians considered in this paper. Note that the Hermiticity of the Hamiltonian is guaranteed by the use of real-valued single-particle modes.

The electronic structure Hamiltonian may be simplified by restricting the electrons to orbitals localized at sites arranged on a lattice, and neglecting any Coulomb interaction between different sites. Taking one orbital per site, one arrives at the single-band Fermi-Hubbard (FH) Hamiltonian,

\[H = \sum_{(p,q),\sigma} (a^\dagger_{pq} a_{q\sigma} + a_{p\sigma} a^\dagger_{q\sigma}) + U \sum_p n_{p\uparrow} n_{p\downarrow} + \mu \sum_{p\sigma} n_{p\sigma}, \]

where \(j \) is the hopping strength between two neighboring sites, \(U \) is the on-site Coulomb interaction, and \(\mu \) is a chemical potential strength. The Fermi-Hubbard model may be written in the form of Eq. (5) with coefficients as in Eq. (8) through the identification

\[g_{pqrs} = U \delta_{pq} \delta_{rs} \delta_{pr}, \]

which are readily seen to exhibit the symmetries of Eqs. (11) and (12). In Sec. IV, we study a generalization of the one-dimensional FH Hamiltonian into the two-body terms, by inserting the identity as

\[\sum_{p<q} g_{pqrs} a^\dagger_{pr} a_{qs} a^\dagger_{ps} a_{qr}, \]

from these expressions we may draw the symmetry conditions

\[h_{pq} = h_{qp} \]

\[g_{pqrs} = g_{rpsq} = g_{prsq} = g_{pqrs}, \]

which we shall assume are satisfied for all Hamiltonians considered in this paper. Note that the Hermiticity of the Hamiltonian is guaranteed by the use of real-valued single-particle modes.

The electronic structure Hamiltonian may be simplified by restricting the electrons to orbitals localized at sites arranged on a lattice, and neglecting any Coulomb interaction between different sites. Taking one orbital per site, one arrives at the single-band Fermi-Hubbard (FH) Hamiltonian,

\[H = \sum_{(p,q),\sigma} (a^\dagger_{pq} a_{q\sigma} + a_{p\sigma} a^\dagger_{q\sigma}) + U \sum_p n_{p\uparrow} n_{p\downarrow} + \mu \sum_{p\sigma} n_{p\sigma}, \]

where \(j \) is the hopping strength between two neighboring sites, \(U \) is the on-site Coulomb interaction, and \(\mu \) is a chemical potential strength. The Fermi-Hubbard model may be written in the form of Eq. (5) with coefficients as in Eq. (8) through the identification

\[g_{pqrs} = U \delta_{pq} \delta_{rs} \delta_{pr}, \]

which are readily seen to exhibit the symmetries of Eqs. (11) and (12). In Sec. IV, we study a generalization of the one-dimensional FH Hamiltonian that allows for spin-dependent hopping strengths, i.e., \(h_{(p,q)\sigma\nu} = h_{pq}^\sigma \delta_{\sigma\nu} \).

Throughout the rest of this paper, we will work with a fixed particle number (denoted \(N \)) for each Hamiltonian. In a sector of fixed \(N \), we can absorb the one-body terms of any Hamiltonian of the form in Eq. (5) into the two-body terms, by inserting the identity as

\[a^\dagger_{p\sigma} a_{Q\sigma} = \frac{1}{N-1} \sum_R a^\dagger_{p\sigma} a^\dagger_{R\sigma} a_{Q\sigma}, \]

and when we define

\[w_{PQRS} := h_{pqrs} + \frac{h_{pq}}{N-1}, \]

then we may write the one-body operator as

\[\sum_{pq} h_{pq} a^\dagger_{p\sigma} a_{Q\sigma} = \frac{1}{2} \sum_{PQRS} w_{PQRS} a^\dagger_{P\sigma} a_{Q\sigma} a^\dagger_{Q\sigma} a_{P\sigma}. \]

Now define the combined one-body and two-body interaction tensor

\[G_{PQRS} := \frac{1}{2} (w_{PQRS} + g_{PQRS}) \]

and observe that

\[H = \sum_{PQRS} G_{PQRS} a^\dagger_{P\sigma} a_{Q\sigma} a^\dagger_{Q\sigma} a_{P\sigma}; \]

the one- and two-electron terms have now been combined into a single term. We shall refer to \(G \) as the interaction tensor of \(H \). Lastly, it will be convenient to express \(H \) as a sum over only the unique pairs \((P, R) \) and \((Q, S) \): by invoking the fermionic anticommutation relations, we may write

\[H = \sum_{P<R \atop Q<S} G_{PQRS} a^\dagger_{P\sigma} a_{Q\sigma} a^\dagger_{Q\sigma} a_{P\sigma}, \]

with \(G_{PQRS} := g_{PQRS} - G_{PSRQ} - G_{RQPS} + G_{RPSQ} = 2 \). This tensor shall be termed the antisymmetrized interaction tensor of \(H \).

Naturally, if the initial Hamiltonian \(H^i \) contains all one-body terms, then there is no need to explicitly include them in the two-body terms of the residual Hamiltonian \(H^r \) as described above. In Sec. IV we will see an example of this where \(H^i \) takes the form of a mean-field (also known as Hartree-Fock) approximation.

III. ADIABATIC STATE PREPARATION BY TWO-BODY EIGENDECOMPOSITION

In this work, we deviate from the direct interpolation approach [Eq. (4)] by decomposing the residual Hamiltonian \(H^r = H^i - H^i \) into a sum of terms \(H^r_k, k \in \{1, \ldots, M\} \), and evolving a linear combination of the terms \(H^r_k \). That is,

\[H(s) = H^i + \sum_{k=1}^{M} \gamma_k(s) H^r_k. \]

The decomposition defines an \(M \)-dimensional parameter space in which we consider paths \(\gamma(s) \) restricted to a hypercube, starting from \(\gamma(0) = [0, 0, \ldots, 0] \) and ending at \(\gamma(1) = [1, 1, \ldots, 1] \). We define the residual terms \(H^r_k \) through a decomposition of the antisymmetrized interaction tensor of \(H^i \). This is akin to known low-rank factorization methods of the two-body part of the interaction tensor, aimed at achieving improved memory efficiency and speed-ups in quantum simulation implementations [9,37]. Whereas most of these works focus on the Cholesky decomposition of the interaction tensor [38–40], we use an eigendecomposition. More precisely, we regard the antisymmetrized interaction tensor \(G \) as an \(L(L-1)/2 \times L(L-1)/2 \) matrix \(F \), by combining the indices \((PR) \) and \((QS) \):

\[F_{(PR)\{QS\}} := G_{PQRS}. \]

We point out that \(F \) represents a two-particle Hamiltonian, since in the two-particle sector, the operator string \(a^\dagger_{P\sigma} a_{Q\sigma} a^\dagger_{Q\sigma} a_{P\sigma} \) is equivalent to the outer product \(|PR\rangle\langle QS| \). For this reason, we refer to \(F \) as the two-particle matrix. Note, however, that the noninteracting part of \(F \) is scaled by a factor \(1/(N-1) \) with respect to that of \(H^r \), which arises from the insertion of identity [Eq. (15)].

