Self-Oscillation and Synchronization Transitions in Elastoactive Structures

Ellen Zheng, Martin Brandenbourger, Louis Robinet, Peter Schall, Edan Lerner, and Corentin Coulais

Institute of Physics, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands

(Received 12 July 2021; revised 23 February 2023; accepted 5 April 2023; published 25 April 2023)

The interplay between activity and elasticity often found in active and living systems triggers a plethora of autonomous behaviors ranging from self-assembly and collective motion to actuation. Among these, spontaneous self-oscillations of mechanical structures is perhaps the simplest and most widespread type of nonequilibrium phenomenon. Yet, we lack experimental model systems to investigate the various dynamical phenomena that may appear. Here, we introduce a centimeter-sized model system for one-dimensional elastoactive structures. We show that such structures exhibit flagellar motion when pinned at one end, self-snapping when pinned at two ends, and synchronization when coupled together with a sufficiently stiff link. We further demonstrate that these transitions can be described quantitatively by simple models of coupled pendula with follower forces. Beyond the canonical case considered here, we anticipate our work to open avenues for the understanding and design of the self-organization and response of active biological and synthetic solids, e.g., in higher dimensions and for more intricate geometries.

DOI: 10.1103/PhysRevLett.130.178202

Introduction.—Active matter systems exhibit exceptional collective, nonequilibrium properties resulting in anomalous dynamical and self-organizing behaviors that challenge conventional laws of statistical mechanics [1–10]. While research has extensively focused on active fluids [2,11]—which consist of collections of individual active particles with no particular geometry [12–16], active solids—which have a well defined reference state and hence exhibit elastic rather than viscous properties at long timescales [17–19]—have been much less studied, despite their potential in mimicking living matter and forming novel active materials [18–20].

Among all kinds of mechanical properties of active solids, self-oscillations are vital for biological systems such as flagella and cilia [21–23] and offer the prospect of autonomous mechanical behaviors in designer materials [18,19,24]. It is now well established that one-dimensional active chains exhibit flagellar motion: on the one hand, experimental studies have reported self-oscillatory behavior and synchronization in biological and colloidal systems [25–30]; on the other hand, theoretical and numerical studies have suggested that self-oscillations emerge from the competition between activity and elasticity [21–23,26,31–43]. Despite these advances, there are as of yet few model experimental platforms in which the predicted bifurcation scenarios that lead to self-oscillations and synchronization can be verified.

Here, to investigate dynamical transitions in elastoactive solids, we construct the experimental setup for a simplest form of active solids by elastically constraining centimeter-sized active particles in one-dimensional chains that can freely oscillate in the 2D plane. By controlling the elasticity of such structures, we uncover the nature of the transition to self-oscillations and synchronization. We find the transition to flagellar and self-snapping motion is governed by a nonlinear feedback between the direction of the active forces and the nonlinear elastic deflections. We find that synchronization between two elastoactive chains is mediated by elastically driven alignment, in contrast with active fluids. Although our proposed experimental platform is macroscopic, it might nonetheless help to advance our understanding of elastoactive instabilities that occur at the smaller scale in biological solids. We further envision that it will provide design guidelines for autonomous behaviors in active solids [44,45].

Experimental design of active chains.—Our system consists of \(N = 75 \) cm commercial self-propelled microbots (Hexbug Nano v2) [8,46] elastically coupled by a laser-cut silicon rubber chain pinned at one end as shown in Figs. 1(a) and 1(b) [47]. By tuning the width of the connection [\(W \) in Fig. 1(c)], we are able to manipulate the stiffness of the chain. When constrained at zero velocity, the microbot exerts a force in the direction of its polarization which is parallel to the chain’s axis at rest and point in the same direction, toward the anchor point of the chain [Fig. 1(d)].