Now, since \(F \) is symmetric with respect to the exchange \((PR) \leftrightarrow (QS) \) [following from the symmetry conditions of Eqs. (11) and (12)], we may eigendecompose \(F \) into (normalized) orthogonal eigenvectors,

\[F_{(PR)\{QS\}} = \sum_k \gamma_k \phi_k^{(PR)} \phi_k^{(QS)}, \]
and define
\[H_k^\text{f} := \lambda_k \left(\sum_{P<R} \phi_k^{(PR)} a_P^\dagger a_R \right) \left(\sum_{Q<S} \phi_k^{(QS)} a_S a_Q \right) := \lambda_k \Phi_k. \] (24)

In the following, we will refer to \(\lambda_k \) as the two-body eigenvalues, the states \(|\phi_k\rangle = \sum_{P<R} \phi_k^{(PR)} a_P^\dagger a_R |\text{vac}\rangle \) as the two-body eigenstates, and the operators \(\Phi_k \) as the pseudoprojectors of \(F \).

IV. LIFTING CROSSINGS BY SYMMETRY BREAKING IN FERMI-HUBBARD MODELS

We will now illustrate how our method applies to cases where a discrete symmetry in the Hamiltonian is influential on the course of the adiabatic evolution. In particular, we consider the situation in which the initial Hamiltonian and the final Hamiltonian share such a symmetry. In such a case, if the ground states of the initial and final Hamiltonian belong to different symmetry sectors, then necessarily at some point the energy levels cross and an excited state is obtained at the end of the adiabatic evolution. This is a known problem that was addressed in the work by Farhi et al. [15] and also plays a role in many-body contexts [41]. We note that, by the Von Neumann–Wigner theorem, the probability that a gap closure is encountered in a continuous set of Hamiltonians parametrized by a single parameter is extremely low unless the set conserves a symmetry [42,43]. As such, the only source of degeneracies we expect in practical settings is a symmetry in the problem instance. Typically, the solution is to add a symmetry-breaking field to the interpolation Hamiltonian which is set to zero in the end. In this section, we show how symmetry-breaking behavior emerges naturally from the formalism of the two-body eigendecomposition.

To see where this symmetry breaking comes from, it is important to note the following fact: if and only if a two-particle eigenstate \(|\phi\rangle = \sum_{P<R} \phi_{PR} a_P^\dagger a_R |\text{vac}\rangle \) is also an eigenstate of some unitary symmetry operator \(U \) (with some eigenvalue \(\mu \)), which is expressible as a product of one-body rotations, then the corresponding two-body operator \(\Phi \) commutes with \(U \). The “only if” direction is trivial (since \(|\phi\rangle \) is an eigenstate of \(\Phi \)); for the “if” direction, observe that
\[
\mu |\phi\rangle = U \left(\sum_{P<R} \phi_{PR} a_P^\dagger a_R |\text{vac}\rangle \right) = \sum_{P<R} \phi_{PR} U a_P^\dagger U^\dagger U^\dagger a_R |\text{vac}\rangle = \sum_{P<R} \phi_{PR} U_{PM} U_{RM}^\dagger \left(\sum_{N} U_{RN} a_N^\dagger \right) |\text{vac}\rangle.
\]

So that indeed \([\Phi, U] = 0 \). This has the following implication: if all two-body eigenvalues \(\lambda_k \) are distinct, then all two-particle states \(|\phi_k\rangle \), being eigenstates of the residual Hamiltonian \(H^\text{f} \), are also eigenstates of the symmetry operator \(U \), and thus all Hamiltonian terms \(H_k^\text{f} \) commute with \(U \). In such a case, no symmetry is broken. However, if the two two-body eigenstates with different symmetry are degenerate, then these two-body eigenstates may be mixed to produce new Hamiltonian terms which do not commute with \(U \) and therefore break the symmetry. Note that for any discrete symmetry, only a finite number of mixings produce two-body eigenstates that respect the symmetry, and thus keep the symmetry of the interpolating Hamiltonian intact; as such, one may simply pick a Haar random mixing to ensure that the symmetry of the interpolating Hamiltonian is broken with unit probability.

With these considerations in mind, we will focus on the following class of systems: (i) the initial and final Hamiltonian share a (discrete) symmetry; (ii) the ground states of the initial and final Hamiltonian belong to different symmetry sectors; and (iii) the resulting residual Hamiltonian has at least two degenerate two-body eigenstates in different symmetry sectors. For this class of systems, the two-body eigendecomposition method provides an out-of-the-box strategy for breaking the symmetry and opening up a gap along the path, without making any arbitrary choices regarding the symmetry-breaking field (apart from the choice of the two-body mixing, which can be randomized). We emphasize that in particular the third condition may be checked in a time scaling at most quadratically in \(L \) (the number of one-body modes).

We demonstrate this idea with two simple examples belonging to the class defined above. We will show that, taking a mean-field (Hartree-Fock) approximation as the initial Hamiltonian, all three conditions are satisfied. In such a situation, straightforward adiabatic following of the Hartree-Fock state cannot avoid a crossing into an excited state. A multistep adiabatic procedure, along the lines presented in this paper, will avoid the crossing altogether and allow a convergence on the true ground state.

A. Fermi-Hubbard trimer

First, consider the following two-particle, three-site Fermi-Hubbard model:

\[
H = U \begin{pmatrix} 1 & j_1 & j_3 \\ j_1 & 1 & j_2 \\ j_3 & j_2 & 1 \end{pmatrix} U^{\dagger}.
\]

\[
= \sum_{\sigma} j_{1\sigma} a_{1\sigma}^\dagger a_{2\sigma} + j_{2\sigma} a_{2\sigma}^\dagger a_{3\sigma} + j_{3\sigma} a_{3\sigma}^\dagger a_{1\sigma} + H.c.
\]

\[
+ U (n_{1\uparrow} n_{1\downarrow} + n_{3\uparrow} n_{3\downarrow}),
\]

where \(n_{\sigma} = a_{\sigma}^\dagger a_{\sigma} \); \(j_1 \), \(j_2 \), \(j_3 \) and \(U \leq 0 \) are real constants; and we set \(j_1 = j_3 = -j_2 \). The discrete symmetry we will keep track of is the reflection of sites \(1 \leftrightarrow 3 \). We assume \(j > 0 \) throughout.
1. The case $U = 0$

Let us first consider $U = 0$. For $j_{13} = j$, the one-body kinetic energy terms for spin up have two degenerate ground states, at energy $E_{\text{kin}} = -j$. For $j_{13} < j$ the unique ground state is symmetric (S), while for $j_{13} > j$ the ground state is antisymmetric (A). This makes clear that the ground state for one spin-up and one spin-down particle is symmetric for $j_{13} < j$ but antisymmetric for $j_{13} > j$. Turning on $U < 0$ will shift the S-A crossing to lower values of j_{13}. The Hartree-Fock mean-field solution follows this trend, but we will see that there are values of j_{13} where Hartree-Fock places the ground state in the wrong symmetry sector.

2. The case $U < 0$: Tracing the ground state of H

Turning on a negative U will change the nature of the two-body ground state.

For small $|U| \ll j$ and $j_{13} = j + \delta$ the energies of the symmetric (S) and antisymmetric (A) states split as (in first-order perturbation theory in U, δ)

$$E_S = -3j + U/9 - \delta/3, \quad E_A = -3j + U/3 - 5\delta/3,$$

implying that the S-A crossing (as a function of j_{13}) shifts to $j_{13} = j + U/6$, that is, to a smaller value of j_{13}.

For U large and negative, the two electrons will tend to form a local pair at site 1 or 3, with energy U. In second-order perturbation theory, taking into account processes with two hops (of strength j or j_{13}), connecting the pair states with unpaired states at energy 0, the on-site energies of these pairs are adjusted to

$$\epsilon_1 = \epsilon_3 = U + 2j^2/U + 2j_{13}^2/U,$$

while the pair hopping amplitude becomes

$$t_{13} = -2j_{13}^2/U.$$

This leads to S and A ground-state energies

$$E^{(2)}_S = U + 2j^2/U, \quad E^{(2)}_A = U + 2j^2/U + 4j_{13}^2/U.$$

Including terms of order j^4/U^3, $j^2j_{13}^2/U^3$, and j_{13}^4/U^3, we find

$$E^{(4)}_S = U + 2j^2/U + 8j^4/U^3 + 14j^2j_{13}^2/U^3 + O\left(\frac{(j^2 + j_{13}^2)^3}{U^3}\right),$$

$$E^{(4)}_A = U + 2j^2/U + 4j_{13}^2/U - 4j^4/U^3 + 2j^2j_{13}^2/U^3 - 16j_{13}^4/U^3 + O\left(\frac{(j^2 + j_{13}^2)^3}{U^3}\right).$$

This puts the S-A crossing (in an expansion in terms of j/U) at $j_{13} = \sqrt{3}j^2/U$.

3. The case $U < 0$: Hartree-Fock approximation

To write a mean-field (Hartree-Fock) ansatz, we should first decide on the symmetry sector. For an overall antisymmetric ansatz, we have

$$|\text{HF}, A\rangle = \frac{1}{\sqrt{2}}(a_{1\uparrow}^\dagger - a_{3\uparrow}^\dagger)\frac{1}{\sqrt{2 + x^2}}(a_{1\downarrow}^\dagger + xa_{2\downarrow}^\dagger + a_{3\downarrow}^\dagger)|\text{vac}\rangle.$$

The expectation value becomes

$$\langle H \rangle_{\text{HF}, A} = \frac{1}{2 + x^2}[4jx - 2j_{13} - (2 + x^2)j_{13} + U]$$

$$= \frac{1}{2 + x^2}\left([-U - 4j_{13}] + 4jx - j_{13}^2 \right).$$

This expression is minimized for (keeping the leading terms in an expansion in terms of $j/U, j_{13}/U$)

$$x = 4j/U \Rightarrow \langle H \rangle_{\text{HF}, A}^{\min} = \frac{U}{2} - 2j_{13} + 4j^2/U + O\left(\frac{(j + j_{13})^3}{U^2}\right).$$

The competing ansatz is symmetric in both the up and the down factors,

$$|\text{HF}, S\rangle = \frac{1}{\sqrt{2 + y^2}}(a_{1\uparrow}^\dagger + ya_{2\uparrow}^\dagger + a_{3\uparrow}^\dagger)\frac{1}{\sqrt{2 + x^2}}(a_{1\downarrow}^\dagger + xa_{2\downarrow}^\dagger + a_{3\downarrow}^\dagger)|\text{vac}\rangle,$$

leading to

$$\langle H \rangle_{\text{HF}, S} = \frac{1}{(2 + x^2)(2 + y^2)}[4jx(2 + y^2) + 4jy(2 + x^2)$$

$$- 2(2 + y^2)j_{13} + 2(2 + x^2)j_{13} + 2U]$$

$$= \frac{1}{(2 + x^2)(2 + y^2)}\left[8j(x + y) + 4j(x^2 + y^2)$$

$$+ 2(x^2 - y^2)j_{13} + 2U\right].$$

In leading order, the minimum energy is reached for

$$x = y = 4j/U \Rightarrow \langle H \rangle_{\text{HF}, S}^{\min} = \frac{U}{2} + 8j^2/U + O\left(\frac{j^4}{U^3}\right).$$

Comparing the expressions in the S and A sectors, we conclude that, in mean field and to leading order in j/U, the S-A crossing happens at $j_{13} = 2j^2/U$.

4. Adiabatic procedure

Suppose now that we consider the Fermi-Hubbard trimer with $j > 0, U < 0, |U| \gg j$, and $\sqrt{3}j^2/U < j_{13} < 2j^2/U$, and try to identify the ground state with a single spin-up and spin-down particle through adiabatic following. We have just demonstrated that in this situation, the Hartree-Fock (HF) solution is in the S sector, while the true ground state is in the A sector. This means that the adiabatic procedure will fail altogether and end up in a symmetric state, which is an excited state of H.

Let us now consider how the stepwise procedure works out in this example. The adiabatic procedure starts from the HF Hamiltonian, with mean-field parameters (called x, y in the
above) optimized for our choice of U, j and j_{13}. It is obtained from H by replacing
\[n_{i\uparrow} n_{i\downarrow} \rightarrow n_{i\uparrow} \langle n_{i\downarrow} \rangle + \langle n_{i\uparrow} \rangle n_{i\downarrow} - \langle n_{i\uparrow} \rangle \langle n_{i\downarrow} \rangle. \tag{40} \]

This implies that the exact two-body Hamiltonian $H^{(2)}$ differs from the two-body HF Hamiltonian via diagonal terms only, which directly correspond to the two-body eigenvalues λ_k of the stepwise adiabatic following from $H^{(2)}$ to $H_{HF}^{(2)}$. The system has two degenerate two-body ground states; the symmetry-adapted forms are
\[|\pm\rangle := \frac{1}{\sqrt{2}}(|1\uparrow 1\downarrow \pm |3\uparrow 3\downarrow\rangle) \tag{41} \]
and the corresponding eigenvalue is
\[\lambda = \frac{U}{2} + \frac{32 j^4}{U^3} + O\left(\frac{j^6}{U^5}\right). \tag{42} \]

As explained before, we can pick a Haar random mixing of these two two-body eigenstates to appropriately break the symmetry and allow an adiabatic passage, with unit probability. For concreteness, we pick the states $|1\uparrow 1\downarrow\rangle$ and $|3\uparrow 3\downarrow\rangle$, corresponding to the number operators at sites 1 and 3, respectively. We can then design the stepwise adiabatic procedure as follows. Defining
\begin{align*}
H_r^1 &= \lambda a^\dagger_{1\uparrow} a^\dagger_{1\downarrow} a_{1\downarrow} a_{1\uparrow} \\
H_r^3 &= \lambda a^\dagger_{3\uparrow} a^\dagger_{3\downarrow} a_{3\downarrow} a_{3\uparrow} \\
H_{\text{rest}} &= H - H_{HF} - H^1_r - H^3_r,
\end{align*}
we interpolate thus:
\begin{align*}
H_i \rightarrow H^i &+ H^i_r \\
&\rightarrow H^i + H^i_r + H_{\text{rest}} \\
&\rightarrow H^i + H^i_r + H_{\text{rest}} + H^3_r = H. \tag{44}
\end{align*}

With this, the discrete symmetry is broken along all steps of the path, and the S-A crossing, which derails the direct adiabatic interpolation from the HF to the exact Hamiltonian, is avoided. The resulting development of the instantaneous gap can be seen in Fig. 1. Through numerical solutions to the Schrödinger equation, we obtain final infidelities with the exact ground state for different sweep times, as seen in Fig. 2.