Transition to self-oscillations.—The chain with the largest width in between the active particles was slightly pushed off from the equilibrium and stayed at the same position without further significant movements as shown in Fig. 1(e). We then gradually reduced the width of the connections, at \(W = 4.25 \pm 0.1 \) mm, the self-oscillation behavior started to emerge [Fig. 1(f)] suggesting a competition between activity and elasticity: active forces from active particles destabilize the elastic chain, which in turn, through deformation, reorient the polarization of the
FIG. 1. Emergence of self-oscillations in elastoactive chains. (a) Configurations of seven active particles connected by a flexible rubber chain. (b) Close-up details of two active particles unveiling the design of the microbot. (c) A close-up of the linkage between each particle with width \(W \), thickness \(H \) and length \(L \). (d) Histogram of the active force measurements conducted at 0.05 mm/ min. (e),(f) Snapshots of the trajectories of the active particles showing the oscillations changed from self-amplified to overdamped with \(W = 5 \) mm, 4.4 mm, and 2 mm corresponding to elastoactive number \(\sigma = 0.17 \), 0.21, and 0.80, respectively. See also Videos in Supplemental Material [47].

Active pendulums model.—What is the origin of such transition? Inspired by the Ziegler destabilization paradox in structural mechanics [52–55] and the existing numerical models of active filaments [48,56–58], we construct a discrete model, where we boil the complexity of the elastic interactions down to three-body bending forces between the particles and the complexity of the vibration-induced dynamics to viscous overdamped dynamics. The discrete model is based on a chain of seven pendulums [shown as Fig. 2(d)] with one end fixed. The pendulums have a length \(\ell \) and are connected to their neighbors via a torsional spring of torsional stiffness \(C \). Each pendulum \(i \) is driven by a constant active force \(F_a^i = -F^\alpha (\cos \theta_i e_x + \sin \theta_i e_y) \) exerted on its end and in the direction of the pendulum. We also introduce isotropic viscosity \(\gamma \) contributing to a dissipative force on the end of each pendulum that is only dependent on its velocity, and assume no inertia in the system [59]. We then collected all the terms in \(\delta \theta_i \) for each \(i \) according to virtual-work theorem and constructed \(N \) nonlinear coupled differential algebraic equations (DAEs) that describe the motion of the elastoactive chain (further details in Supplemental Material [47]). There \(\sigma = F^\alpha \ell / C \) is the elastoactive parameter and \(\tau = \gamma \ell^2 / C \) a characteristic timescale. We estimate the torsional stiffness \(C \) from their geometry using beam theory (see Supplemental Material [47]). From the average velocity of the robots when they are freely moving \(v_a = 0.025 \pm 0.005 \) m/s and their average force when they are pinned \(F_a = 15.7 \pm 3.1 \) mN [Fig. 1(d)], we estimate the damping coefficient \(\gamma = F_a / v_a = 0.63 \pm 0.11 \) N s/m.

Using these parameters, we solve the system of DAEs numerically (see Supplemental Material [47]) and find a good agreement with the experimental results, and for the time series of average polarization [Fig. 2(e)]. We observe an agreement between the experiments and the simulation in the trend of the limit cycle [Fig. 2(f)], here the differences are due to the energy loss in the experimental scenarios. This agreement shows that nonlinear geometry, torsional stiffness, active force, and isotropic viscous dissipation are sufficient ingredients to successfully capture the essence of the self-oscillation phenomenon. Our elastoactive model is controlled by a single timescale \(\tau \) and a single nondimensional...
Supercritical Hopf bifurcation. — We ran experiments and simulations over a wide range of the elastoactive parameter \(\sigma \), collected the time average of the amplitudes \(\langle \Theta \rangle \) [Fig. 3(a)] and the rescaled oscillation frequency \(f \times \tau \) [Fig. 3(b)] in the mean polarization time series and plotted them against elastoactive parameter \(\sigma \). While for low values of \(\sigma \), the chain remains straight without oscillations, we see that above a critical value \(\sigma_c = 0.16 \pm 0.005 \), the oscillation amplitude \(\langle \Theta \rangle \) increases rapidly as \(\langle \Theta \rangle \sim (\sigma - \sigma_c)^{0.5} \) [Fig. 3(a), inset], while the rescaled frequency increases linearly. To further elucidate the nature of the transition to self-oscillations, we carry out a linear stability analysis on the set of nonlinear coupled equations (see Supplemental Material [47]), and observe that at \(\sigma = 0.15 \), the real part of a pair of eigenvalues becomes positive, while the corresponding imaginary parts of these eigenvalues are equal and opposite and monotonically increase [Figs. 3(c) and 3(d)]. This transition is a hallmark of a Hopf bifurcation. The critical elastoactive number decreases with the length of the chain as \(\approx 1 / N^2 \), See Supplemental Material [47] for simulations and theory, this can be interpreted by two effects: the Euler buckling load decreases for longer chains \(\approx 1 / N^2 \) while the sum of the active forces grows as \(N \). The exponent 0.5 in the experimental and numerical data suggests that this bifurcation is supercritical. To verify the nature of the bifurcation theoretically, we restrict our attention to two pendulums with \(N = 2 \), which is the simplest case where the model could exhibit the bifurcation. The time evolution of such an elastoactive chain is governed by the following equations