B. Fermi-Hubbard model on four sites with alternating hopping

As a second example, we present a variation on the same theme: a simple model for correlated electrons where a mean-field (Hartree-Fock) solution is unable to correctly incorporate two-body correlations and as a result puts the ground state in the wrong symmetry sector, derailing adiabatic interpolation with the HF state as the starting point. The stepwise adiabatic procedure based on two-body eigenspaces cures this situation.

We consider a Fermi-Hubbard model on four sites,
\begin{align*}
H &= \sum_{i} j_{\sigma}(a_{\sigma}^\dagger a_{i+1,\sigma} + \text{H.c.}) + U \sum_i n_{i\uparrow} n_{i\downarrow}, \tag{45}
\end{align*}

FIG. 2. Dependence of final infidelity after an adiabatic sweep on total sweep time T for the Fermi-Hubbard trimer, with $U = -5$, $j = 1$, and $j_{13} = 0.37$. Clearly, direct interpolation produces a state orthogonal to the ground state (namely, in the wrong symmetry sector) regardless of T. On the other hand, the stepwise procedure allows for asymptotic convergence onto the exact ground state.
with a uniform $U < 0$ but spin-dependent, nonuniform hoppings

$$j_{1\sigma} = j_{3\sigma} = j, \quad j_{2\uparrow} = j_{4\uparrow} = j + \delta, \quad j_{2\downarrow} = j_{4\downarrow} = j - \delta.$$

(46)

Note that we assume periodic boundary conditions, identifying site $i = 5$ with $i = 1$. We assume half filling, $N_\uparrow = N_\downarrow = 2$.

The Hamiltonian H is invariant under a reflection $1 \leftrightarrow 4$, $2 \leftrightarrow 3$. Assuming $j > 0$ and $0 < \delta < j$, it is quickly found that for $U = 0$ the spin-up particles have a symmetric (S) ground state, while the ground state for particles with spin down is antisymmetric (A). This means that, for $U < 0$, the stepwise adiabatic following similarly avoids this problem. It has four nonzero two-body eigenvalues λ_k connected to projectors on each of the sites. As in the three-site example, the two-body eigenstates corresponding to the number operators at these sites are symmetry-broken states. Adding one of these in the first step and the other three in the second step gives an adiabatic path that breaks the left-right symmetry and thereby avoids the crossing, allowing a correct interpolation from the antisymmetric HF state to the symmetric ground state of H. This can be seen in Fig. 3.

For a quick estimate of the crossover point from A to S, we can follow, in (degenerate) first-order perturbation theory in U and δ, in the lowest two energy eigenstates (here labeled by their symmetry A or S),

$$\langle H \rangle_A = -4j - 2\delta + U, \quad \langle H \rangle_S = -4j + \frac{5}{4}U,$$

(47)

putting the A-S crossover at $U_c = -8\delta$.

1. Tracing the exact ground state

Turning on $U < 0$ will change the nature of the ground state, as the particles will tend to form two local pairs. For $|U| \ll j$, there is an effective description in terms of two such pairs with induced pair hopping of order j^2/U. It is quickly checked that this leads to a symmetric (S) ground state. The symmetry sector of the many-body ground state will thus change from A to S at a critical value $U_c(j, \delta) < 0$.

For a quick estimate of the crossover point from A to S, we can follow, in (degenerate) first-order perturbation theory in U and δ, in the lowest two energy eigenstates (here labeled by their symmetry A or S),

$$\langle H \rangle_A = -4j - 2\delta + U, \quad \langle H \rangle_S = -4j + \frac{5}{4}U,$$

(47)

putting the A-S crossover at $U_c = -8\delta$.

2. Mean-field (Hartree-Fock) and adiabatic procedure

As in our previous example, a HF state is unable to accommodate the correlations induced by $U < 0$. In fact, since all four sites are on equal footing, self-consistent mean fields for both the up and down spins will be uniform on all four sites and will not affect the one-particle states that make up the HF ground state. The mean-field ground state will thus be the same as that of the noninteracting problem, and it will be antisymmetric (A). This means that, for $|U| > |U_c|$, direct adiabatic interpolation from the Hartree-Fock Hamiltonian H_{HF} (into which we absorb the uniform mean-field energy shift) to H will result in an excited state of H. The stepwise procedure based on two-particle eigenstates of $H_{HF} - H$ avoids this problem. It has four nonzero two-body eigenvalues λ_k connected to projectors on each of the sites. As in the three-site example, the two-body eigenstates corresponding to the number operators at these sites are symmetry-broken states. Adding one of these in the first step and the other three in the second step gives an adiabatic path that breaks the left-right symmetry and thereby avoids the crossing, allowing a correct interpolation from the antisymmetric HF state to the symmetric ground state of H. This can be seen in Fig. 3.

We numerically integrate the Schrödinger equation to obtain fidelity profiles for direct and stepwise interpolation for both parameter settings. As seen in Fig. 4, direct interpolation fails to produce a state with any overlap with the true ground states, while stepwise interpolation succeeds in doing so. In the same model with $U > 0$, the stepwise adiabatic following similarly avoids the problem of an exact A-S crossing, but in that case the gaps coming with the stepwise procedure are smaller and tend to decrease with δ. This is seen in Fig. 5. As with the trimer example, the fidelity profiles obtained from numerically solving the Schrödinger equation (Fig. 6) show failure of direct interpolation and success of the stepwise method.

V. COMPLEXITY CONSIDERATIONS

Having seen the potential of a (partially) piecewise interpolation to lift gap closures, we will now study more generally the worst-case complexity of direct and piecewise paths, in view of the adiabatic complexity bound of Eq. (2). For simplicity, we replace the gap $\Delta(s)$ with its minimum $\Delta = \min_{s \in [0,1]} \Delta(s)$, and consider complexity in terms of this...
parameter. What remains, then, is to determine the scaling of the numerators

$$I_n := \int_0^1 \left\| \partial_s^n H(\sigma) \right\|^{2/n} d\sigma \quad (n \in \{1, 2\})$$

in the system size. Since for typical systems of interest the number of particles N scales proportionally with the number of one-particle modes L, we take L as the system size scaling parameter.

Now, from Eqs. (21) and (24),

$$\left\| \partial_s^n H(\sigma) \right\| \leq \sum_{k=1}^{L(L-1)/2} \left| \partial_s^n \gamma_k(\sigma) \right| \cdot |\lambda_k| \cdot \|\Phi_k\|.$$

Note that the path functions γ_k can always be chosen such that $|\partial_s^n \gamma_k(\sigma)|$ is upper bounded by a constant. In particular, one may always pick all γ_k such that $\delta \gamma_k(0) = \partial_s \gamma_k(1) = 0$, so that the boundary term in Eq. (2) drops out. The two-body eigenvalues λ_k then, being the eigenvalues of F, are bounded by the energy scale of a two-particle system which does not grow with the system size. Therefore, the norms $\|\Phi_k\|$ are the only meaningful quantities to be upper bounded. As such, it suffices to consider only the first derivative numerator I_1. We shall universally upper bound the operator norm of any pseudoprojector Φ_k in the following, and shall henceforth drop the subscript k. Afterwards, we discuss some implications of this bound for different choices of paths and systems.

1. Upper bound to the pseudoprojector operator norm

Define b such that $\Phi = b^\dagger b$ for some operator Φ from the decomposition. When we define the $L \times L$ antisymmetric matrix $\tilde{\phi}$ with entries

$$\tilde{\phi}_{PR} := \phi^{(PR)} - \phi^{(RP)$$

we may write

$$b^\dagger = \sum_{P < R} \phi^{(PR)} a_p^\dagger a_{R}^\dagger = \frac{1}{2} \sum_{PR} \tilde{\phi}_{PR} a_p^\dagger a_{R}^\dagger.$$

Next, apply a Youla decomposition $\tilde{\phi} = V \Sigma V^T$, where V is an $L \times L$ orthogonal matrix and

$$\Sigma = \bigoplus_{m=1}^{L/2} \begin{bmatrix} 0 & \xi_m \\ -\xi_m & 0 \end{bmatrix}$$

if L is even; if L is odd, Σ has an additional row and column of zeros. This then yields

$$b^\dagger = \sum_{m=1}^{[L/2]} \xi_m a_m^\dagger a_{2m-1}^\dagger,$$

where we defined the rotated fermionic operators $\tilde{a}_k^{(\dagger)} = \sum_p V_{PR} a_p^{(\dagger)}$. Note that since the vector with entries $\phi^{(PR)}$ is a normalized eigenvector, the squares of ξ_m sum to unity.

Since $\|\Phi\| = \|b\|^2 = \max_{|\varphi\rangle} \|b|\varphi\rangle\|^2$, in order to obtain the spectral norm of Φ it is sufficient to find the state whose norm is maximized under the application of b. Now, from Eq. (53) we observe that b defines a set of pairs $(2m - 1, 2m)$ and only annihilates particles from a product state $\prod_p a_p^{(\dagger)}|\text{vac}\rangle$ if they appear together in these pairs. As such, it makes sense to describe a product state in terms of its fermion pairs and its unpaired fermions. We shall denote a product state as a ket $|P, U\rangle$, where P is the set of filled pairs and U is the set of remaining unpaired fermions; in other words,

$$|P, U\rangle = \left(\prod_{i \in U} a_i^{(\dagger)} \right) \left(\prod_{m \in P} a_m^{(\dagger)} a_{2m-1}^{(\dagger)} \right) |\text{vac}\rangle,$$

where the prime on the leftmost product symbol indicates that a certain order of the unpaired modes is assumed, in order to fix the sign of $|P, U\rangle$. In this notation, the matrix elements of Φ are given by

$$\langle P, U | \Phi | P', U' \rangle = \delta_{U'U} \sum_{m \in P} \xi_m^2 \quad \text{if} \quad P = P' \quad \text{and} \quad |m\rangle = |n\rangle$$

otherwise.

From Eq. (55), it is clear that $\|b|P, U\rangle\|$ is maximized when $|P, U\rangle$ lies in the sector with a minimal number of unpaired
fermions (zero if N is even, one if odd). Furthermore, $b \dagger b$ preserves the unpaired fermions, and therefore the state $|\Psi\rangle$ that maximizes the norm must lie in this sector.

If N is even, all particles in this sector are paired up. Such paired fermions, then, are equivalent to what are known as hard-core bosons (HCBs): particles whose operator algebra commutes at different sites, but which may only singly occupy any given site. In this sense, the set $\{b_m^{\dagger}\text{vac}\}_{m=1}^{L/2}$ with $b_m^{\dagger} = a^{\dagger}_{2m-1}a_{2m}$ may be viewed as a single-particle HCB basis, and b, to which we shall add a subscript b^{\dagger}, is then a rotated HCB creation operator. A universal upper bound on the spectral norm of a pseudoprojector Φ is now given by

$$\|\Phi\| \leq \max_{|\ell|=1} \max_{|\Psi\rangle \in H_{NCB}^{(L/2),N/2}} \langle\Psi|b^{\dagger}_{\ell}b_{\ell}|\Psi\rangle,$$

(56)

where $H_{NCB}^{\ell,n}$ denotes an l-site, n-particle HCB Hilbert space. An expression for the right-hand side of Eq. (56) was found by Tenny et al. [44, Theorem 1]; the upper bound that follows is

Theorem 1. For every particle number N, a universal upper bound on the operator norm of a pseudoprojector Φ is given by

$$\|\Phi\| \leq \frac{N/2}{[L/2]}([L/2] - N/2 + 1).$$

(57)

For N odd, a similar result may be found through the observation that any eigenstate of Φ with maximum eigenvalue must lie in the sector where all fermions except one are paired up, for the same reason as discussed above. The problem of upper bounding the operator norm of $\|\Phi\|$ is then equivalent to the even case in a Hilbert space with one less HCB site available. This is formalized in the following theorem.

Theorem 2. For odd N, $\|\Phi\|$ is upper bounded by

$$\|\Phi\| \leq \frac{[N/2]}{[L/2] - 1}([L/2] - [N/2]).$$

(58)

The bounds of Theorems 1 and 2 are also tight.

Theorem 3. Let $\ell = [L/2]$. The upper bound in the even case, Theorem 1, is saturated by taking $\xi_m = 1/\sqrt{L}$ $\forall m$, and taking $|\Psi\rangle$ to be the maximally symmetric state

$$|\Psi\rangle = \left(\frac{\ell}{N/2}\right)^{-1/2} \sum_{|P|\leq N/2} |P, \emptyset\rangle,$$

(59)

where the sum runs over all sets P of $N/2$ HCB sites.

The upper bound of the odd case, Theorem 2, is saturated by $\xi_m = 1/\sqrt{L} - 1$ $\forall m \neq \ell$, $\xi_\ell = 0$, and

$$|\Psi\rangle = \left(\frac{\ell - 1}{N/2}\right)^{-1/2} \sum_{|P|\leq N/2, \ell \in P} |P, \{2\ell - 1\}\rangle.$$

(60)

The proofs of Theorems 2 and 3 are deferred to Appendices A and B, respectively. We note that instead of the ℓth HCB site, the unpaired fermion could occupy any HCB site.

In typical systems of interest, the particle number N will scale proportionally to the number of modes L; we have thus shown that the operator norm of each pseudoprojector Φ_k scales at most linearly in L.

2. Implications

Let us now think about how the above result can be used to reason about the adiabatic complexity of a choice of system or path, in terms of the numerator of Eq. (48). We set a baseline with the following bound, which applies to direct interpolation. Define the residual Hamiltonian H^r in a generic fashion as in Eq. (20), and observe that

$$\|H^r\| \leq \sum_{P < R} |F_{[PR]QS}| \leq \sqrt{L(L - 1)/2} \|F\|_F.$$

(61)

where $\|\cdot\|_F$ denotes the Frobenius norm. Given the dimensionality of F, it is clear that $\|F\|_F \leq c\sqrt{L(L - 1)/2}$ for some nonnegative constant c, and thus $\|H^r\| \leq O(L^2)$. The resulting numerator, for direct interpolation, from Eq. (48) then scales as $O(L^4)$.

In comparison, consider a fully stepwise scheme where we “adiabatically add” every term H^r_ℓ from the eigendecomposition, Eq. (24), separately, i.e., we evolve

$$H^r \rightarrow H^r_1 + H^r_{k_1} \rightarrow H^r_1 + H^r_{k_1} + H^r_{k_2} \rightarrow \cdots \rightarrow H,$$

(62)

where $A \rightarrow B$ denotes a direct adiabatic interpolation between A and B. In this scheme, at any point in the evolution, exactly one of the g_k [cf. Eq. (21)] must increase at a rate scaling in the number of terms [which is $O(L^2)$], with the resulting staying constant (being either 0 or 1). From the universal result that $\|\Phi_k\| \leq O(L)$, we then have

$$I_1 \leq \int_0^1 |O(L^2)O(L)|^2 d\sigma = O(L^6).$$

(63)

This indicates that the fully stepwise procedure is unfavorable as compared to direct interpolation. This is no surprise: with the work of Tomka et al. [33] in mind, the direct path is a geodesic if the gap is held constant, whereas the fully stepwise approach is a walk along the corners of a hypercube in parameter space.