\[
\tau [2 \dot{\theta}_1 + \dot{\theta}_2 \cos (\theta_1 - \theta_2)] = \theta_2 - 2 \theta_1 + \sigma \sin (\theta_1 - \theta_2),
\]

\[
\tau [\dot{\theta}_1 \cos (\theta_1 - \theta_2) + \dot{\theta}_2] = \theta_1 - \theta_2.
\]

In Supplemental Material [47], we use a perturbative expansion and perform a few algebraic manipulations to demonstrate that Eqs. (1) and (2) can be mapped onto the Landau–Stuart equation

\[
\frac{dz}{dt} = (i + \sigma - 3)z + \left[i \left(\frac{17}{4} - \sigma \right) - \left(\sigma - \frac{5}{2} \right) \right] |z|^2 z,
\]

where \(z \) is the complex variable defined by \(z := \theta_1 + i \sqrt{(\sigma - 2)/(4 - \sigma)} \theta_2 \). This equation is the canonical form of a supercritical Hopf bifurcation. Many earlier works had observed experimentally or numerically self-oscillation phenomena [21,25,60] or theoretically proposed models with Hopf bifurcations [23,31,32,35,48,61]; here, we unambiguously demonstrate experimentally, numerically, and theoretically in a single system of active chains that the supercritical Hopf bifurcation underlies the transition to self-oscillations and is primarily controlled by the elastoactive number \(\sigma \).

Self-snapping. — When experimenting with the elastoactive chain, we realized that not only does it oscillate when pinned at one end, it also does oscillate when pinned at two ends, Fig. 4(a). We find that these oscillations vanish when the chain is maintained at its undeformed length, but that they immediately emerge once we compress the chain along its axis. A passive chain would simply buckle, i.e., bend sideways when compressed. In stark contrast, the elastoactive chain bends sideways, but continuously snaps by itself from one side to the other. The more the chain is compressed, the more it oscillates [Fig. 4(c)] and the slower it self-snaps [Fig. 4(d)]. We find that adding geometrical constraints to our model (see Supplemental Material [47]) allows us to reproduce the phenomenology qualitatively [Fig. 4(b)] [62]. While the flagellar motion observed earlier is ubiquitous in the context of biological structures, this self-snapping oscillation of buckled elastoactive structures is much more rare and surprising.

Frequency entrainment synchronization transition. — Our model system also allows us to explore synchronization phenomena between two active chains [Figs. 5(a)–5(d)]. We demonstrate experimentally and numerically that an elastic coupling allows for a frequency entrainment synchronization transition. We selected two chains both with an elastoactive number \(\sigma_1 = 0.8 \) [the chain on the left hand side in Fig. 5(a)] and an elastoactive number \(\sigma_2 = 0.6 \) [the chain on the right hand side in Fig. 5(a)] and connected...
them via a coupling spring of variable stiffness K. We also performed simulations over a range of stiffness K that contains what we have utilized in the experiments [Figs. 5(e) and 5(f)]. The rescaled coupling stiffness is $\kappa := K l^2 / C_1$ (where C_1 is the stiffness of the left chain). To analyze the synchronization transition, we first extracted the oscillation signals from both chains. We then calculated the instantaneous phases $\Phi_1(t)$ and $\Phi_2(t)$ (see Supplemental Material [47]) of each time series [Figs. 5(b) and 5(e) for experiments and simulations, respectively]. For low coupling stiffness (yellow lines), both $\Phi_1(t)$ and $\Phi_2(t)$ increase linearly, but with a different slope, which can be described as two chains oscillating with different frequencies. On the contrary, for large coupling stiffness (brown lines), both instantaneous phases $\Phi_1(t)$ and $\Phi_2(t)$ align on the lowest slope (i.e., both chains beat at the lowest frequency of the two). We performed experiments and numerical simulations and measured the frequency mismatch $\delta \nu$ from the slope of the instantaneous phase difference $\Psi := \Phi_2(t) - \Phi_1(t)$ over a wide range of coupling stiffness and found that the synchronization transition occurs at the critical value $\kappa = 1.1$ [Figs. 5(c) and 5(f)] [63]. Further numerical simulations of elastoactive chains with varying σ reveal that the regime of synchronization exhibits an Arnold tongue centered about the 1:1 frequency ratio in the synchronization regime [Fig. 5(f), inset]. In other words, the two chains will synchronize for lower coupling if they have similar elastoactive numbers or if they are closer to the bifurcation—in this case the transition toward steady oscillatory synchronized state will take longer.