However, we emphasize that these bounds are worst case and can be improved in certain settings. Consider, for example, the standard Fermi-Hubbard model of Eq. (13), with the hopping part plus the chemical potential (which is proportional to the identity for fixed N) taken as the initial Hamiltonian. The spectral norm of the residual Hamiltonian H^r is easily found to be $U/N = O(L)$, leading to $I_1 \leq O(L^2)$. Furthermore, since H^r is diagonal in the two-particle position basis, all its pseudoprojectors are of the form $\Phi_k = a_{j_k}^{\dagger}a_{j_k}^{\dagger}a_ja_k$ and thus have unit spectral norm. Since H^r contains $L/2$ such terms, a fully stepwise procedure yields the same numerator bound, $I_1 \leq O(L^2)$.

On the other hand, the paired fermion formalism may be used to find examples which saturate the bounds of both Eqs. (61) and (63). To this end, we define a residual Hamiltonian H^r and the corresponding operators Φ_k through its two-body eigenstates. As we have seen, a fully paired state $|\Psi\rangle = (\xi_1a_1^{\dagger}a_2^{\dagger} + \cdots + \xi_{[L/2]}a_{2m-1}^{\dagger}a_{2m}^{\dagger})\text{vac}$, where $\xi_m = ((L/2)^{-1/2}$ for all m, gives rise to a pseudoprojector with a maximal norm that is $O(L)$. Since the one-body basis is
free to choose, we can permute the one-body modes in \(L - 1 \) ways such that all resulting two-body states are fully paired and mutually orthogonal.\(^1\) Furthermore, we make use of the fact that the mapping \(\xi_m \mapsto -\xi_m \) preserves the spectrum of any pseudoprojector \(\Phi \). After all, from Eq. (55) we see that \(\xi_m \) appears in an off-diagonal element \(\langle P' | U | \Phi | P'' \rangle \) only if \(m \in P \) and \(m \notin P' \) or vice versa. Therefore, this mapping is realized by the transformation \(\Phi_1 \mapsto \Sigma \Phi_1 \Sigma \), where \(\Sigma \) is a diagonal matrix with a \(-1\) entry in those columns corresponding to the product state \(|P, U \rangle \) where \(m \in P \), and a \(+1\) entry elsewhere. Now we can use this to vary the signs of the terms in a fully paired two-body state; if \(L \) is a power of two, we can construct \(L/2 \) vectors \(\xi \) that are the (normalized) columns of a Hadamard matrix, so that the resulting \(L/2 \) two-body states are mutually orthogonal. As such, we have defined the \(L(L - 1)/2 \) two-body eigenstates necessary to describe an interacting Hamiltonian, each of which is fully paired.

Now, since we have \(L(L - 1)/2 \) pseudoprojectors with maximal norm, the inequality of Eq. (63) is automatically saturated (for any choice of the two-body eigenvalues), and the adiabatic numerator is maximized for the stepwise procedure. Furthermore, this construction also attains a maximally scaling numerator in the case of direct interpolation, if we set all two-body eigenvalues to \(1 \). Indeed, consider the sum over all pseudoprojectors \(\Phi_k \) which carry the same pairing (and therefore only differ in their \(\xi \) vectors):

\[
\sum_{k : \text{same pairing}} \Phi_k = \sum_k \sum_{mn} \xi_n^{\ell_k} a_{2m-1}^{\dagger} a_{2m} a_{2n} a_{2n-1} = \sum_m n_{2m-1} n_{2m}.
\]

In other words, this particular sum of pseudoprojectors is an operator that counts all pairs of fermions in a product state that coincide with the mode pairs that define the pseudoprojectors. As a result, the sum over all pseudoprojectors defined in this example is an operator that counts all possible pairs of fermions, and is therefore simply equal to \(N(N - 1)/2 \) times the identity. This operator saturates the bound \(\| H' \| \leq O(L^3) \) [under the assumption that \(L/N = O(1) \)] and therefore realizes a maximal adiabatic numerator scaling of \(O(L^5) \). This analysis establishes a condition, expressed in the paired fermion formalism, on the two-body eigenstates that yields worst-case numerator scaling for both direct and fully stepwise interpolation. In addition, it shows that direct interpolation indeed outperforms a fully stepwise protocol in this sense.

VI. DISCUSSION

In this work, we have proposed a different protocol for adiabatic preparation of fermionic many-body ground states based on the eigendecomposition of the (combined one- and two-body) coefficient tensor of the residual Hamiltonian, being the difference between the initial and final Hamiltonian, in second quantization. The eigenvectors in this decomposition are equivalent to two-body eigenstates of the residual Hamiltonian. The method decomposes the residual Hamiltonian into a sum of simpler terms, each of which corresponds to an eigenvalue and eigenvector from the eigendecomposition. In the adiabatic scheme, every point along the evolution path is then a linear combination of these terms.

We have demonstrated how this idea may be applied to generalized Fermi-Hubbard models, through a few small worked examples. Our finding is that a level crossing occurring in a direct interpolation from a mean-field Hamiltonian, which arises from a discrete one-body symmetry, can be cured with the two-body decomposition approach. Although this is not a general superiority result, it shows the existence of scenarios in which the use of (partially) piecewise paths resulting from a two-body decomposition is advantageous as compared to direct interpolation. More precisely, in this approach, one can design a procedure which explicitly breaks the symmetry by interpolating through an intermediate Hamiltonian which contains only a subset of the Hamiltonian terms from the decomposition. As a result, a gap is seen to be opened. The conditions for this to occur are specific: while the initial Hamiltonian must share a symmetry with the target Hamiltonian and place the ground state in the incorrect symmetry sector, the two-particle matrix of the residual Hamiltonian must have degenerate eigenvalues in order to mix two-particle eigenstates from the relevant symmetry sectors. However, if these conditions are met, the symmetry is broken with unit probability. As such, the need for (sometimes arbitrary) choices in the design of the path, or an expensive approximation of a geodesic path or counterdiabatic terms, is eliminated.

We wish to point out an additional benefit that comes with the two-body decomposition method, namely, that it could be useful also in a setting where the symmetry in question is unknown. After all, in such a case, it is nontrivial to explicitly construct an additional symmetry-breaking Hamiltonian term by hand. But using the two-body eigendecomposition method we can simply evolve in a stepwise fashion with a separate step for all degenerate two-body eigenvectors and, under the assumption that the problem instance satisfies the three applicability criteria, be guaranteed that the symmetry is broken. A caveat here is that while one can easily check whether there exist degenerate two-body eigenvectors, it is not straightforward to check whether they lie in different sectors with respect to the unknown symmetry. Nonetheless, the method can serve a black-box trial-and-error purpose simply by choosing random mixings of all degenerate two-body eigenvectors and separately interpolating the corresponding many-body Hamiltonian terms in a stepwise fashion. In this sense, the two-body decomposition may be viewed as a heuristic in a situation where otherwise complex methods (such as an NP-hard search over paths) would be required.

Having established this gap opening potential of the two-body decomposition method, we proceeded to analyze the adiabatic complexity of piecewise paths more broadly, by examining how the two-body decomposition influences the numerator part of the complexity of many-body adiabatic
state preparation. This numerator is primarily dependent on the operator norm of each term from the residual Hamiltonian decomposition. We have found that a description in terms of fermion pairs (or equivalently, hard-core bosons) is key to understanding the scaling, in terms of the number of single-particle modes \(L \), of this operator norm and therefore the adiabatic numerator. The main result is that each residual Hamiltonian term scales as \(O(L) \), for a typical system where the number of particles \(N \) scales proportionally with \(L \). This result has different implications, depending on the system under investigation and the chosen evolution path. For example, for the Fermi-Hubbard model with the interaction part taken as the residual Hamiltonian, the adiabatic complexity scales as \(O(L^2/\Delta^3) \) both in a direct interpolation and when following a fully piecewise path. This is due to the fact that the norm of each residual Hamiltonian term from the decomposition scales as \(O(1) \), and there are only \(L \) nonzero terms. On the other hand, for a situation in which all two-body eigenstates are uniformly weighted superpositions of distinct fermion pairs, each term attains the maximal scaling of \(O(L) \); as a result, the time complexity of direct interpolation in this case scales as \(O(L^2/\Delta^3) \), whereas under a fully stepwise path we find an \(O(L^5/\Delta^3) \) scaling. Both of these scalings are worst case. This finding agrees with the statement by Tomka \textit{et al.} that a geodesic path in parameter space is generally beneficial in terms of time complexity [33]. The result suggests that one should be selective when choosing which of the Hamiltonian terms from the decomposition to interpolate in a piecewise fashion, and which to interpolate directly. Namely, by piecewise interpolating only those terms which (are expected to) break any relevant symmetries, one retains the power to lift level crossings, while avoiding potentially unfavorable scaling in \(L \). We note, however, that the situation of maximal scaling is a case where the residual Hamiltonian is particularly dense. In large chemical systems, for example, the two-electron part of the Hamiltonian is typically sparse, so it is expected that a lower adiabatic numerator can be achieved for such systems.

All in all, our examples show that the two-body eigen decomposition method can outperform direct interpolation through symmetry breaking, and we expect that the method can be helpful in situations beyond a single reflection symmetry. An example is the nonrelativistic treatment of molecular electronic structure, which maintains a \(SU(2) \) spin symmetry. Another approach could be the use of a two-body eigen decomposition as a black box if there is a hidden symmetry and the precise cause of a gap closure is not straightforward to determine.

ACKNOWLEDGMENTS

We thank Luuk Visscher, Emiel Koridon, and Stefano Polla for valuable discussions. This work was supported by the Dutch Ministry of Economic Affairs and Climate Policy (EZK), as part of the Quantum Delta NL program.

APPENDIX A: PROOF OF THEOREM 2

The proof largely follows that of Tennie \textit{et al.} [44, Theorem 1]. We seek to maximize the expectation value \(\langle \Psi | \hat{b}_k^\dagger \hat{b}_l^\dagger \Psi \rangle \) with respect to \(|\Psi\rangle \) and \(\xi \). The HCB operator \(\hat{b}_k \) is defined as \(\hat{b}_k = \sum_m \xi^*_m \hat{a}_{km}^\dagger \sum_{m} \xi^*_m \hat{a}_{2m-1}^\dagger \); in the following, we will use \(m \) both as an index of HCB sites and as a shorthand for the (equivalent) pair of fermionic sites \((2m-1, 2m)\). Additionally, we use the flattening symbol \(\phi \) to convert between sets of pairs and sets of fermionic sites,

\[
\phi(\{\mu_1, \mu_2, \ldots\}) = \{\mu_1, \mu_2, \ldots\}. \tag{A1}
\]

In the subspace of maximally paired \(N \)-particle states (with a single fermion left unpaired), \(|\Psi\rangle \) may be expanded as

\[
|\Psi\rangle = \sum_{I,i} A_{I,i}|I,\{i\}\rangle, \tag{A2}
\]

where \(I \) is a set of fermionic pairs and \(|I,\{i\}\rangle = \tilde{a}_i^\dagger \prod_{m\in I} \hat{b}_{km}^\dagger |\text{vac}\rangle \); in line with Eq. (54). Furthermore, we define \(A_{I,i} = 0 \) if \(i \in \phi(I) \) or \(|I\| \neq [N/2] \). The desired expectation value may then be expressed as

\[
\langle \Psi | \hat{b}_k^\dagger \hat{b}_l^\dagger |\Psi\rangle = \sum_{I,i,j,m} A_{I,j} A_{I,j}^\dagger \xi^*_m \xi^n \langle I, \{i\} | \hat{b}_m^\dagger \hat{b}_n | I, \{j\}\rangle
\]

\[
= \sum_{I,i,j,m} \delta_{I,j} \hat{a}_m^\dagger \hat{a}_n^\dagger \xi^*_m \xi^n
\]

\[
= \sum_{I,i,j,m} A_{I,j} A_{I,j}^\dagger \xi^*_m \xi^n
\]

\[
= \sum_{I,i,j,m} \left(\sum_{\phi(I)} A_{I,j} A_{I,j}^\dagger \xi^*_m \xi^n \right)^2. \tag{A3}
\]

In the third line, the \(I \) indexes all pair sets of cardinality \([N/2] - 1\).

The way to get to the desired upper bound of this expression is to insert the indicator functions \(\mathbb{1}_{m\notin I} \) and \(\mathbb{1}_{\phi(I)\subseteq m} \) into the final line of Eq. (A3). While these indicator functions are already incorporated in the definition of the coefficients \(A_{I,i} \) and hence may seem redundant, they allow for clever use of the Cauchy-Schwarz inequality in two different ways, which leads to a system of inequalities from which we can obtain the upper bound. The first of these is nearly identical to that presented by Tennie \textit{et al.} [44, Appendix A, Eq. (A3)] and is as follows:

\[
\langle \Psi | \hat{b}_k^\dagger \hat{b}_l^\dagger |\Psi\rangle = \sum_{I,i,j,m} \left(\sum_{\phi(I)} A_{I,j} A_{I,j}^\dagger \xi^*_m \mathbb{1}_{m\notin I} \right)^2
\]

\[
\leq \sum_{I,i,j,m} \sum_{k,l} A_{I,j}^2 \xi^*_m \xi^n \mathbb{1}_{k\notin I} \mathbb{1}_{l\notin I}
\]

\[
= \sum_{I,i,j,m} \sum_{k,l} A_{I,j}^2 \xi^*_m \xi^n \mathbb{1}_{k\notin I} \mathbb{1}_{l\notin I}
\]

\[
= \sum_{I,i,j,m} A_{I,j}^2 \xi^*_m \xi^n \mathbb{1}_{k\notin I} \mathbb{1}_{l\notin I}
\]

\[
= \sum_{I,i,j,m} A_{I,j}^2 \xi^*_m \xi^n \mathbb{1}_{k\notin I} \mathbb{1}_{l\notin I}
\]
\[\sum_{i,j} A_{ik}^2 \left(\sum_{t} \xi_t^2 + \sum_{l} \xi_l^2\right)\]
\[= \sum_{i,j} A_{ik}^2 \left(\sum_{t} \xi_t^2 + 1 - \sum_{l} \xi_l^2\right)\]
\[= 1 + (\lfloor N/2 \rfloor - 1) \sum_{i,j} A_{ik}^2 \sum_{l} \xi_l^2. \quad (A4)\]

In the penultimate line we used the normalization of \(\xi\), and in the last line that of \(\langle \Psi \rangle\).