To rationalize this finding, we show in Supplemental Material [47] that the instantaneous phase difference $\Psi(t)$ between two chains with $N = 2$ is

$$\frac{d\Psi}{dt} = d\nu - \frac{e}{\cos \Psi_0} \sin(\Psi - \Psi_0).$$ \hfill (4)
where dv, ϵ, and Ψ_0 are functions of the elastoactive number of each chain and of the coupling stiffness between the chains (see Supplemental Material [47] for closed forms). This equation has been well studied before for the investigation of synchronization phenomena [64]. An analysis of this equation predicts synchronization for $|\epsilon/\cos\Psi_0| > \langle dv \rangle$, with a square root singularity [64]. As we show in Supplemental Material [47], this condition is met when the coupling stiffness exceeds the threshold value $\kappa_c = 11/(4\sqrt{6})\sqrt{\sigma - 3}(1 - \rho)$, where σ is the elastoactive number of the left chain and where ρ is the ratio between the elastoactive number of the right chain over that of the left chain. This result thus demonstrates that the synchronization scenario of the two elastoactive chains corresponds to that of a classic nonisochronous synchronization, which is characterized by a constant phase shift in the synchronized region. In addition, the two chains will synchronize for lower coupling if they are closer to the bifurcation or when they have similar elastoactive numbers. In summary, we have captured the synchronization scenario of the two elastoactive chains from the minimalistic system considered here. For instance, one could investigate more complex geometries, such as nonfollower forces [44], more intricate geometrical connections between active particles, two-dimensional structures, alternative boundary conditions—pinned or moving clamping points (see Supplemental Material [47])—or even mechanical responses such as longitudinal or transverse excitations. These could in particular emulate peculiar dynamics observed in other contexts, such as odd elasticity [19] or the non-Hermitian skin effect [18,65].

The data and codes supporting this study are publicly available on Zenodo [66].

We thank D. Giesen, S. Koot, and all the staff members from the Technology Centre of University of Amsterdam for their technical support. We acknowledge K. Sekimoto, A. Deblais, R. Sinaasappel, D. Tam, and M. Jalaal for insightful discussions. We acknowledge funding from the Netherlands Organization for Scientific Research through support from the NWO (Vidi Grant No. 680-47-554/3259) and from the European Research Council Starting Grant No. ERC-StG-Coulais-852587-Extr3Me (C.C.).

See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.130.178202 for simulations and theory, which includes Refs. [35,38,43,48,51]. The precise number of particles N, which does not affect the bifurcation phenomena, was chosen because of experiments and theory, which includes Refs. [35,38,43,48,51]. The precise number of particles N, which does not affect the bifurcation phenomena, was chosen because of experiments and theory, which includes Refs. [35,38,43,48,51]. The precise number of particles N, which does not affect the bifurcation phenomena, was chosen because of experiments and theory, which includes Refs. [35,38,43,48,51]. The precise number of particles N, which does not affect the bifurcation phenomena, was chosen because of experiments and theory, which includes Refs. [35,38,43,48,51].
A more accurate description would include additional effects such as noise in the active force and anisotropic viscous drag. In the former case, the noise is multiplicative in the equations of motion, which in turn progressively introduces noise to the trajectory of the active chain as the noise of the active force is increased; see Supplemental Material [47].

For the experimental results, the dip in the frequency mismatch at intermediate stiffness is due to friction effect that could not be avoided for small beam stiffness.