For the second way, it becomes important that the unpaired fermion takes away a site pair that could otherwise be occupied by a pair of fermions:

\[\langle \Psi | b_{\ell}^\dagger b_{\ell} | \Psi \rangle = \sum_{i} \left(\sum_{m} A_{\ell \cup \{m\}, i} \xi_m \delta_{i \not\in \phi(\ell \cup \{m\})} \right)^2 \sum_{l} \sum_{i} A_{\ell \cup \{l\}, i}^2 \xi_l^2 \]
\[\leq \sum_{r \neq \ell} \sum_{i} \sum_{l} A_{\ell \cup \{l\}, i}^2 \xi_l^2 \sum_{k \not\in \phi(\ell \cup \{l\})} A_{\ell \cup \{k\}, i}^2 \xi_k^2 \]
\[= \sum_{r \neq \ell} \sum_{i} \sum_{l} A_{\ell \cup \{l\}, i}^2 \xi_l^2 (\lfloor L/2 \rfloor - \lfloor N/2 \rfloor) \]
\[= (\lfloor L/2 \rfloor - \lfloor N/2 \rfloor) \sum_{i} \sum_{l} A_{\ell \cup \{l\}, i}^2 \xi_l^2 \]
\[= (\lfloor L/2 \rfloor - \lfloor N/2 \rfloor) \left(1 - \sum_{i} \sum_{l} A_{\ell \cup \{l\}, i}^2 \xi_l^2\right). \quad (A5)\]

Again, in the last line we used the normalization of \(\xi\) and \(\langle \Psi \rangle\).

When we take the appropriate linear combination of inequalities (A4) and (A5), the sum \(\sum_{i,j} A_{ik}^2 \sum_{k \not\in \phi(\ell \cup \{l\})} A_{\ell \cup \{k\}, i}^2 \xi_k^2\) cancels out,

\[\frac{\lfloor L/2 \rfloor - \lfloor N/2 \rfloor}{\lfloor N/2 \rfloor - 1} \langle \Psi | b_{\ell}^\dagger b_{\ell} | \Psi \rangle + \langle \Psi | b_{\ell}^\dagger b_{\ell} | \Psi \rangle \]
\[\leq (\lfloor L/2 \rfloor - \lfloor N/2 \rfloor) \left(1 + \frac{1}{N - 1}\right), \quad (A6)\]

and we find

\[\langle \Psi | b_{\ell}^\dagger b_{\ell} | \Psi \rangle \leq \frac{\lfloor N/2 \rfloor (\lfloor L/2 \rfloor - \lfloor N/2 \rfloor)}{\lfloor L/2 \rfloor - 1} \quad (A7)\]
as desired.

APPENDIX B: PROOF OF THEOREM 3

In the following, let \(\ell = \lfloor L/2 \rfloor\). For the even case, when we take \(\xi_m = 1/\sqrt{\ell} \forall m\) and \(\langle \Psi \rangle\) the maximally symmetric state

\[\langle \Psi \rangle = \left(\frac{\ell}{N/2}\right)^{-1/2} \sum_{P : |P| = N/2} |P, \emptyset\rangle, \quad (B1)\]

where \(|P, \emptyset\rangle = \prod_{k \in P} b_k^\dagger \cdot (\text{vac})\), then a straightforward calculation shows that

\[\langle \Psi | b_{\ell}^\dagger b_{\ell} | \Psi \rangle = \frac{1}{\ell} \left(\frac{\ell}{N/2}\right)^{-1} \sum_{P, P' \neq \emptyset} \sum_{m, n \not\in \ell} \langle \text{vac} | \prod_{k \in P} b_k \rangle \times b_m^\dagger b_n \left(\prod_{i \in P'} b_i^\dagger\right) |\text{vac}\rangle \]
\[= \frac{1}{\ell} \left(\frac{\ell}{N/2}\right)^{-1} \sum_{P, P' \neq \emptyset, m \not\in P, n \in P'} \delta_{m \not\in \ell, n \not\in \ell} \left(\frac{\ell}{N/2}\right)(\ell - N/2 + 1) \]
\[= \frac{N/2}{\lfloor L/2 \rfloor} (\lfloor L/2 \rfloor - N/2 + 1). \quad (B2)\]

In the odd case, then, where \(\xi_m = 1/\sqrt{\ell - 1} \forall m \neq \ell, \xi_\ell = 0\), and

\[\langle \Psi | b_{\ell}^\dagger b_{\ell} | \Psi \rangle = \left(\frac{\ell - 1}{N/2}\right)^{-1} \sum_{P, P' \neq \emptyset, m \not\in \ell} \sum_{n \not\in \ell} \langle \text{vac} | \prod_{k \in P} b_k \rangle \times \prod_{i \in P'} b_i^\dagger |\text{vac}\rangle \]
\[= \frac{1}{\ell - 1} \left(\frac{\ell - 1}{N/2}\right)^{-1} \sum_{P, P' \neq \emptyset, m \not\in \ell} \sum_{n \not\in \ell} \langle \text{vac} | \prod_{k \in P} b_k \rangle \times \delta_{m \not\in \ell, n \not\in \ell} a_m^\dagger a_n^\dagger b_{\ell} + a_{\ell} a_{\ell+1} \sum_{n} \langle \text{vac} | \prod_{k \in P} b_k \rangle \times \left(\prod_{i \in P'} b_i^\dagger\right) |\text{vac}\rangle \]
\[= \frac{N/2}{\lfloor L/2 \rfloor} (\lfloor L/2 \rfloor - N/2 + 1). \quad (B3)\]

where \(\langle P, \emptyset\rangle = \tilde{a}_\ell \prod_{k \in P} b_k^\dagger \cdot (\text{vac})\), we find

\[\langle \Psi | b_{\ell}^\dagger b_{\ell} | \Psi \rangle = \frac{1}{\ell - 1} \left(\frac{\ell - 1}{N/2}\right)^{-1} \sum_{P, P' \neq \emptyset, m \not\in \ell} \sum_{n \not\in \ell} \langle \text{vac} | \prod_{k \in P} b_k \rangle \times \tilde{a}_{\ell-1} b_m^\dagger b_n^\dagger \left(\prod_{i \in P'} b_i^\dagger\right) |\text{vac}\rangle \]
\[= \frac{1}{\ell - 1} \left(\frac{\ell - 1}{N/2}\right)^{-1} \sum_{P, P' \neq \emptyset, m \not\in \ell} \sum_{n \not\in \ell} \langle \text{vac} | \prod_{k \in P} b_k \rangle \times \left(\prod_{i \in P'} b_i^\dagger\right) |\text{vac}\rangle \]
\[= \frac{N/2}{\lfloor L/2 \rfloor} (\lfloor L/2 \rfloor - N/2 + 1). \quad (B4)\]

In the last line, we directly used the result of Eq. (B2).

[41] A. Francis, E. Zelleke, Z. Zhang, A. F. Kemper, and J. K. Freericks, Determining ground-state phase diagrams...
on quantum computers via a generalized application of adiabatic state preparation, Symmetry 14, 809 (2022).

